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Potent neuroprotection induced by remote preconditioning in a rat
model of neonatal cerebral hypoxic–ischemic injury
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Although mortality in young children undergoing heart pro-
cedures has fallen, awareness of associated late morbidities
has risen. For example, although early mortality associated
with the arterial switch operation for transposition of the
great arteries is now on the order of 1%, late neurocognitive
and behavioral problems remain frequent, regardless of
whether circulatory arrest or low-flow cardiopulmonary
bypass is used.1 Consequently, the need for improved
perioperative neuroprotective strategies has recently been
highlighted as among the most important research impera-
tives in the treatment of congenital heart disease.2

We first demonstrated a potent cardioprotective effect of
remote ischemic preconditioning (rIPC), induced by 4 cy-
cles of transient (5 minutes) ischemia and reperfusion of
the hind limb, in a large animal model of myocardial in-
jury.3 This observation was rapidly translated to our first hu-
man randomized, controlled trial, which showed that rIPC
achieved by limb ischemia (induced simply with a standard
blood pressure cuff inflated to suprasystolic levels) leads to
reduced markers of myocardial damage, reduced inotrope
requirements, and improved lung function in children
undergoing repair of congenital heart defects.4 Since then,
other studies have shown similar benefits for children un-
dergoing heart surgery; however, there have been no assess-
ments of neurocognitive outcomes in these clinical studies.
MATERIALS AND METHODS
To test the hypothesis that rIPC induced by the described method re-

duces brain injury, we applied the Rice-Vannucci hypoxic-ischemic model5

to rat pups on postnatal day 14 (equivalent to 1-week-old term human

neonates). All animal protocols were approved by the Animal Care and

Use Committee of the Hospital for Sick Children in Toronto. Pups were

anesthetized with isoflurane (2.5% of the total intake gas). After random

assignment to sham procedure (control) or active treatment, rIPC was in-

duced by 3 cycles of 5 minutes of hind limb ischemia (achieved noninva-
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sively with a tourniquet tightened at the inguinal level) followed by

5 minutes of reperfusion as previously described.6 Either rIPC or sham in-

tervention was immediately followed by unilateral internal carotid artery

ligation and exposure to 8% hypoxia for approximately 65 minutes to

cause a reproducible hypoxic–ischemic damage involving the caudate,

putamen, hippocampus, and cortical regions ipsilateral to the ligated

carotid. In this model the contralateral hemisphere is largely unaffected,

even in control subjects. Brains were removed 1 week after the hypoxic

ischemic insult, fixed, embedded in paraffin, and cut into 5-mm coronal sec-

tions. The total area of brain tissue loss was measured on hematoxylin and

eosin–stained sections, and total infarct volume was calculated according

to the Cavalieri principle.

RESULTS
Six of the 16 pups in the sham-treated control group and 5

of the 15 in the rIPC group did not survive the initial proce-
dure. Subsequently, brain samples from each of the surviv-
ing rat pups in the control (n ¼ 10) and rIPC treatment
(n ¼ 10) groups were assessed for cerebral infarct volume.
Infarct area, characterized by the presence of paranchymal
vacuolations, acidophilic neurons, and pyknotic nuclei, was
reduced in the rIPC group (Figure 1, B andD) relative to the
control group (Figure 1, A and C). Summation of infarct
volume in the 2 groups showed a 3.5-fold (71.4%) decrease
in infarct volume in the rIPC group (8.7� 2.7 mm3, n¼ 10)
versus the sham-treated group (30.2 � 5.3 mm3, n ¼ 10,
P < .003 by unpaired t test with the Welch correction;
Figure 2).

DISCUSSION
It has been shown both in animal studies and in recent

clinical trials that rIPC invokes potent myocardial protec-
tion and as such warrants further investigation as a potential
therapeutic intervention to prevent hypoxic–ischemic brain
damage in children after heart operations. In this proof-of-
principle study, we showed in a model of neonatal hypoxic–
ischemic brain injury that rIPC induced by transient
ischemia to the hind limb in 14-day-old rat pups significantly
(P ¼ .003) reduced cerebral infarct volume by 70% from
30.4 � 5.3 mm3 (control) to 8.7 � 2.7 mm3 (rIPC).
This is the first study to show that rIPC induced by re-

peated transient ischemia to the hind limb reduces cerebral
infarct volume in juvenile animals subjected to hypoxic–is-
chemic injury. The approximately 70% reduction in infarct
volume relative to the sham-treated group observed in this
study was at least as potent as the 40% to 60% reduction
in myocardial infarct size generally shown in studies of
cardioprotection by rIPC. It remains to be established
whether the mode of neuroprotection is similar to that of
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FIGURE 1. Remote ischemic preconditioning reduces infarcted area after unilateral internal carotid artery ligation and hypoxic challenge. Shown are rep-

resentative infarcted zones in cortical (A and B) and hippocampal (C and D) regions ipsilateral to the arterial ligation. Hematoxylin and eosin–stained sec-

tions from sham-treated pups (A and C) contain numerous vaculations (white arrowheads), acidophilic neurons, and pyknotic nuclei (stained pink compared

with the normal nuclei that stain blue; black arrowheads) compared with sections from remote ischemic preconditioning–treated pups (B and D).
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cardioprotection. If, however, the protective humoral factor
that we and others6,7 have shown to be released after rIPC is
the same that affords neuroprotection, then it must be
Ctrl rIPC
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FIGURE 2. Remote ischemic preconditioning reduces cerebral infarct

volume after unilateral internal carotid artery ligation and hypoxic chal-

lenge. Scatterplot shows cerebral infarct volume (in cubic millimeters) in

control (Ctrl, open circles) and remote ischemic preconditioning (rIPC,

filled circles) groups. Mean (� SE) infarct volumes for remote ischemic

preconditioning group (8.7 � 2.7 mm3, n ¼ 10) and control group

(30.4 � 5.3 mm3, n ¼ 10) were significantly different (P<.003).
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capable of crossing the blood–brain barrier in some
manner. Our previous data show that any factor must be
smaller than 15 kDa in size, and a hydrophobic factor
would be compatible with such a mechanism.6

The need for improved strategies to provide neuroprotec-
tion has been highlighted in a recent report from the Pediat-
ric Heart Network and National Heart, Lung, and Blood
Institute Working Group on the Perioperative Management
of Congenital Heart Disease as among the most important
research themes in the field of cardiovascular disease in
children.2 Perioperative brain damage in these young
children is clearly multifactorial, reflecting the effects of
hypoxia, ischemia, inflammation, and genetic factors.8 If,
however, our results were to translate to a similar degree
of neuroprotection in clinical trials, rIPC might well repre-
sent a readily implementable and efficacious therapeutic
option for these vulnerable infants.
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