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In various questions in ring theory the followin tegory turns out to be useful 
(cf. [3-S]). For an arbitrary ring R let mod R be the category of finitely presented 
right R-modules (viewed as a full subcat ory of the category of all right 
R-modules) and D(R) = (mod R, Ab) the category of all additive functors from 
mod R do the category Ab of abelian groups. D(R) is a Grothendieck category 
with a generator and hence has a well-defined global (cohomological) dimension 
gl.dimD(R). 

For a left R-module A# the functor - @RM belongs to D(R) and its injective 
dimension in D(R) is called L-dim M and further investigated in [3,5]. The global 
L-dimension of R, gl. L-dim R, is naturally defined as sup{L-dim M}, M running 
through all left R-modules. gl. L-dim R coincides with the left pure global 
dimension of R. 

Proposition 1. For any ring R the following inequalities hold : 

gl. L-dim R s gl.dimD(R) =Z 2 + gl. L-dim R. 

Proof. The first inequality is trivial. To prove the second inequality consider an 
arbitrary functor T 65 D(R) and let 

be an exact sequence where 
in D(R) are the functors - 
( = pure4njective) left R-ma 
to be a right exact functor an 
Since the injective dimension of - 
inj.dimP& G 2 + gl.L-di 

In general, examples sh6 
?] Proposition 1 implies that gl. 

If R is von Neumann regular any exact se ure and any func 
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ED(R) has the form - QP~ A4 for some left module mr; hence gl.dim D(R) = 
g1.L -dim R = l.gl.dim R. 

We can now easily exhibit the rings R of small gl.dimi D(R), 

Prep&ion 2. Leg R be un arbitrary ring. Then gl.dim D(R) = 0 if and only if R is 
semi-simple Artinian, and gl.dirn D(R) = 1 if and only if R is a left hereditary von 
Neumamilt regular ring which is knot Artiniavt. 

Proof, In view of t 16 preceding remarks it suffices to show that R is von Neumann 
regular if gl.dim D IR)G 1 In that case for any T E D(R) there is an exact 
sequence 

with injective (and hence right exact) IO and I,. Thus T is right exact. Applying this 
to the functor SIomR (N: - ) where N = R/aR, a E R, we conclude that the 
sequence R + R/aR splits for any a E R :and consequently R is von Neumann 
regular. 

If R is a ring not of the type described in Proposition 2 gl.dim D(R) 2 2. If R is 
right Artinian it follows froh [5] that gl.dimD(R) = 2 + g1.LdimR and hence 
gldim D(R) = 0 when R is semi-simple and gldim D (R ) = 2 exactly when R is a 
non-semi-simple ring for which any left R-module is a direct sum of finitely 
presented modules. In the general situation it is an open problem to classify the 
rings for which gl.dim D(R) = 2, 

In this paper we shall prove that a commutative Noetherian ring R is an Artinian 
principal ideal ring if gl.dim D(R) s 2. (The converse is obvious since any module 
over a commutative Artinian principal ideal ring is a direct sum of finitely presented 
modules.) 

We first bring some results concerning algebraically compact modules in a 
slightly more general setting which might be of some independent interest. 

Let R be a commutative local Noetherian ring with maximal ideal m and M 
any (not necessarily finitely generated) R-module. Call M cotorsion if 
Extk(P, M) = 0 for any flat R-module P. If A4 is algebraically compact ( = pure- 
injective) any short exact sequence of the form 

with fiat P splits. Hence any algebraically compact module is cotorsion. By an - 
argument from [6, $81 it is easily seen that the canonical mapping M -+ Q = 

is surjective for any cot odule, Thus we have the following 
algebraically compact 
der certain ad ns the arrow can 

3. Let R be a commutative local Noetherian ring with maximal ideal 
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m and M an R-module which is separated in the m-adic topology (i.e. n ,mrM = 0). 
Then M is cotorsion if and only if M is complete in the m-adic topol:ogy. 

Proof. ht suffices to show that M complete implies M is cotorsion. We have to 
prove that any exact sequence 

0) O-+M-:A:P-+O 

splits whenever P is flat. Since P is flat, for any t 2 0 the sequence (with the obvious 
mappings) 

vv O~M/m’MI;AIm’AqP/m’P~O 

is exact. P/m’P is a flat (R/m’)-module and hence (R /m’)-projective, R/m’ bein 
Artinian. Thus (tt) splits for all t and it is readily checked that there exist right 
inverses hr of gr commuting with the canonical mappings P/mr+l P + P/&P and 
A/m’+’ A + A /&A, t a 0. Therefore the sequence 

is split exact (where generally fi denotes the completion I. N/m’N). Since M = a 
this implies that (t) splits. 

Proposition 4. Let R be a commutative local Noetherian ring with maximal ideal 
m and P a flat R-module. The nt-adic completion P is a direct summand of a direct 
product of copies of the m-adic completion R of R and hence an algebraically 
compact flat R-module. In particular, a pat module which is separated in th:! m-adic 
topology is algebraically compact if and only if it is complete in this topology. 

Proof. For t a 0, P/m’P is a free (R/m’)-module. By Nakayama’s lemma it is easy 
to see that there exists a basis e,,,, cu E I, for Pjm’P such that ecr,r = Kr+l e,,+l, a! E I, 
t 3 0, where Kr+l denotes the canonical mapping P/m!” P + P/m’P. 

Let ir be the natural injection of P/m’P = X,e(R/m’)e,,, into the product 
(R/m’)‘. Since the corresponding cokernel is projective, ir splits, and, as above, 
there exist left inverses commuting with {KI) and the canonical homomorphisms 
(R/VP’)’ --) (R/m’)*. Hence the injection 

P = l.P/~rP41(R/mrR)’ = R’ 

splits and P is a direct summand of RI. 

reover is assumled to be one-dimensi al it can be proved that a 

s algebraically compact if and o if the canonical mapy 
is srlrjective. 

We are now able to prove 
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Theorem. Let R be a commutative Noetherian ring. Then gl.dim D(R) S 2 if ad 
only if R is an Artinian principal ideal ring. 

Proof. In view of the earlier remarks it suffices to prove the “only if” part. 
Assume R were not Artinian. We shall then obtain a contradiction by constructing 
an exact sequence of R-modules. 

( 1 * A+B-,C-,O 
f 8 

where A and R Ire algf?braically compact, but C is not algebraically compact. In 
fact, (*) gives ri e to art exact sequence of functors in D(R) 

Since (A QD - ) and (a QP - ) are injective objects in D(R) while (C@- ) is not, we 
get inj.dimDtaJ Ker cfg - ) > 2 and hence gl.dim D(R) > 2. 

To construct the sequence ( * ) we observe that for any ideal % of R any 
(R/21)-module is algebyaically compact if and only if it is algebraically compact qua 
R-module. Similarly, if S is a multiplicatively closed system of a domain R, an 
Rs-module is algebraically compact if and only if it is algebraically compact as an 
R -module. 

By our assumption R is a non-Artinian Noetherian ring. Let P ue a submaximal 
prime ideal of R. By replacing R by R /P and passing to a suitable ring of fractions 
we may assume that R is a one-dimensional local domain with maximal ideal nt, 
say, Let 7r be a non-invertible element of R and let R be the m-adic completion 
of R. 

We consider the submodule A of R N consisting of all sequences tending to zero 
in the m-adic topology. A is the m-adic completion of R@‘) and hence by 
Proposition 4 a flat algebraically compact module. The mapping Q, 

is a well-defined monomorphism of A into A. From the exact sequence 

(**I O+ALA-,C-+O 

where C = Coker 9 we derive the exact sequence 

Q denoting the quotient field of R. Obviously Horn (Q, A) = 0 and since A in 
particular is a cotorsion module we get Ext’ (Q, A ) = 0, and hence Horn (Q, C) = 0. 
Thus C contains no non-:tero divisible submodule. 

On the other hand C contains a non-zero element c represented by (l,O,O,. . .) 
which is divisible by any power of m. If C were algebraically compact the equations 



re FQ and F, m free m 
compact. By reve the 
the (arbitrary) R ule 
implies that R is a principal ideal ring. 

Codbuy 1. Lea R 6e an arbi 
gl.dimD(R) = 3. 

hich is mt a field. Then 

Pmof. We only have to prove that gl.dim D(R) 6 3. By an obvious 
of Kulikovs theorem [1, theorem 18.1) to Dedekind domains any s 
direct sum of finitely generated R-modules is a ain a direct s 
generated R-modules. This implies that any R-module has a 
resolution of length 1, hence the pure global dimension ( = gt.L 
consequently gl.dim D (R ) G 2 + gl.L-dim R s 3. 

CoFouIIry 2. LetR an arbitrary comtabk cmmtali 
not an Artinian piiuripal ideal ring. Then g ,dim D(R) = 3. 

Roof. By [3) L-dim M 1 for any R- 
and thus gl.dim D(R) 3. The inverse inegua 

Noetherian ring 
R-module is a direct product of finitely 

Apart ftom the above cases it se 
even for commutative Noetherian domains. 
fields one can obtain 

ever, the bounds one gets there are pro 
e conclude with some 

field. When K is finite or countable gl.di 
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gldim D(R) 2 3, and it is not even known whether gl.dimD(R) will be Unite. 
However, we can compute the injective dimension (= L-dim R) of the identity 
functor in D(R) (or, strictly speaking the forgetful functor from R-modules to 
abelian groups). If 1 K 16 SSO we have L-dimR = 1; if 1 K I> No we have 
L-dim R = 2. By [3, S] L-dim R G 2, so it remains to be shown that L-dim R > I in 
the uncountable case, This follows from the slightly more general 

Prop&ion 5. d et A be a Noethwian ring containing an uncountable fierd K. Tlten 
L-dimA [X, Y] a ?. 

Proof. R = A 1X, Y] is Uoetherian and its pure injective envelope is n,,, R, where 
m runs through the maxnral ideals of R and r?, denotes the m-adic completion of 
R. In the puve exact seyuence 

(where i is the diagonal map) we thus have to prove that C is not algebraically 
compact. 

Let m’ be some fixed maximal ideal of R containing X and Y. Then &*= 
&,,#“A [[X, Y]] where A mPr IA is the (m’ n A )-adic completion of A. In particular 
R,t a K[ [x, Y]]. If q, 1 G j 6 t < 00 are elements in K and fi, 1 s j G t are power 
series in K[ [ Y]], a straightfn . .-3rd computation shows that the following system of 
linear equations 

=- u- (X - aj Y)Zj a111 Kf7, lajw, 

has a solution =, Zj (1 G j G t) in C. Here 5 denotes the element in n,,, R, all of 
whose components are zero except the &component which is fi. 

Consider two power series f(Y) = CnzO a,Y” and g(Y) = &-, b,,Y” in K[ [ Y]] 
such that a,,# b,, for infinitely many n. 

Further let I = {a)} and J = {/3} be two uncountable disjoint subsets of K. By the 
preceding remark any finite subset of the following sy:.+~rn of linear equations 

- (X - cyY)Z4 + Kf7 
(a**) =- 

at E I, 

E = (X - pY)z, + Kg, P EJ, 

has a solution in C’. 
Assume the total system (* * *) had a solution in C. Let 5 be the d-component 

of a representative for E in n,,, R,. 5 can be written in the form 6 = t(X, Y)= 
21n;rOhn (X, Y), where h, (X, Y) = &+vmncGvXLYu E &,w@‘, Y]. For any CJ E 1 
( * * * ) implies that 

&(~lY,y)= 2 h&E: Y)=f(Y)+r,(Y) 
nv0 
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where r, (Y) is a polynomial in A [YE, depending on CL Since 1 is uncountabfe there 
exists an integer nl such that the degree of r& (Y) is s nt for infinitely many a E I. 
Therefore ir, (a, 1) 
integer nt such that 
infer that a* = & for tion about f(Y) and 
g(Y). Iience (**) i ally compact. 

In [2] a corresponding Iocaf resu 
have no’ciirect connection since, in 

owever, the two results 
eneral, the L-dimension may increase strictly 

by localization! 
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