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1. INTRODUCTION.

Given any set of matrix representations of a group, we can derive
information about the group and the representations by studying the charac-
ters of the representation. In particular, we can consider properties of the
character which will hold for all representations in this set. For example,
we say that two elements % and v lie in the same character class if they have
the same character for all representations in the set.

R. Horowitz [2] has considered all representations of a free group on # free
generators in the 2 X 2 special linear group SL(2, X) (K an integral domain).
He shows that there exists a set of 27 — 1 words #; in ¥, such that the
character of any word u in F,, can be represented as a polynomial in the
characters of the words u, ,..., #sn_y . That is, for every u in F,, there exists a
polynomial P in 27 — 1 variables such that tr{p(x)) = P[tr(p(x;))] where p is
a representation of F, in SL(2, K) and where tr denotes the trace of the matrix.

Changing the set of representations considered changes this property.
A. V. Marincuk and K. S. Sibirskii [4] show that if one considers representa-
tions of F, in GL(3, R), (the general linear group of 3 X 3 matrices with
coefficients in R) then the character of any element can be represented as a
polynomial in eleven elements.

We will consider representations of F, in the 4 X 4 symplectic group
Sp(4, R) where Sp(4, R) is given by the algebraic condition: M & Sp(4, R} if
M is a real. 4 X 4 matrix such that M7 JM equals [ where M7 is the transpose
of M and [ = (%) with 0 and 7 the 2 X 2 zero and identity matrices,
respectively. Equivalently, Sp(4, R) can be described as the group of analytic
mappings of the generalized upper half plane # where S consists of all
2 X 2 symmetric matrices & such that (1/2{)(Z — Z) is positive definite [5].

If we consider 4 X 4 symplectic representations, we increase the number
of words needed whose characters generate all characters: If p is 2
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representation of F, in SL(2, R) then p induces a representation p* in
Sp(4, R) by
= (0 )
0 (p(Wy)*

Then te(p*(W)) = 2 tr(p(W)). Therefore any polynomial relationship
between characters in Sp(4, R) must induce relationships in SL(2, R).
However, since not all symplectic representations are derivable in this way,
not all relationships holding in SL(2, R) will imply relationships in Sp(4, R).

We prove the following analogous theorem for Sp(4, R): There exists a set
of twenty words {I ,..., Wy} in F, such that the character of any word in F,
is representable as a polynomial in characters of these words.

If two words are conjugate as group elements of F, then they lie in the
same character class, no matter what set of representations we consider,
since conjugate matrices have equal trace. If we consider representations in
SL(2, R) or Sp(4, R), then an element and its inverse lie in the same character
class, since if a matrix 4 lies in either group, tr 4 = tr A~%. Therefore if »
is in F, then the character class of # is the union of at least two conjugacy
classes, that of # and of #~1. Horowitz [2] has given certain necessary con-
ditions for words in F, to be in the same character class, and these conditions
must carry over to representations in Sp(4, R). However these symplectic
representations distinguish conjugacy classes more sharply than SL(2, R)
representations. We will give examples of words which lie in the same
character class with respect to representations in SL(2, R) but lie in distinct
character classes with respect to representations in Sp(4, R).

Finally, we show that the set S = {W,,..., Wy} has a subset S, =
{Wy,..., Wi,} invariant under automorphisms of F, in the following sense:
If ¢ is an automorphism of F, and if W e S then the trace of (W) is repre-
sentable by a polynomial in the traces of words in S .

In deriving relationships among the traces of symplectic matrices M we
construct a ‘“‘pseudo-symplectic’’ normal form M . This is a matrix similar
to M but not necessarily symplectic: M, = C-1MC where C7JC = ], so
C is symplectic if and only if it is real. This form was derived independently
from, but is very closely related to, a symplectic normal form constructed by
A. Christian in 1967 {1].

2. NorMAL ForwMS FOR SYMPLECTIC MATRICES

If M is in Sp(4, R) then the following properties of M can be shown by
elementary methods of linear algebra.

Levwma 1. If X is an eigenvalue for M then 1]\ and X are also eigenvalues
Jor M. All have the same algebraic and geometric multiplicity.
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LevMa 2. If M has an eigenvalue X such that X 5= A and |X| = 1 then
M is diagonalizable.

Levma 3. If A2 1 and € = =1 are eigenvalues for M then < has
algebraic multiplicity 2.

Levma 4. The eigenvalues for M, listed according to algebraic multiplicity,
can be ordered in one of the following ways:
@ A p A u)  where X5 1A po 5% T, A 5= g,
(b) {A e 1/A € where A £ 1[A, ¢ = 41,
(&) UMYX where A 5= 1/
(d) {e, —e, ¢, —c} where e = |1,

(e) {e,6¢ ¢ where ¢ = +1.

Tueorem 2.1. There exists a matrix C such that CTJC = ] and
CIMC = M is one of the following:

N O 0 0

. 0o xn 00

(1) IWC— O 0)\30 3
00 0 A
A 00 0

.. 0 ¢ 0 1

@ Me=14 o 1pol
00 0 «
A0 0 A

o x 1x oo

@) Me=1o 0 1n o)
0 0 0 A
1 0 1 0

. 0 —1 0 —1

&) Me=14g o 1 o
0 0 0 —1
I s

) MC=(B 1)’ where S = ST,
e ¢« 00

. 0 € € —e¢

) Me=14 0 ¢ o0
0 0 —¢ ¢
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Proof. If X has column vectors x; then X7 JX = ((x;, Jx;)) where ( , )is
the symmetric inner product. If A4 is symplectic, then (x;, Jx;) =
(Mz; , JM,).

If the eigenvalues are of type (a), notice that \A; = 1 if and only if
(Z7) =(1,3), (2,4), (3, 1), or (4,2). Choosing eigenvectors x;, we find
(5, Jos) = A(;, J;). Then (x;, Jx;) = 0 except for those values of (7, §).
Since det X == 0 and det X7 JX = (det X)? then (x;, Jx;) cannot be zero for
those remaining (7, /). The x; can be normalized such that (x;, Jx;) =1 for
these values. If C has the normalized eigenvectors as its columns, then
C-1MC is diagonal and C7 JC = ]J.

For eigenvalues of remaining types we choose x; as indicated by the
possible Jordan canonical forms, rearranged if necessary to give the ordering
of eigenvalues indicated by Lermama 4. The argument above can be adapted to
shoe C-1MC is of the desired form and CT JC = J. All necessary computa-~
tions are routine.

3. Basic RELATIONSHIP FOR CHARACTERS

U, V, W,... will denote 4 X 4 symplectic matrices. tr U denotes the trace
of U.

Taeorem 3.1. tr UVW + tr UX2VW + tr UVW + tr ULV W 4
tr VOW + tx VUW + tr VAUW -+ tr VIU-TW = tr Uftr VW +
tr VAW] + tr Vitr UW + tr UW] + tc Wtr UV + tr UV] —
tr Utr Vir W.

Proof. Assume U is in normal form. ¥ and W are no longer necessarily
symplectic, since they may no longer be real, but still satisfy V7V = ],
WTJW = J. In particular, if ¥ = (51 }2), where V; are 2 X 2 matrices,
then :

g (A VE V=TT

e R R
If U has form (i), (i1), (iv), or (v) in Theorem 2.1 and Uy is a diagonal matrix
having the same diagonal entries as U then tr U = tr Uy and U 4 UL =
U, + Uy, Therefore in these cases it is sufficient to prove the theorem for
U diagonal.

Let V' = (vy), V3 = (9y), W= (w“) Note that o; + & =0 if
@7) =(1,3),(2,4), (3, 1), (4, 2). Let U have diagonal entries A; , A, , A3, A, .
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Then the lefi-hand side of the equation is

Y QA LA A A A YA (e A+ Ty

1ty it
4
=23 (A + 1) (w5 + ) wy
=1
+ 2 QA N+ 1)y + Ty g

i

If ¢ 5% jtheneither A, -+ 1/A; + A, -+ 1/A; = tr Uor oy, -+ §;; = 0. Therefore
this is equal to

4
2% (A 1) (0 + 055) wis
i1

4
4 tr U [ > (v F Ty w — Y, (U + D) wn]

1gi,iga =1

Direct inspection shows this is equal to the right-hand side.

If U has the form (jii) or (vi) then U + U = al + bX where X = (§ §),
L=0")anda=2A+1/A b=2A~— 1) [form (iii)] or @ = 2, b = —1
[form (vi)]. Since tr is additive, and since the theorem has been proved for
diagonal matrices, it is sufficient to prove it for bX. A routine calculation does
this.

CoroLLARY 3.2.  The following relations hold:
(a) tr U = —tr UV + tr Uir UV -+ 1x UYV]
— H(tr UP — (U] tr V.
(b) tr U? = —tr Ur% + tr Ultr Ut + tr 5]
— H(r UP — tr(UB]tr V.
{¢) wUVUV + tr UVUV
+ 2[tr UVUV + tr UVUY + tr UVUYV
= [te UV + tr U1V
— H(tr U — tx(U?) — 4][(tr V)2 — tx(V?) — 4].
Proof. (a) Apply Theorem 3.1 to U, U, and V.
(b} Apply part (a) with V' = U2
(c) Apply Theorem 3.1 to U, V, UV then to U, V, UV,
Add the results and simplify.
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4. PoLYNOMIAL REPRESENTATION OF CHARACTERS

TrEOREM 4.1. Let Fy = {a, by be a free group on two free generators.
If ueF,, then the character of u can be represented as a polynomial tru =
Py yony %) where x; = tr Wiand S = {W ,..., Wy} = {a, b, a?, b%, ab, ab™?,
a%h, ab?, a?b?, (ab)?, abab=t, aba~'b, a*bab™, ab®a~b, a*b*ab, a®b*ab~, a*baba b,
ababab™', a?b’abab', a?b?aba~'b}. That is, tr(p(n)) = P(tr(p(W,))) for all
representations p of Fy by 4 X 4 symplectic matrices.

Proof. Let u = a*b?s --- g*npPn, Define L(z) = #n (call it the L-length of #)
and k(#) = number of ¢ such that | o; [ = 2 0r | ;| = 2 (call it the A-length).
We write P(tr U;) = 0, where P is a polynomial if there exist a polynomial Q
and v; € F, such that P(tr ;) = Q(tr ;) and either:

) L(v;) <L(u,) for all 7,j and k(v;) << k(u,;) whenever L(v;) = L(u,)
and L(x;) minimal,
(i) »eds.

That is, P(tr ;) = 0 if it can be expressed as a polynomial in traces of words
with shorter L-length or equal L-length and shorter k-length. Note that if
tru+trov=0,tru=0, and L(x) <<L(v) then trv = 0.

The proof proceeds through a series of reductions.

Step 1. Itis sufficient to consider # freely and cyclically reduced. If u = 1,
then none of its exponents are zero.

Step 2. It is sufficient to consider # containing only 1, —1, or 2 as
exponents. If |o;| > 2, |B;] > 2, o = —2 or B; = —2 then repeated
application of Corollary 3.2(a) yields tr # = P(tr »;) where u; involves only
-1, 2 as exponents.

Step 3. te(uugug - u,) + tr(ustguy - 4,) = 0, where u; = a%bf. This
follows from Theorem 3.1 with U = w, , V =uy , W =0y -~ 04, .

Step 4. tru =0 if k(u) > 2. By the previous steps we may assume
u == 1y - u, with k(u;) = k() = 2. Then u; = a®b, a%b?, or a®b? for
t = 1,2, where ¢ = 1. Interchanging u, and wu, if necessary, we may
further assume % has one of the following forms:

() u = a®ha®bv,

(b) u = a*b%ab®0,

(¢) u = %%y,

(d) u = a?ba’b?v,
where ¢, 8 = £1,x = 1,2 and v = 1 or v = #; *-- u,, . For u of type (2)
of (b) consider w = ¥%*y<x%y~z. Then w = u for x = a, y = b, u of type (a)
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and = is conjugate to u for x = b, ¥ = a, u of type (b). Applying Theorem 3.1
to x, xy¢, ¥y we find trw = 0. For of type (c), applying Theorem 3.1 to
a, ab®, &*h*v we find tr u -+ tr(ab?a®h?v) = 0. Applying Corollary 3.2(a} to
@? - ab’vab® we find tr(ab?a®h®r) = 0 so tr u = 0. Finally, if u is of type (d)
then by Corollary 3.2(a) we can consider instead u = 4®%b%a%%. Applying
Theorem 3.1 to a®, a%<, a®h?v we obtain tr u = (.

Step 5. If L{u) > 3 and u; = wu; for some 7 7= j then tr ¥ = 0. By Step 2
Wwe may assume #, = #, . Lhen u = ;v where v %= 1. Applying Corollary
3.2(a) we find tru = 0.

Step 6. 1f L{u) >4 or L{u) = 3 and k(u) = 0 then tru = 0. By the
preceeding steps we may assume # has at least three L-syllables with 0 &-length,
and that u = wuuw where Rlu) = k(u,) = kug) = 0 and the u; are
distinct. Since #; = ab%, ¢;, 8; = +-1 we may assume e, = €5, &, = —0; .
Then ¢ = —¢, and §; = §, or 8; . By interchanging u, and u, if necessary,
assume 8; = 8, . Then u = a~<b%a*b%ab—%v = a~(b%°)?% v and by Step 6,
tru =9,

Step 7. There remain only a finite number of words u to consider. These
have the following properties:

(i) = involves only exponents +1, 2,
(i) L{y) < 3 and A(w) = 1 if L{x) = 3,
(iii) # has no repeated syllables if L{x) = 3.

We first make the following observation. If three out of the four words
abv, abv, a'by, a~'b"lv are = 0 then the fourth is. This is an immediate
consequence of Theorem 3.1. We can then show tr # =0 for all remaining u
by applying Theorem 3.1, Corollary 3.2 and this observation and successively
reducing words, beginning with L(#) = 3, k{u) = 1. Straight forward
reduction gives the result.

5. INVARIANT SUBSETS OF S

We let § = {W],..., Wy}, ordered as in the previcus section, and let P
denote a polynomial in the indeterminants &, ,..., Xy . Following Horowitz’s
terminology, a polynomial P represents a word u € F, if tr(p(u)) = P(tr(p(x,)))
for all representations p of F, by 4 X 4 symplectic matrices. With this
terminology, Theorem 4.1 now states that every word in @ and & is represented
by such a polynomial P. We say that a polynomial represents O if
P(tr(p(u;)) = 0 for all p.
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We can now consider the subset .S; C S consisting of {W] ,..., Wi} =
{a, b, a®, b?, ab, ab™', a?b, ab®, a®b?, (ab)?, abab~, aba~b}, and let R, be the
ring of polynomials with rational coefficients in the indeterminants Xj ,..., Xi,.
Then P € R, represents u € F, if

te(p(u)) = P(tr(p(Wy),.., tr(p(Whs)).

TreoREM. If 0 is an automorphism of F, , and if W; € Sy then o( W) can be
represented by a polynomial in R, .

Proof. Let @, be the group of automorphisms of F, . Then @, is generated
by the automorphisms ¢, , ¢, , $5 where

pi(a) = a™l,  $i(b) = b,
ba(a) = b, bo(b) = a,
ds(@) = ab,  ¢y(b) =0,
(see [3]).
Therefore it is sufficient to prove the theorem for the generating auto-

morphisms ¢ , ds , 5. We write W~ W1 if W is conjugate to W2 Then
we have the following:

d - W, (W) $o(W.) $s(W,)
1 a ot = Wit b= W, ab = W,
2 b b=TMW, a=W, b=TMW,
3 a? o™ = Wt b2 =W, (ab)? = Wy,
4 b? b =W, a® = W, bt =W,
5 ab alb ~ Wt ba ~ Wy ab* = Wy
6 ab™* a %t ~ Wt bat ~ Wt a=W,
7 a®b a2 bia ~ W, abab?
8 ab?® a—1b? ba* ~ W, ’ ab®
9 a2b? a~2h? b%a? ~ W, abab®
10 (ab)? (a1b)? (ba)? ~ Wy (ab®)?
11 abab™ a'ba b1 ~ W3t baba™ ~ W, aba ~ W,
12 aba™'b a~tbab ~ Wi, bab™a ~ Wy, aba™'b = Wy,

I =1, ¢y, or $3 and (W) ~ W then tr($(W,)) = tr W, and (W)
is representable by the polynomial X in R. Therefore, we need only consider
those ¢; such that (W) & Wi . ¢y(W,) and ¢5(W;) are representable by
polynomials in X ,.., Xy, for =7, 8, 9, 10; j = 7,8,9 as immediate
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consequences of Corollary 3.2. For ¢o(Wi,) it is necessary to apply
Corollary 3.2 to get tr(ds(Wyo) = P(tr ¢, (W) where o W;) 5= ¢o(Wy,), then

use the preceeding results.

Remark. By inspection it can be shown that S; is the only nonempty
subset of S with this property. That is, We S, let S(W) be the smallest
subset of § containing W such that if W; e S(WW) then

tw(@(V) = Plu(@(Wy),  where T¥; e S(W).
Then
Sy if Wes,,

Sy =1is i Wés,.

6. ReraTioNsHIP OF CHARACTER Crassgs 1o Conjugacy CLASSES

We say that two elements # and o in F, have the same character if tr{p(«)) =
tr(p(v)) for all 4 X 4 symplectic representations p. Clearly if v is conjugate to
# or u* {as an element of F,) then tru = tr v. We will call the set of all
elements of F, having the same character as # the character class of #. Then
the character class of # is the union of at least two conjugacy classes, namely
that of  and of 21,

Levwva 6.1.  If u and v have the same character, then te(p(u)) = tr{p(v)) for
all representaiions p of F, by matrices in the 2 X 2 special linear group SL{2, R).

Proof. Let p be any such representation. We define a symplectic
representation p* by

=0 ()

p*(W) is a symplectic matrix and p* is a homomorphism. (We use here the
fact that p is a homomorphism and that (A7) Y(B7)t = ((4By) 1.} Then
te{p*(W)) = tr p(W) -+ tr{p(W)T)™ = 2 tr p(W). Therefore if # and o have
the same character, tr p(u) = tr p(v) for all representations of 7, by matrices.
in SL(2, R).

R. Horowitz [2] derives certain necessary conditions for # and v to have the
same character in SL(2, R). By Lemma 6.1 these conditions are necessary for
# and © to have the same character in the symplectic group. In particular,
Horowitz shows

(1) the character class of @™ is the union of the conjugacy classes of
a™ and ™,

481/32/2-6
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(2) the character class of any power m of a primitive element ¢ in F, is
the union of the conjugacy classes of ¢™ and ¢,

(3) the character class of a'6™ is the union of the conjugacy classes of
a™b? and b~la™.

These results must also be true in the 4 X 4 symplectic group according to
Lemma 6.1.

In SL(2, R), Horowitz shows this is the best possible result. T'hat is, it is no
longer true that the character class of a word consists only of the conjugacy
classes of the word and its inverse when one takes cyclically reduced words of
at least four syllables.

In particular, he shows that given any even number r (v 5= 0) and any
positive odd number s, the words

W(r,s) = alb7a - b%a"a

and
W(r, s) = ab’a*b%a - b*a™*

have the same character in SL(2, R) but are not conjugate. Therefore for any
7, § as above, the character class of b*ab’a—! is the union of at least four
conjugacy classes, namely the conjugacy classes of b*ab’a?, b*a~1b%,
ab~sa~b~%, and atb—*ab*. This is no longer true if we use 4 X 4 symplectic
representations. In this case the character class of b*ab%a~! in SL(2, R) will
split into at least two character classes.

To show this, will construct a representation p such that

tr(p((r, ) # tx(p(V (7, 9):

We define
01 0 —1
t 0 0 0
@=1o 1 0 o)
1 0 1/t 0
A0 0 0
o » 0 0
Pl =19 o x 0
0 0 0 1ju
Then

tr p(Wr, 5)) = A¥[ps + p2 A% + ps[A% - 1[pAs,
tr p(V(i’, S)) — AZT,LS + ”21‘/)\8 + 1/)\27‘”5 _I_ )\S/M2T.
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Then tr{p(W{r, 5))) = tr{p(V(r, 5))) if and only if

00r — 1)t = 1) = O — LA — 1),

In order for this to be true for such 7, s and arbitrary real numbers A, p
{nonzero), the polynomial

XSYZT(X47‘ — 1)(Y28 . 1) _— XZTYS(XZS — })(YM‘ . 1)

must be identically zero. This polynomial has X#+sY2+2s .. X325y 4r+s 56
its highest degree term and would vanish only if 2r = 5. But s is odd, so this is
impossible. Therefore tr(p(W(r, s))) # tr(p{V(r, $))).
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