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Abstract

The purpose of this article is to analyze several Lie algebras associated to “orbit configuration
spaces” obtained from the standard integral latice iZ in the complex numbers. The Lie algebra
obtained from the descending central series for the associated fundamental group is shown to be
isomorphic, up to a regrading, to the Lie algebra obtained from the higher homotopy groups of
“higher dimensional arrangements” modulo torsion. The resulting Lie algebras are similar to those
studied by T. Kohno associated to elliptic KZ systems [Topology Appl. 78 (1997) 79-94]. A question
about the generality of this behavior is posBd2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this article is to compare properties of certain Lie algebras obtained from
(i) the descending central series for the fundamental group of certain choiéesrol)
spaces together with (ii) Lie algebras obtained from the classical higher homotopy groups
of related loop spaces.

The evidence here and elsewhere suggests that in the special case of certain hyperplane
arrangements, the Lie algebras encountered for the groupéd those for the higher
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homotopy groups of “higher dimensional analogues” of hyperplane arrangements modulo
torsion are isomorphic up to a regrading of the underlying Lie algebras. One “mantra” is
that Vassiliev invariants for pure braids are determined by the higher homotopy groups of
certain configuration spaces modulo torsion. This “mantra” is satisfied for certain other
examples that are described next.

A more precise version of this conjecture is stated below for which several examples
are already known. Namely, the homotopy groups of the loop space of the configuration
space ofk points in an even dimensional Euclidean sp&é&12, modulo torsion, admits
the structure of a graded Lie algebra induced by the classical Samelson product. Apart
from regrading, that Lie algebra is isomorphic&g(P), the Lie algebra obtained from
the descending central series for the piwstranded braid group that is “universal” for
the Yang—Baxter—Lie relations [3,5]. Appealing to work of Kohno [8-10], these homotopy
groups yield Vassiliev invariants for braids. By work of the second author [11], and Cohen
[1], there are analogous results for certain choices of “orbit configuration spaces” of points
in C" — {0} that are discussed in this article.

The main results here arise from choices of orbit configuration spaces as introduced
by the second author in [11]. Given a manifal on which the groupG acts properly
discontinuously, lef's (M, k) be the orbit configuration space

Fo(M, k)= {(m1,...,mx) € M* | Gm; N Gm; =@ if i # j}.

Two examples of spaced and groupss arise by considering (i) a parametrized lattice
acting on the complex numbet so that the orbit space is an elliptic curve, and (ii) a
discrete group acting properly discontinuously on the upper half-ptase that the orbit
space is a complex curve. The orbit configuration spaces associated to the action of the
standard integral lattice on the complex humbers is considered in this article.

Given a family of linear equations over the reai¥kk) = {Zlgigk a;ix;}, in k vector
variablesx, ..., x¢, let X (k,R") = (R")* — V(O (k)) denote the complement of the
variety determined by® (k), V(©(k)). Furthermore, assume that there are fibrations
Xk, R") — X(k — 1,R") having sections with fibre given bR" — S, where Sy is
a discrete set. Consider the graded Lie algeijfér: (X (k, Rz)))q. Comparing answers
for several known examples, suggests tEg’(nl(X(k,Rz))) is isomorphic to the Lie
algebra of primitive elements in the homology@fX (k, R%*2) for ¢ > 0. Furthermore,
it is an easy exercise that the module of primitives is isomorphic to the Lie algebra
75(X (k, R%%2)) modulo torsion fog > 0.

There is an associated natural question that is stated roughly in the following paragraphs.
Start with a family of functors indexed by natural numbers, from Euclidean spaces with
morphisms restricted to isometric embeddings, to topological spaces, where

(1) thekth functor is denoted (R”, k),

(2) X(R",1) =R",

(3) there are natural transformatiodgR”, k) — X (R", k — 1) which are fibrations

with fibre R" — S,
(4) Sy is a discrete subspace&f of fixed cardinality depending oh and
(5) each fibrationX (R", k) — X (R", k — 1) admits a section.
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An obvious example of such a family is given B(R", k) = F(R", k), the ordinary
configuration spaces.

Next consider the Lie algebra obtained from the descending central series for the
group G. For each strictly positive integer, there is a canonical (and trivially defined)
graded Lie algebr&;(G), attached to the one obtained from the descending central series
for G, and which is defined as follows.

(1) Fix a strictly positive integey.

(2) LetI"(G) denote the:th stage of the descending central seriesdor

3) EZ"(G)y = I"(G)/T"(G),

(4) Ey(G)g =1{0},if i 20 mod 27, and

(5) the Lie bracket is induced by that for the associated graded far’thé).

It seems likely that for many choices &f (R%12, k) the Lie algebra associated to
G = m1(X (R?, k)), satisfies the condition that it also gives the Lie algebra of primitive
elements in the homology of certain loop spadg§(G), for g > 0 is isomorphic to the
Lie algebra of primitive elements in the homology for the loop sp@ce(R%*+2, k) with
g > 0. This last Lie algebra for the module of primitives is a graded free abelian group that
is isomorphic to the Lie algebra given by the homotopy group® &f(R%4*2, k) modulo
torsion.

The results of the next theorem concern special cases of fibrations with cross-sections.
After looping, the total space of such fibrations are always homotopy equivalent to a
product. However, this product decomposition may be multiplicatively “twisted”. The main
input of this article is to analyze these extensions in special cases. This picture is reflected
in the following theorem.

Theorem 1. Assume thak > 3. Let X(R", k) — X(R",k — 1) be a fibration which
satisfies the following properties
(1) the fibre ofX (R, k) - X (R", k — 1) isR" — S; whereS; is a discrete subspace of
R" of fixed cardinality depending dn
(2) each fibrationX (R", k) — X (R", k — 1) admits a cross-section, and
(3) X(R", 1) =R".
Then
(1) There is a homotopy equivalenteX (R”, k) = ngigk—l MR - S;).
(2) The homology of2 X (R", k) is torsion free, and is isomorphic to
®1<i<k_1 H.(2(R" — S;)) as a coalgebra.
(3) The module of primitives in the integer homologysaX (R", k) is isomorphic to
7. (£2 X (R", k)) modulo torsion as a Lie algebra.

The proof of this theorem is an exercise that is given at the end of this article. The main
purpose of this article is to study one example related to the theorem above given by the
spaceFg (M, k) in the case whe = C, the complex numbers, ard is the integral
lattice £ = Z + i7Z, acting by translation of£. One of the consequences of the theorem
below is that the Lie algebra obtained from the fundamental group of the associated orbit
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configuration space also gives the Lie algebra obtained form the higher homotopy groups

of

the “higher dimensional analogues” of this arrangement.

Theorem 2. Let F(C, k) be defined as above.

(1) The symmetric groufX; acts onF-(C, k) and the orbit space,(C, k)/ 2 is
homeomorphic to the subspace of monic polynomials of dégree) € C[z], with
the property that the difference of any two rootspaf), o;, «;, lies outside of the
Gaussian integers.

(2) Itis the complement it* of the infinite (affine) hyperplane arrangement

A={H?;11<j <i<k, o €L}

WhereHl."’j =kern(z; —z; — o).

(3) It is an L*-cover of the ordinary configuration space bfpoints in the torus
T = 51 x S1. This is a special case of the resultgiri], which gives the existence
of a principal bundle

£k — Fr(C k) — F(T, k).

(4) The spaceF(C,k)isaK (r,1).

(5) The fibrationF,(C, k) — F(C, k—1) has(i) trivial local coefficients in homology,
and (ii) a cross-section.

(6) Thus the Lie algebra given by the associated graded for the descending central
series ofr1(F,(C, k)) is additively isomorphic to the direct su@kigk L[i]
where L[i] is the free Lie algebra generated by eIemeB;fsj for fixed i with
1< j <i <k,ando runs over the elements of the latti€e

(7) The relations are

[ng, BS’J] =0 if{i,j}n{s,t}=0.
Otherwise,
[ng’ BZ,,-] = [Btzr,i’ BZJJFU]

[B7,.B; ;]=[Bi; B ;]
(8) The integral homology of - (C, k) is additively given by
H.Fr(C, k) = Hi(C1) @ Hi(C2) ® -+ - ® Hy(Cr—1)

where C; is the infinite bouquet of circle§/, ¢, st and Qf as defined in the
beginning of the next section. '

Remark. Work of Kohno, as well as work of Falk and Randell [6,8-10] together
Theorem 2(5) give the additive structure for the Lie algebra above.
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Consider the “orbit configuration spacé&y (C x C4, k) whereL operates diagonally
onC x C1, by translation orC and trivially onC4.

Theorem 3. Assume thag > 1.
(1) The loop space2 F(C x C14, k) is homotopy equivalent to the product

[] 2@xci-of)
1<i<k—1
(although this product decomposition is not multiplicajive
(2) The integral homology o F~(C x CY, k) is isomorphic to

Q) H.(2(CxC? - 0f))
1<i<k-1
as a coalgebra.

(3) The Lie algebra of primitives is isomorphic to the Lie algebra given by
4+(2 Fp(C9, k))/torsion.

(4) The Lie algebra of of primitive elements in the homology2df(C x C?,k) is
a direct sum of freggraded Lie algebras@1<i<kL[i] where L[i] is the free
graded Lie algebra generated by elemenﬂzéj of degree2q for fixed i with
1< j <i <k, ando runs over the elements of the latti€e The relations are

[BY;.BI,|=0 if{i, j}N{s,1}=0.
Otherwise,
[B7,. B 1= (B B3,

[Bi(,rj’ B/ér,j] = [B/ér,j’ Bcf,i_cl

(5) The Lie algebrasr.($2 F(CY, k))/torsion, andE( (1 F(C, k)), are isomorphic
as Lie algebras.

2. Proof of Theorem 2

A useful result is the following analogue of the Fadell and Neuwirth fibrations for
ordinary configuration spaces. For any natural nunt)det Qf C M be the union of
¢ distinct orbitsGmy, ..., Gmy.

Lemma 4. Let M be a manifold with a properly discontinuous action of a groGp
and such that the orbit spac¥ /G is again a manifold. Then fof < k, the projection
p:Fc(M, k) — Fg(M, ¢) onto the firstZ coordinates is a locally trivial bundle, with fibre
Fg(M — QY k- 0).

Remark. The extra hypothesis on the action are needed for the cased@vigenot finite.
Notice that they are trivially satisfied whénis a finite group acting freely oi.
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Letqi, ..., qx € C be the pointsgs = 0 andg; = ¢;—1 + 1/2 fori =2, ..., k. Notice
these points lie in different orbits and IQtf = Ule(q,- + £) the union of the first of
them. Now an iterated application of Lemma 4 yields a sequence of fibrations:

Fr(Ck)<—Fp(C— Q5 k—1)<— - =—F£(C— QF 1. 1) (1)
| o{
C C-of C-0f,

(where the horizontal maps are the inclusions of the fibers), and seectiodsfined as
follows. Forz € C setd(z) = min{|z — o| | 0 € L} and notice that/ is a continuous

function ofz. Let y1, ..., yk—i—1 bek —i — 1 distinct points in the boundary of the disc of
ra\diusl—l6 and centered at the origin. Let

5i:C— QF > Fr(C— QF ki) (2)
be given by:

(z.8d@)y1.....8d@y—i-1) fd(R) <3,
(Z, Y15+ ooy Yh—i—1) if d(z) > 3.
The local coefficient system for these fibrations is tr|V|aI in integral homology. (See
Lemma 8 below.) Since the homology of the fibre is concentrated in degree one, and the
fibration has a cross-section, the Serre spectral sequence for these fibrations collapses. The
next proposition follows.

The next proposition gives the additive structure for the integral homolody-¢t, k)
as stated in Theorem 2(7).

si(z) =

Proposition 5. The integral homology of - (C, k) is additively given by
H Fp(C k)= Hyi(C1) @ Hi(C2) ® - - @ Hy(Ci-1),

whereC; is the infinite bouquet of circley |,z

In particular, the homology of - (C, k) is not of finite type and one must proceed with
certain care when dualizing. However, something can be said about cohomology.

Proposition 6. The integral cohomology df. (C, k) is additively given by
H*Fp(C,k)=H*(C1)) @ H*(C2) ® - ® H*(Cy-1)

Moreover, for every = 2, ...k, there is a choice of cohomology classesHiiF- (C, k)
{A7Y, ATS, ... f’l Yloje L} which are in a 1-1 correspondence with the generators in
H1(Ci_1), satlsfylng the following relations

(@) Af';A};=0forall u,veLl.

(b) A“ A“ _A“e”(A —Alpifl<t<j<i<kandu,vel.

Remark. Perhaps a better way to say this is théat F-(C, k) contains a subalgebra
isomorphic to the associative, commutative graded algdbr@enerated by the following
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collection of degree one eIemen{sxgj}f’ij, subject to relations (a) and (b). Moreover,

the duals to the standard generatorsHpF.(C, k) realize the inclusion of algebras
A* C H*F,(C, k).

Remark. Notice that in the case = v = 0, relations (a) and (b) recover the relations
among the standard generator#Hii F (C, k) (see for example [2]). Roughly speaking, the
spaces (C, k) and F-(C, k) havelocally the same cohomology.

Proof. Begin by identifying the classes{ ;. In the case = 2, the projection onto the first
coordinate gives a fibratiofC — Qf) — F,(C, k) — C for which the inclusion of the
fiber overgy = 0, is a homotopy equivalence. Therefore:
Fp(C.2)~\/sh
L

For everyo € L let p, : F£(C, 2) — St be the map
polry) =~
ly—x—o]
and putA, = p,*(1) wheret is a fixed generator oH1(S%) = Z. Then{A,}y,cr is a
linearly independent family irHYF,(C, 2), where each, corresponds to one of the
circles in the bouquet.

Finally, letz; ; : F£(C, k) — F.(C, 2) be the projections given by; ;(x1,...,x) =
(xj,x;) for j <i. DefineA;{j =m;;j*(As) for o e L. ThusAngzj =0forallo, t as
AgAr =0in H*Fp(C,2) = H*(\/ SY).

To check relation (b), it suffices to check the case wherB, j =2, ¢ = 1 by applying
the projectionsr; ;¢ : F(C, k) — F.(C, 3), together with naturality. The cohomology
classesA7 ;, A3 ,,A3, are the duals to the homology classes represented by the maps:
gagj 81> Fr(C,3)

9512 = (q1.q1+0 + %z, q3).
031(2) = (q1.92.q1+ 0 + §2),
932(2) = (QL q2,q2+0 + 1—161)

which generateH1(C1) and H1(C2). From the sequence of fibrations (1) for= 3, it
follows thatH* F,(C, 3) = H*(C1) ® H*(C2) and therefore

noav o T o T
A A = Z“a,rAz,lAg,l + ZﬁmrAz,lAs,z’
o,T o,T

wherea, . and g, ; are integers to be determined. For this purpose there are maps which
detectthedd ; A% ; andAJ ; A5, and then study their effect otf‘j Ay . Forfixedo, 7 € £,
let F1, F>: S x ST — F,(C, 3) be the maps

Fi(z,w) = (q1.91+0 + %Zﬁql‘H + 1_1611))’
F(z,w) = (611,611+0+%11Q1+0+T+%Z+1_16w)'
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It is immediate to verify their effectin cohomology:

(F1)*(A34) = :)® - gtge:rv:i’S&
(F)*(A%,) = 37®L7 gtﬁe:rv;{se,
(F)*(A%2) = 6,® - gtﬁe:rmjls_ea
(F2)*(A34) = :)® - i(:ti;e:rv;,se,
(F2)*(A31) = :)® " gtﬁe:rv:isj;,t’
(F2)*(A3,) = é,®h i(:tﬁe:rvzi’se.

Thus, the homomorphism&; and F; detect the basic products; ;A5 ; and AS A,
respectively. Since they are also ring homomorphisms, we have

—1®t, fu=1t,v=1—-0,
(F)*(A% 145 ,) = { "

0, otherwise,
t®t, fu=oc+t,v=r.

* 153 v —
(F2)*(A3443,) = {o, otherwise

H Voo U=V 4 [ U=V 4v
and therefore we gefi3 1Az, = —A,; A3+ A1 Az, O

Lemma?. Letp: E — B be alocally trivial bundle withB path-connected. Let, y € B
and letF, and F, be the corresponding fibers. Thea(B, x) acts trivially on H,(F)) if
and only ifr1(B, y) acts trivially on Hy(Fy).

Proof. Assume thairy(B, y) acts trivially onH,(F,). Leta : I — B be a path fronx to
y and let

a:m1(B,y) — m1(B,x)
[y] — [a]*[y]%[a]?

be the induced isomorphism of fundamental groups. We provexihdtacts trivially on
H.(Fy). Let:

e G be alifting fory,

e A be alifting fore, and

e A be alifting fora, wherea () = a(1 —1).
Thisis,G, A andA are maps such that the following diagrams commute:

IxF, S - F IxF A ~F IxF, A |

IR S T S

|—Y B I—*—B I—*—B
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To construct a lifting fo x y x @, defineH : I x F, — E by
A(3t,e) If0<t\3
H(t,e)=1{G(3 —1,A(L e) if 2 <r<?,
A(B—2,G(L AL e)) if3<r<1.
Notice thatin this case, the right end of the homotéhy= H |,—1 is a continuous mapping

F, — F, given byHi(e) = A(1, G(1, A(1, e))), that is to sayH; = A1 0 G1 0 A1 and this
composite induces a commutative diagram of homology groups:

Ho(F) — g (F)

(Al)* (Al)*

G1)«
Ho(Fy) — 9 . H.(F,)

where(G1)« = 1p,(r,) sincely] acts trivially onH,(Fy). Thus,(H1), = (A1) 0 (A1)x.
But this is precisely the isomorphism &k, (Fy) induced by the trivial looj x @ and then
(H1)s must be the identity. Therefor@[y] acts trivially onH,(F,). O

Remark. The same proof works if using cohomology instead of homology. The way
in which Lemma 7 is actually used is the following. Consider the fiber bundle given by
projection onto the first coordinate: F, (C — Q% k —r) — (C — Q). Letzoe C — Q¥

be a base point and then

nl((C—QrL,zO)EF[xi'l,..., x| o EE]

One uses that for each generaté’r, there exist a point; ,, € C — Qf* (namely take
Zi,s; = qr+1 + 0;) for which is relatively easy to prove that the action of the corresponding
generator inry (C — Qf’,zi,ai) is trivial on the homology of the fiber oves ;. Since
C- Qf is path connected, Lemma 7 implies th,é{t acts trivially on the homology of the
fiber overzp.

Lemma8. The fibrationz : Fz(C — Q~, k — r) — C — Q¥ has trivial local coefficients.

Proof. The proof is by downward induction onand it is the equivariant analogue to the
proof given in [4]. Forr = k — 1 the result is clear. Assume the resultifo% 1. Consider
the fibrationr : Fz(C— QF, k —r) — C— QF with fibre F(C— QF, ;, k—r — 1). Define

a function

piil x (C—QF) > (C - 0F)
as follows. LetD; be a disc containing the poings andg,+1 as in [4, p. 252], with two
additional conditions:

(i) D; must be entirely contained in the interior of a unit square, so that
DN (D;+o)=@foro #0.
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(i) D; N B0, ) =@ fori1,andD1N B(gz, §) =9,
whereB(z, r) denotes the closed ball id with centerz and radius- (see Fig. 1). Since
qi =0+ % 4+ 4 zi this is not difficult to achieve. The functign does the following:

e InsideD; rotates the 2-disc with centgr contained within the 2-annulus by an angle
of 2zt at time¢, fixes the boundary ob; and appropriately “twists” the 2-annulus,
at timer to insure the continuity op;.

e Twists all discs(D; + o), for o € L, in such a way that the resulting function is
L-equivariant, namely

pi(t,2)=pi(t,z—0)+0 Vze(D;+o0).

e Fixes the complement of the union of all dis€s- |, (D; + o).
Recall thatr1 (C — Q,‘) isisomorphic to the free group[x? | 1 <i <r, o € L]. Using the
function p;, we prove that all generatox§ act trivially on H,F(C — Q5 k —r — 1).
More precisely, it will follow that the generator corresponding to the pgint o acts
trivially on the homology of the fiber over.+1 + 0. By Lemma 7, this is enough to insure
the triviality of the local coefficient system.

Definey; () = pi(t,gr41+0). Theny, , : 1 — (C — Qrﬁ) is a generator of the group
m1(C — Qﬁ gr+1 + o) which corresponds to the poigt + o . Define a “lift”

Hio: I x Fp(C—QF 1 k—r—1)— Fe(C— QF k—r)

a+ (1,1

'3)

[N

L]
a1+ (
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of Yi,o by

Hio(t:21,22, .. 2k—r=1) = (pi (t, gr41+ 0), pi (t, 20), - . ., Pi (t, Zk—r—1))- (3
Notice that the right side of (3) lies oA/ (C — Q,L,k —r) sincez; # g,41 mod L,
zj # z¢ mod L andp; is anL-equivariantisotopy. Then we have a commutative diagram:

Fe(C—QF k—r)
I Yi,o (C _ Qf
By definition, the local coefficient system is trivial if the map
(Hio)1: Fo(C— QF 1 k—r —1) = F(C— QF 1 k—r —1)
is the identity in homology. LeB;”; be the homology dual od? ;. Recall that

Ix F(C— QF 1 k—r—1)—e

=~

—r

HoFp(C— Qfyy k—r = 1) = QBT 1. B ) )

J
so one must check the effect@; )1, on theB;’ﬂ ‘
there are sections

FC((C Qr—i—j r_j) C- Qr—i—j

\/

Sr+j

's. Forafixedj, 1< j<k—r—1,

such thatthe cIasse!IfJr 1 e fore=1,...,(r+j)ando € L, are the images in homology
of the generatorgf; (C — Qr+]) unders,+,, followed by the morphism induced by the
inclusion in F(C — Qr+1, —r —1). So, to prove thafy; ,] acts trivially on thejth
factor of (4), notice that the ma(#; )1 induces maps of fibrations

Fr(C—QF, .k r—])LFE(C 0L, i k—r—})

Sr4j Sr4j

C- 0~ C- 0%,

which are compatible with the sections, in the senseﬁ;,@to Sr4j =Sr4j O H; o

Fori =2,...,r, the sections given by (2) suffice. Fo& 1, there is a straightforward
modification ofs; that usesB(qz, §) instead ofB(0, 3). Then it will be enough to show
that

(Fi),: Hi(C ~ 05, ;1) — Hi(C — 05, y)
is the identity morphism and this is clear, since at the level of fundamental groups
(H ) 7T1((C Qr+j) - 7T1((C Qr+])
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the induced homomorphism is given by either: the identity, conjugation by a fixed element
in 1 or multiplication by a certain commutator, see [4, p. 254]

3. Proof of Theorem 1

Recall that a multiplicative fibration with section is homotopy equivalent to a product.
Thus2 X (R", k) is homotopy equivalent t& X (R”, k — 1) x 2(R" — S;_1), and the first
part of the theorem follows by induction.

The second part of the theorem follows from #énneththeorem, and part 1 of the
theorem.

SinceR" — Sx_1 has the homotopy type of a (possibly infinite ) bouquetof- 1)-
spheres, the homology of its loop space follows from the Bott—Samelson theorem. In this
case, it is well-known that there are isomorphisms of Lie algebras

7 (2(R" — Sg—1))/torsion— Prim H, (2 (R" — Sk-1)). (5)
Furthermore, the existence of sections implies that the Hurewicz homomorphism
7. (2X(R", k)) - PrimH,(2X (R", k))

is a surjection. Since the map (5) is an injection, the theorem follows.

4. Proof of Theorem 3

Consider the fibration with sectiofi; (C x C4,k) — Fy(C x C4,k — 1). The fibre of
this map isC x R% — Q,f_l. By Theorem 1, the conclusions of Theorem 3 all follow
except possibly the last two which state the precise extension of Lie algebras.

To finish, it suffices to prove parts (4), and (5) of the theorem by a direct comparison
of the two Lie algebrasr,(2F.(C x C4,k))/torsion and E;(w1F,(C, k). The
computation of the Lie algebra attached to the descending central series, is just an explicita
calculation that involves the local coefficient system and the generators constructed above.

Thus define maps; : $%+1 x §2%4+1 . F,(C x C4, 3) analogous to those in the proof
of the relations for the cohomology &f- (C, k) by the formulas:

Fiz,w) = (q1.q1+ 0 + 3z.q1+ 7 + xw),

Fo(z,w) = (ql,q1~|—a + %z,ql—i—a—i-‘r-l- %Z—i— 1_l6w)
Consider the loopings of these maps

2(F;):2(5%7 % §24+Y) 5 @(Fp(C x €4, 3)).

Notice that the fundamental cycles in degreef@r the integer homology of2 (52411 x
$24+1y commute. Thus it suffices to calculate the image of the fundamental cycles in the
homology of2 (F.(C x C?, 3)). This gives the precise relations as stated in parts (4)—(5)
of Theorem 3 which follows at once.
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