
Discrete Mathematics 278 (2004) 81–108
www.elsevier.com/locate/disc

Iterated colorings of graphs

Sandra M. Hedetniemia, Stephen T. Hedetniemia, Alice A. McRaeb,
Dee Parksb, Jan Arne Tellec

aDepartment of Computer Science, Clemson University, Clemson, SC 29634, USA
bDepartment of Mathematical Sciences, Appalachian State University, Boone, NC 28608, USA

cDepartment of Computer Science, University of Bergen, N-5020 Bergen, Norway

Received 26 June 2001; received in revised form 9 April 2003; accepted 11 April 2003

Abstract

For a graph property P, in particular maximal independence, minimal domination and maximal
irredundance, we introduce iterated P-colorings of graphs. The six graph parameters arising from
either maximizing or minimizing the number of colors used for each property, are related by
an inequality chain, and in this paper we initiate the study of these parameters. We relate them
to other well-studied parameters like chromatic number, give alternative characterizations, 7nd
graph classes where they di8er by an arbitrary amount, investigate their monotonicity properties,
and look at algorithmic issues.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Iterated coloring; Independence; Domination; Irredundance

1. Introduction

An (undirected) graph G = (V; E) consists of a 7nite, nonempty set V of vertices,
and a set E of unordered pairs of vertices called edges. Two distinct vertices u and v
are adjacent if (u; v)∈E, and we say that u is a neighbor of v and v is a neighbor of
u.
Various properties can be associated with subsets of the vertices of a graph. A set

S ⊆ V of vertices is said to be independent if no two vertices in S are adjacent. A set
S ⊆ V is called a dominating set if for all vertices u �∈ S, there is a vertex v∈ S such
that (u; v)∈E.

E-mail address: telle@ii.uib.no (J. Telle).

0012-365X/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0012-365X(03)00247-4

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82709722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:telle@ii.uib.no

82 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

For vertex v∈V , the open neighborhood of v, denoted N (v), is the set of vertices u �=
v that are adjacent to v. We de7ne the closed neighborhood of v as N [v]=N (v)∪{v}.
The open neighborhood of set S N (S) (resp. closed neighborhood N [S]) is the union of
all the open neighborhoods N (v) (resp. closed neighborhoods N [v]) of vertices v∈ S.
Given a set S ⊆ V , the subgraph of G induced by S is the graph G[S]=(S; E∩S ×S).
A set S ⊆ V is said to be an irredundant set if for every vertex u∈ S, N [u]−N [S−

{u}] �= ∅, that is, each vertex v∈ S either has no neighbor in S or has at least one
neighbor w∈V −S that is not a neighbor of any other vertex in S. We refer to such a
vertex w as a private neighbor of v, and if v has multiple private neighbors, we refer
to these vertices as the private neighbor set of v.
Let P be a property associated with a vertex set. We refer to a set having property

P as a P-set. We will assume that for all properties P of interest, an isolated set of
vertices S has property P. We are often interested in 7nding either a maximum or a
minimum cardinality P-set in graph G, or perhaps only the cardinality of a maximum or
minimum P-set. Whether we are interested in a maximum or a minimum P-set depends
on the property P. If P is the property of being an independent set or an irredundant
set, then the minimum P-set is simply the empty set ∅, so maximum P-sets are of
interest. If P is the property of being a dominating set, the maximum P-set is the
entire set V , so we are interested in minimum dominating sets.
In addition to maximum and minimum P-sets, we can de7ne maximal and minimal

P-sets. A P-set S is maximal if no proper superset of S is a P-set, and is minimal if
no proper subset of S is a P-set.
The vertex independence number of G is the maximum cardinality of an indepen-

dent set of G, and is denoted �0(G). Because any maximal independent set is also a
dominating set, we refer to the minimum cardinality of a maximal independent set as
the independent domination number of G, denoted i(G).
The domination number (G) of G is the minimum cardinality of a dominating set

of G. The maximum cardinality of a minimal dominating set of G is called the upper
domination number of G and is denoted �(G).
Finally, the irredundance number ir(G) is the minimum cardinality of a maximal

irredundant set of G, and the upper irredundance number IR(G) of G is the maximum
cardinality of an irredundant set of G.
A well-known relationship between all of these parameters is given in the following

theorem by Cockayne et al. in 1978 [5].

Theorem 1. For any graph G, ir(G)6 (G)6 i(G)6 �0(G)6�(G)6 IR(G).

For a complete discussion of this inequality chain, the reader is referred to the book
by Haynes et al. on domination in graphs [9].
A k-coloring of a graph G is simply an assignment f :V → {1; 2; : : : ; k} of k colors

(i.e. the integers 1; 2; : : : ; k) to the vertices of G. A coloring f is called proper if
adjacent vertices are always assigned di8erent colors.
Equivalently, a k-coloring is a partition � = {V1; V2; : : : ; Vk} of V (G) into color

classes Vi, where every vertex in Vi is assigned the color i. In a proper coloring
each color class Vi is an independent set. The minimum number of colors in a proper

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 83

coloring of a graph G is called the chromatic number of G, and is denoted �(G).
More generally, a P-coloring is a partition � = {V1; V2; : : : ; Vk} of V (G) such that for
every i, 16 i6 k, Vi is a P-set. In the following we shall speak of k-colorings either
as functions f or as partitions �, and we shall require that Vi is a P-set in the graph
remaining after removing V1; : : : ; Vi−1.

2. Iterated coloring algorithm

In this paper we examine some di8erent types of P-colorings that arise from the
Iterated Coloring Algorithm (ICA) given below, which was also studied in [12]. Let
P be some property associated with a set of vertices in a graph G = (V; E). Algorithm
ICA repeatedly removes a set S of vertices having property P and assigns the same
color to every vertex in S. Each successive set S is selected with respect to the graph
that remains after the vertices up to and including the most recent set S have been
removed. These sets form color classes V1; V2; : : : ; Vk , where k, the number of colors
used, is the number of sets removed before the graph becomes empty.

Iterated Coloring Algorithm (ICA)

Input: graph G = (V; E), property P
Output: P-coloring {V1; V2; : : : ; Vk}
i = 0;
while (V is not empty) {

7nd an arbitrary P-set S in G[V];
i++;
Vi = S;
V = V − S;

}
k = i;

Notice the inherent nondeterminism in Algorithm ICA. Since it removes an arbitrary
P-set during each iteration of the while-loop, many di8erent outcomes are possible for
a given graph G. We will be interested in the set of all possible outcomes for a graph
G, that is, in the set of all possible P-colorings that Algorithm ICA can create for a
given graph G.
Let P be the property of being a maximal independent set; we write P = maximal-

independent, for shorthand. Let G be the graph shown in Fig. 1. The numbers assigned
to the vertices represent two possible colorings that can be created by Algorithm ICA
with G and P = maximal independent as input.
An assignment of colors to the vertices of any graph G by Algorithm ICA with

P =maximal-independent is called an iterated maximal-independent coloring of G, or
a *independent coloring, for short [read: ‘star’ independent coloring]. A *independent
coloring is a partition of V into independent color classes {V1; V2; : : : ; Vk}, where each
Vi is a maximal independent set in the graph Gi = G − V1 − V2 − · · · − Vi−1. These

84 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

Fig. 1. Colorings created with P = maximal-independent.

colorings were 7rst de7ned by Prins in 1963 [11], who called them Type-1 colorings.
The minimum number of colors used over all runs of Algorithm ICA, with inputs G
and P = maximal independent, is called the iterated independent domination number
of G, and is denoted by i∗(G). The maximum number of colors used over all runs of
Algorithm ICA, with G and P = maximal independent as input, is denoted �0 ∗ (G),
and is called the iterated independence number of G.

Theorem 2. For any graph G, i∗(G) = �(G).

Proof. Because a *independent coloring is a proper coloring, it follows that �(G)
6 i∗(G).

Conversely, it can be shown that for any proper coloring of a graph G with k colors,
there exists a *independent coloring of G with at most k colors. Let �={V1; V2; : : : ; Vk}
be any proper coloring of a graph G. If V1 is not a maximal independent set of G,
then create a maximal independent set containing V1 by moving vertices in V2, if any,
that are not adjacent to any vertices in V1 into V1. Call the resulting set V12. Next,
move any vertices in V3 into V12 if they are not adjacent to any vertices in V12. Call
the resulting set V13. Repeat this process iteratively for every set V4 through Vk . At
this point the resulting set V1k will be a maximal independent set of G.
Next, let V ′

2 be the set of vertices in V2 that remain after the process of creating V1k .
Repeat the process of moving vertices from higher indexed sets into V ′

2 if possible,
resulting in a set V2k which is maximal independent in the graph G1 = G − V1k . This
process can be continued for all remaining sets. The resulting coloring will then be a
*independent coloring with at most k colors.
It follows from this argument, that if the original proper coloring had been a coloring

with k = �(G) colors, then the resulting *independent coloring will have at most �(G)
colors. Thus, i∗(G)6 �(G), and hence, i∗(G) = �(G).

We can also equate the iterated independence number, �∗
0 (G) with a well-known

coloring invariant. Let � = {V1; V2; : : : ; Vk} be any proper coloring of a graph, and let
v∈Vj, for some index j. We say that v is a Grundy vertex if it is adjacent to at least
one vertex u∈Vi, for every i, 16 i ¡ j. Notice that every vertex in V1 is a Grundy
vertex. We say that a proper coloring � is a Grundy coloring if every vertex is a
Grundy vertex. The maximum number of colors used in a Grundy coloring of a graph
G is called the Grundy coloring number of G, and is denoted GN (G). The Grundy
number of a graph is well-studied, see [8,4,3,7,10], for example.

Theorem 3. For any graph G, �∗
0 (G) = GN (G).

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 85

Proof. The proof is simple, since every Grundy coloring � = {V1; V2; : : : ; Vk} of a
graph G is an iterated maximal-independent coloring that can be created by Algorithm
ICA. In particular, it can be seen that Vi must be a maximal independent set in Gi =
G − V1 − V2 − · · · − Vi−1.
Conversely, it is easily seen that given any *independent coloring, every vertex is a

Grundy vertex.

We can create other kinds of colorings using the Algorithm ICA if we change
property P. Let G be a graph and let P = minimal-dominating. An assignment of
colors to the vertices of G by Algorithm ICA is called an iterated minimal-dominating
coloring of G, or a *dominating coloring, for short. A *dominating coloring is a
partition of V into color classes V1; V2; : : : ; Vk , each of which is a minimal dominating
set of vertices in the graph Gi = G − V1 − V2 − · · · − Vi−1. The fewest number of
colors used over all runs of Algorithm ICA is called the iterated domination number
of G, and is denoted by ∗(G). The largest number of colors used is called the iterated
upper domination number of G, and is denoted by �∗(G).
Since every maximal independent set S is a minimal dominating set, we know that

∗(G)6 i∗(G) = �(G)6 �∗
0 (G) = GN (G)6�∗(G): (1)

Now let P = maximal-irredundant and G be any graph. An assignment of colors
to the vertices of G by Algorithm ICA is called an iterated maximal-irredundant
coloring of G (or a *irredundant coloring, for short), and is a partition of V into
color classes V1; V2; : : : ; Vk , each of which is a maximal irredundant set in the graph
Gi = G − V1 − V2 − · · · − Vi−1. The largest number of colors used over all runs of
Algorithm ICA is called the iterated upper irredundance number of G, and is denoted
by IR∗(G). The minimum number of colors used is called the iterated irredundance
number of G, and is denoted by ir∗(G).
Since every minimal dominating set S is a maximal irredundant set, we have shown

the following:

Theorem 4. For any graph G:

ir∗(G)6 ∗(G)6 i∗(G)6 �∗
0 (G)6�∗(G)6 IR∗(G):

3. Alternative characterizations

Two properties completely characterize iterated maximal-independent colorings. One
of these properties guarantees that each of the color classes is an independent set, and
the other guarantees that each independent set is maximal in the remaining graph Gi.
Likewise there are two properties that characterize iterated minimal-dominating color-
ings; one guarantees that each of the color classes is a dominating set in Gi, and one
guarantees that each dominating set is minimal. Because every maximal independent
set is a minimal dominating set, the maximality property for independent colorings is
very similar to the domination property for iterated minimal-dominating colorings. In

86 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

similar fashion, there are two properties that characterize iterated maximal-irredundant
colorings, one that guarantees irredundance and one that guarantees maximality. Since
every minimal dominating set is maximal irredundant, the minimality property for
iterated minimal-dominating colorings becomes the irredundance property for iterated
maximal-irredundant colorings.
In order to describe the graph G as Algorithm ICA removes vertices, we use the

notation Gi = (V; Ei) to represent the graph remaining at the start of iteration i. The
initial graph G is G1. The vertices in color class Vi = S are removed from Gi during
iteration i. The 7nal coloring is denoted � = {V1; V2; : : : ; Vk}.

3.1. Iterated maximal-independent colorings

In this section we describe two properties that completely characterize *independent
colorings of a graph G. We shall show that these properties are both necessary and
suNcient to characterize such colorings.

Lemma 1. Let f :V → {1; 2; : : : ; k} be a *independent coloring of G = (V; E). Then
for any two adjacent vertices u and v, f(u) �= f(v).

Proof. Suppose there are two adjacent vertices u and v with f(u) = f(v) = i. Then
color class Vi is not an independent set, which is a contradiction.

Lemma 2. Let f :V → {1; 2; : : : ; k} be a *independent coloring of G = (V; E). Then
for every vertex v∈V with f(v)¿ 1 and for all i, 16 i ¡ f(v), there is a vertex w
in the neighborhood of v with f(w) = i, that is, v is a Grundy vertex.

Proof. Suppose it is not true that for every vertex v∈V with f(v)¿ 1 there is a
vertex w in the neighborhood of v with f(w) = i for all i, 16 i ¡ f(v). Then there
must be a vertex u∈V with f(u)¿ 1 and an i, 16 i ¡ f(u), such that there is no
vertex x∈N (u) with f(x)= i. But Vi is a maximal independent set in Gi, and as such
it is also a dominating set for Gi. Since u∈V [Gi], some vertex with color i dominates
u, i.e., some vertex with color i is adjacent to u. This is a contradiction.

Theorem 5. The two properties described in Lemmas 1 and 2 are necessary and
su<cient to characterize a coloring of a graph G created by Algorithm ICA when
P = maximal-independent.

Proof. The lemmas given above show that the properties are necessary for a *inde-
pendent coloring. We now show that they are suNcient. Given a coloring � of graph
G for which both properties hold, we must show that � could have been created by
the Algorithm ICA with P=maximal-independent. In other words, we must show that
for any i, Vi is a maximal independent set for graph Gi. Suppose this is not true. If
Vi is not an independent set, then there must exist two vertices in Vi that are adjacent.
But Lemma 1 says that any two adjacent vertices must have di8erent colors, which
yields a contradiction. Suppose therefore that Vi is not a maximal independent set, i.e.,

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 87

that Vi is not a dominating set. Then there exists a vertex w in Gi that is not adjacent
to any vertex colored i. This vertex w will be colored with a color greater than i. By
Lemma 2, any vertex with a color greater than 1 is adjacent to vertices of all colors
less than its own color, making this a contradiction.

3.2. Iterated minimal-dominating colorings

In this section we describe two properties that completely characterize *dominating
colorings of a graph G. We show that these properties are necessary and suNcient to
characterize such colorings.

Lemma 3. Let f :V → {1; 2; : : : ; k} be a *dominating coloring of G = (V; E). Then
every vertex v∈V is a Grundy vertex, that is, for all i, 16 i ¡ f(v), there is a
vertex w∈N (v) with f(w) = i.

Proof. Suppose it is not true that every vertex v∈V is a Grundy vertex. Then there
must be a vertex u∈V with f(u)¿ 1 and an i, 16 i ¡ f(u), such that there is no
vertex x∈N (u) with f(x) = i. But Vi is a dominating set for Gi, and therefore some
vertex with color i must dominate u, i.e., some vertex with color i is adjacent to u.
This is a contradiction.

Lemma 4. Let f :V → {1; 2; : : : ; k} be a *dominating coloring of G = (V; E). If two
adjacent vertices v and w are colored with the same color i ¡ k, there must exist
distinct vertices y∈N (v) and z ∈N (w) such that f(y) and f(z) are both greater
than i, and neither y nor z is adjacent to another vertex colored i.

Proof. The set Vi is a minimal dominating set of Gi. Since any minimal dominating
set is also an irredundant set, if vertices v and w are adjacent, then they must each
have private neighbors in Gi.

Theorem 6. The two properties described in Lemmas 3 and 4 are necessary and
su<cient to characterize the colorings of a graph G created by Algorithm ICA when
P =minimal-dominating.

Proof. Lemmas 3 and 4 show that the properties are necessary for a *dominating
coloring. We now show that they are suNcient. Given a coloring � = {V1; V2; : : : ; Vk}
of a graph G for which both properties hold, we must show that � can be created by
Algorithm ICA with P = minimal-dominating. In other words, we must show that for
any i, Vi is a minimal dominating set for graph Gi.

Suppose this is not true. If Vi is not a dominating set, then there must exist some
vertex in Gi that is not dominated by Vi. But every vertex in Gi that is not colored
i must be adjacent to a vertex colored i (by Lemma 3), which yields a contradiction.
Suppose Vi is not a minimal dominating set, i.e., that Vi is not irredundant. Then there
exists a vertex w colored i that does not have a private neighbor. Clearly w is adjacent
to some other vertex colored i, or w would have itself as a private neighbor. By Lemma

88 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

4 any two adjacent vertices of the same color have private neighbors, making this a
contradiction.

3.3. Iterated maximal-irredundant colorings

In this section we describe two properties that completely characterize *irredundant
colorings of a graph G. We shall show that these properties are both necessary and
suNcient to characterize such colorings.

Lemma 5. Let f :V → {1; 2; : : : ; k} be a *irredundant coloring of G=(V; E). Then if
two adjacent vertices v and w are colored with the same color i ¡ k, there must exist
distinct vertices y∈N (v) and z ∈N (w) such that f(y) and f(z) are both greater
than i, and neither y nor z is adjacent to another vertex colored i.

Proof. The set Vi is an irredundant set for graph Gi. Thus any two adjacent vertices
v; w∈Vi must have private neighbors, say y and z, respectively, in Gi.

Lemma 6. Let f :V → {1; 2; : : : ; k} be a *irredundant coloring of G=(V; E). For any
vertex p with f(p)¿ 1 and every color 16 i ¡ f(p), at least one of the following
must hold:

1. In graph Gi, N [p]− N [Vi] = ∅, that is, vertex p and every neighbor of p colored
greater than i are adjacent to some vertex colored i.

2. There exists a vertex q in Vi, such that in the graph Gi, N [q] − N [Vi − {q}] ⊆
N [p]. That is, there is a vertex q colored i whose entire private neighbor set is in
N [p].

Proof. Consider any vertex p with f(p)¿ x. Since Vx is a maximal irredundant set
in Gx, the set Vx ∪ {p} is not irredundant. This set is not irredundant either because
vertex p would have no private neighbor with respect to Vx or because vertex p would
destroy the private neighbor set for some vertex q∈Vx.

Theorem 7. The two properties described in Lemmas 5 and 6 are necessary and
su<cient to characterize colorings of a graph G created by Algorithm ICA when
P =maximal-irredundant.

Proof. Lemmas 5 and 6 show that the properties are necessary for a *irredundant
coloring. We now show that they are suNcient. Given a coloring � of a graph G
for which both properties hold, we must show that � can be created by Algorithm
ICA with P = maximal-irredundant. In other words, we must show that for any i, Vi

is a maximal irredundant set in graph Gi. Suppose this is not true. If Vi is not an
irredundant set, then there must exist some vertex w∈Vi that does not have a private
neighbor in Gi. Clearly, w must be adjacent to some other vertex in Vi or w would
have itself as a private neighbor. By Lemma 5, any two adjacent vertices of the same
color have private neighbors, which yields a contradiction.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 89

Suppose Vi is not a maximal irredundant set in Gi. Then there is some vertex w in
Gi − Vi such Vi ∪ {w} is irredundant. Vertex w must have a color greater than i and
therefore greater than 1, so by Lemma 6 one of the following conditions must hold:

1. For every color j less than the color of w (this includes i), vertex w and every
neighbor of w colored greater than j are adjacent to some vertex colored j. In this
case, w could not be added to Vi, a contradiction.

2. For every color j less than the color of w there is a vertex q colored j whose entire
private neighbor set is in N [w]. Similarly in this case, w could not be added to Vi,
another contradiction.

4. Relationships between colorings

In this section we show that arbitrarily large di8erences can exist between each
consecutive pairs of invariants in the inequality sequence:

ir∗(G)6 ∗(G)6 i∗(G)6 �∗
0 (G)6�∗(G)6 IR∗(G):

We use the term endvertex to describe a vertex having only one neighbor.

Lemma 7. There can be an arbitrarily large di>erence between ir∗(G) and ∗(G).

Proof. Consider the graph G on n=3q vertices, q¿ 3, where V ={a1; a2; : : : ; aq; b1; b2;
: : : ; bq; c1; c2; : : : ; cq}. Form a complete graph among the a-vertices and another complete
graph among the b-vertices. Add the edges {ai; bi} and {bi; ci}, for 16 i6 q. See
Fig. 2. For this graph, we will show that ir∗(G) = 3 and ∗(G) = �q=2�+ 2.
1. A *irredundant coloring using three colors can be found by assigning all the

a-vertices the color 1, all the b-vertices color 2, and all the c-vertices color 3. Therefore,

Fig. 2. Graph where ∗(G) is greater than ir∗(G).

90 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

ir∗(G)6 3. If ir∗(G)6 2, then at least two a-vertices must have the same color, and
they must get their private neighbors from the b-vertices. These b-vertices are adjacent
and either are assigned di8erent colors or are assigned the same color, getting their
private neighbors from the c-vertices. In either case, at least three colors must be used.
2. The assignment a1 = 1; ai = 2, for �q=2�¡ i6 q; ai = i + 1, for 26 i6 �q=2�;

bi=1, for 16 i6 �q=2�; bi= i−�q=2�+2, for �q=2�¡ i6 q; ci=2, for 16 i6 �q=2�;
and ci = 1, for �q=2�¡ i6 q, is a *dominating coloring that uses �q=2�+ 2 colors.
3. Let f be a *dominating function for G. To show that (G)¿ �q=2�+2, requires

several observations:

(a) Either f(bi)= 1 or f(ci)= 1, 16 i6 q, otherwise vertex ci is not dominated
by V1. If f(bi) = 1, then f(ci) = 2, since vertex ci is an isolate in G2.

(b) At most one a-vertex can be colored 1, since no b-vertex can be used as a
private neighbor with respect to V1.

(c) If (G)¡ q, then at least two a-vertices must be assigned the same color,
using b-vertices as private neighbors. Let x be the least color such that f(ai)=
f(aj) = x; ai �= aj. In this case, no b-vertices can be colored x. All remaining
b-vertices must be dominated in Gx, so all must be adjacent to a-vertices that
are colored x. Note that when Vx is removed, Gx+1 will contain two disjoint
cliques. Let R be the number of a-vertices colored x. All b-vertices remaining
in Gx must be assigned a color greater than x, and no two vertices within a
remaining clique can be assigned the same color. Therefore, at least one of the
b-vertices must be assigned a color y¿R+2. Considering all the a-vertices in
G, R of these vertices are colored x, and no other vertices can have the same
color. So q − R + 1 colors are used for the a-vertices. If R ¡ �q=2�, then the
a-clique will require at least �q=2�+2 colors. If R¿ �q=2�, then the b-clique
will require at least �q=2�+ 2 colors. Therefore, ∗(G) = �q=2�+ 2.

Lemma 8. There can be an arbitrarily large di>erence between ∗(G) and i∗(G).

Proof. Consider a graph G on n = 2q vertices that contains

• a clique of q vertices, and
• q endvertices, each adjacent to a distinct q clique vertex.

Fig. 3 shows a graph with a clique of q=4 vertices. If we use Algorithm ICA with
P = minimal-dominating, all of the vertices in the clique can be colored 1, because

Fig. 3. Graph where ∗(G) = 2 and i∗(G) = 4.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 91

each of them has a private neighbor. Once the vertices in the clique are removed, we
color all of the remaining single vertices 2, so ∗(G)=2 for any such graph. However,
if we use Algorithm ICA, with P =maximal-independent, on a graph of this type, we
require q colors, since each of the vertices in the clique must be assigned a di8erent
color. By varying the size of the clique, we can create a graph G with an arbitrarily
large di8erence between ∗(G) and i∗(G).

Lemma 9. For any positive integer q there is a tree T on n=2q vertices with i∗(T)=2
and �∗

0 (T) = log n + 1.

Proof. Consider the binomial tree T = Bq with n = 2q vertices, which can be de7ned
iteratively as follows:

• B0 consists of one vertex, and
• Bi consists of a copy of Bi−1 with each vertex having a new endvertex as a
neighbor.

Since Bq is a tree it has chromatic number �(Bq)=i∗(Bq)=2. By the above de7nition
it is clear that the leaves of Bq form a maximal independent set and that after removing
these endvertices we are left with Bq−1. Since �∗

0 (B0) = 1, we have �∗
0 (Bq)¿ q + 1=

log n + 1. In fact, equality can be shown to hold.

Lemma 10. For any positive integer q there is a bipartite graph G on n=2q vertices
with �∗

0 (G) = 2 and �∗(G) = q + 1.

Proof. Consider the complete bipartite graph Kq;q. It has only two maximal independent
sets, namely the two vertex partition classes. After removing any of these, we are left
with a graph without any edges, and thus �∗

0 (Kq;q) = 2. On the other hand, any pair
of adjacent vertices form a minimal dominating set of Kq;q. After removal of such a
pair, we are left with Kq−1; q−1. Since �∗(K1;1)=2, we have �∗(Kq;q)¿ q+1. In fact,
equality can be shown to hold.

Lemma 11. For any positive integer q there is a graph G on n = 2q vertices with
�∗(G) = 3 and IR∗(G) = q + 1.

Proof. Consider the graph Gq with two nonadjacent vertices each of degree q − 1
and 2q− 2 vertices of degree two, obtained for example by starting with a two-vertex
graph with q−1 multiple edges connecting these two vertices and then subdividing each
edge twice. The degree two vertices induce a matching on q − 1 edges. Any minimal
dominating set of Gq must for each edge uv in this matching contain either u or v or
both of the degree q − 1 vertices. After removing such a set, the components of the
remaining graph consists of star graphs K1; i with a center and i leaves, 06 i6 q − 2.
Since a minimal dominating set in a star graph consists either of the center or all
of the leaves, we have �∗(Gq) = 3. On the other hand, any two adjacent degree-two
vertices u and v of Gq form a maximal irredundant set, since taking any additional

92 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

vertex would leave either u or v without a private neighbor. After removal of u and v
we are left with Gq−1. Since G2 is a path on four vertices, we have IR∗(G2) = 3 so
that IR∗(Gq)¿ q + 1, and, in fact, equality can be shown to hold.

The following result was observed by Fricke and Hedetniemi but has never been
published:

Lemma 12. For every tree T , �∗
0 (T) = �∗(T).

Proof. Assume the contrary. Let T 0 be a smallest tree for which �∗
0 (T)¡ �∗(T). Let

S be a minimal dominating set of T 0 whose removal results in a forest F such that
�∗(T 0) = 1 + �∗(F). Let T1 be a tree in F such that �∗(T1) = �∗(F). Since T1 is
smaller than T 0, �∗

0 (T1) = �∗(T1).
Let Y be the set of all vertices in S that are adjacent to vertices in T1. Notice

that |Y |¿ |T1|, since every vertex of T1 is adjacent to a distinct vertex in Y . No two
vertices in Y can be adjacent else T 0 contains a cycle. Now let S0 be any maximal
independent set of T 0 containing Y . Notice that S0 = T − T1 and that T1 is a tree in
T − S0. Thus, �∗

0 (T)¿ 1 + �∗
0 (T1) = �∗(T); i.e., �∗

0 (T) = �∗(T).

5. Monotonicity properties of parameters

It is well-known that removing edges from a graph cannot increase its chromatic
number. We say that a graph parameter is monotone if it has this property: its value
for a graph H is at least as much as its value for any subgraph of H . In this section
we study the monotonicity of iterated coloring parameters, and show that i∗ and �∗

are monotone, while ir∗, ∗, �∗
0 and IR∗ are not monotone.

Lemma 13. The iterated independent domination number i∗ and the iterated upper
domination number �∗ are monotone.

Proof. Since i∗ is equal to the chromatic number it is a monotone parameter. We
prove that �∗ is monotone.
Claim: For any graph G = (V; E), supergraph H = (V ∪ W; E ∪ F) and minimal

dominating set S of G, there exists a minimal dominating set S ′ of H such that
S ′ ∩ V ⊆ S.
We 7rst show that if this claim holds, then the lemma follows. Let �∗(G)=k and let

V1; V2; : : : ; Vk be a corresponding partition of V with Vi a minimal dominating set of Gi,
the graph remaining after the removal of V1; V2; : : : ; Vi−1. The claim states that in the
supergraph H of G we can 7nd a minimal dominating set V ′

1 of H with V ′
1 ∩V ⊆ V1.

After the removal of V ′
1 from H we have a supergraph H1 of G1, and again the claim

states the existence of a minimal dominating set V ′
2 of H1 with V ′

2∩V ⊆ V2. Repeatedly
applying this argument we can conclude that �∗(H)¿�∗(G), showing that �∗ is a
monotone parameter.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 93

Proof of claim. We remove vertices from S ∪ (W −V) to give us S ′ by executing the
following procedure, where all neighborhood references are to the supergraph H :

• Set S ′ = S ∪ (W − V), and
• while ∃v∈ S ′ such that N (v) ∩ S ′ �= ∅ and v has no private neighbor in V − S ′

do remove v from S ′.

The while-loop clearly has the invariant: S ′ is a dominating set of H , since initially
S ⊆ S ′, S is a dominating set of the subgraph G, and any vertex of H not in G is in
S ′. The invariant is maintained since whenever we remove a vertex v from S ′ it has a
neighbor in S ′ and any of its neighbors also have another neighbor in S ′. Moreover,
upon termination of the while-loop we know that S ′ is a minimal dominating set, since
there are no vertices triggering the condition in the while-loop, so that all vertices in S ′

have a private neighbor. Equivalently, upon termination the remaining set S ′ satis7es
both Lemmas 3 and 4.

Lemma 14. The iterated irredundance number ir∗, the iterated domination number
∗, the iterated independence number �∗

0 , and the iterated upper irredundance number
IR∗ are not monotone.

Proof. See the graphs in Fig. 4 which show the nonmonotonicity properties. In the
bottom row are subgraphs with a higher iterated numbers than the graphs in the top
row. The example for ir∗ in I, for ∗ in II, for �∗

0 in III and for IR∗ in IV.

Fig. 4. Examples of nonmonotonicity. The vertex numbering shows that ir∗(B) = 2, ∗(D) = 2, �∗
0 (E) = 3

and IR∗(G) = 5. We prove that ir∗(A) = 3, ∗(C) = 3, �∗
0 (F) = 2 and IR∗(H) = 4.

94 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

Since ir∗ and ∗ are minimization invariants we give an iterated coloring for the
graphs B and D, showing that ir∗(B)=∗(D)=2. We show that the subgraphs A and C
need at least three colors. Any irredundant set in A contains at most one vertex of b; c; d,
since otherwise not all vertices of the irredundant set will have a private neighbor. After
removal of an irredundant set we are therefore left with at least one edge, and indeed
ir∗(A)=3. Since A and C are isomorphic we know that also ∗(C)¿ ir∗(C)=ir∗(A)=3,
and in fact equality holds.
Since �∗

0 and IR∗ are maximization invariants, we have indicated an iterated coloring
for the subgraphs E and G, showing that �∗

0 (E)=3 and IR∗(G)=5. We have �∗
0 (F)=2,

since any independent dominating set in F must include two nonadjacent vertices of
the 4-cycle, so that after removal no edges are left. The argument for showing that
IR∗(H)6 4 is slightly longer. Let S be a maximal irredundant set of H . If r ∈ S then
q �∈ S, so r has a private neighbor and at least one of {s; t; u; v}, say u, is in S. But
after the removal of S we would then be left with isolated vertices, edges and a 3-cycle
on {s; t; v}, and could remove only three more maximal irredundant sets. On the other
hand, if r �∈ S, then q∈ S and at least one of {s; t; u; v} and one of {o; p} is in S.
After removal of S we are then left with, say, the graph on {p; r; s; t; v}. In this graph
a maximal irredundant set must include one of {t; u; v} and one of {p; r}. After its
removal we are left with, say, the 3-path on {r; s; t} from which at most two more
irredundant sets can be removed. The other possibilities are even easier to argue, and
we conclude that IR∗(H) = 4.

6. Algorithmic issues

In the 7rst two subsections below we show, respectively, that for a 7xed value of
k, the problems of deciding if a graph G has a *dominating coloring that uses at most
k colors, or a *irredundant coloring that uses at most k colors, is polynomial-time
solvable for k ¡ 3 and NP-complete for k¿ 3.

In the 7nal subsection, we show NP-hardness of the problem of 7nding the largest
k such that a graph G has a *dominating, a *irredundant, or a *independent coloring,
respectively.

6.1. Iterated minimal-dominating k-colorings

ITERATED MINIMAL-DOMINATING k-COLORING (*DOMk)
INSTANCE: Graph G.
QUESTION: Does G have an iterated minimal-dominating coloring that uses at
most k colors?

It is well known that a graph can be properly colored with two colors if and only if
it is bipartite. This is the same as saying that bipartite graphs can be colored using two
colors by Algorithm ICA with P =maximal independent. Bipartite graphs can also be
colored using two colors by Algorithm ICA with P = minimal dominating. However,
some graphs that are not bipartite can also be 2-colored with P=minimal dominating.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 95

For example, consider the graph in Fig. 3. In this case we will say that a graph is
*dominating 2-colorable, or equivalently, that ∗(G) = 2, and such a P-coloring is
called a *dominating 2-coloring.
The following polynomial algorithm determines whether or not ∗(G) = 2, for any

connected graph G of order n ¿ 1. For these graphs it is also true that G is *dominating
2-colorable by Algorithm ICA with P = minimal dominating. This algorithm makes
use of a known polynomial algorithm for solving the following decision problem:

2-SATISFIABILITY (2SAT)
INSTANCE: Collection C = {c1; c2; : : : ; cm} of two-literal clauses on a 7nite set
U of variables.
QUESTION: Is there a truth assignment for U that satis7es all the clauses
in C?

Algorithm *dominating-2-colorable

Input: A connected graph G.

Output: A Boolean variable: decision that is true if G is 2-∗colorable and false
otherwise; and a 2-∗coloring of G if G is 2-∗colorable.

1. Color all vertices that are adjacent to endvertices: blue.
2. Color all edges between two blue vertices: blue.
3. Let B equal the set of blue edges.
4. if the graph G′ = (V; E − B) is not bipartite

(a) then =* G is not 2− ∗colorable *=
set decision = false;
exit;

(b) else =* G′ = (V; E − B) is bipartite *=

i. for each connected component Ci of G′ do
A. let {V1; V2} be a proper 2-coloring of Ci;
B. assign the value ci to each vertex in V1;
C. assign the value ci to each vertex in V2;

ii. create a two-literal clause corresponding to each blue edge, for example,
(ci; cj) or (ci; ck), this creates an instance 2SAT(G) of the 2-satis7ability
problem;

iii. if 2SAT(G) is not satis7able then decision = false; exit;
iv. else decision = true;

solve the 2SAT(G) problem;
assign color 1 to all vertices whose corresponding literal is true;
assign color 2 to all vertices whose corresponding literal is false;
exit.

The graph in Fig. 5 is *dominating 2-colorable. The clauses that result from the
blue edges are (Sc1; Sc2) and (Sc2; Sc2). We can solve the 2-SATISFIABILITY problem by

96 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

Fig. 5. 2-colorable graph (P = minimal dominating).

Fig. 6. Graph that is not *dominating 2-colorable.

letting c1 be true and c2 be false. Then all the vertices colored c1 and Sc2 are assigned
color 1, while all other vertices are assigned color 2.
The graph in Fig. 6 is not 2−∗colorable, however. The clauses that result from the

blue edges are (c1; c1) and (Sc1; Sc1). This 2-SATISFIABILITY problem is not solvable.

Lemma 15. When Algorithm *dominating-2-colorable executes instruction 4(b)iv, it
produces a *dominating 2-coloring.

Proof. No two vertices colored 2 are adjacent, that is, the set of vertices colored 2 is
independent. Therefore, any vertex colored 2 must be adjacent to a vertex colored 1.
If two adjacent vertices are colored 1, they must be connected by a blue edge, which
means that each of them is adjacent to an endvertex colored 2.

Lemma 16. If a graph G has a *dominating 2-coloring, then Algorithm *dominating-
2-colorable produces a *dominating 2-coloring of G.

Proof. Let G be a graph that has a *dominating 2-coloring, and assume that Algorithm
*dominating-2-colorable cannot 2-color G. There are two stages where the algorithm
could determine that G is not 2-colorable. The 7rst occurs when all blue edges are
removed from G, and the resulting graph G′ = (V; E − B) is not bipartite. If G′ is
not bipartite, then there is an odd cycle in G′, and two adjacent vertices in this cycle
must be assigned the same color. These two vertices cannot both be colored 2 because
by Lemma 4 they would then have to be adjacent to vertices of a higher color, and
there are only two colors. However, they also cannot both be colored 1 because both
vertices would need endvertices as private neighbors. If both had adjacent endvertices,
then the edge between them would have been colored blue by the algorithm.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 97

The second stage where the algorithm could fail to 2-color a graph is when the
2-SATISFIABILITY problem has no solution (i.e. there is no way to assign colors to
vertices incident with the blue edges, such that at least one of the vertices is colored
1). Note that no two adjacent vertices in G′ can be colored the same color. Therefore,
if there is a 2-coloring for G, then the colors assigned to vertices incident with blue
edges (1− true; 2− false) should be a satis7able truth assignment.

Theorem 8. The decision problem *DOMk is polynomial-time solvable for k =2 and
NP-complete for any Bxed k, k¿ 3.

The case k=2 has just been shown. For lack of space the NP-completeness reduction,
from the well-known SAT problem, is given in an appendix.
Let us merely mention the following lemmas required for the NP-completeness proof,

that may be of independent interest:

Lemma 17. Let f :V → {1; 2; : : : ; k} be a *dominating coloring for G. Then for any
two adjacent vertices p and q, if f(p) = f(q), there exists some vertex w∈N [p]−
N [q], with f(w)¿ f(p).

Proof. By Lemma 4, vertex p must be adjacent to a vertex with a higher label that
no other vertex with label f(p) is adjacent to. All neighbors of vertex p that are not
in N [p]− N [q] are also adjacent to vertex q.

Lemma 18. Let f :V → {1; 2; : : : ; k} be a *dominating k-coloring for G. Then for
any two vertices p and q, if f(p) = f(q), then N [p]− N [q] �= ∅.

Proof. If N [p]− N [q] = ∅, then vertices p and q must be adjacent. By Corollary 17,
if two adjacent vertices p and q are given the same label, then N [p]−N [q] �= ∅.

Lemma 19. Let f :V → {1; 2; : : : ; k} be a *dominating k-coloring for G. Then for
any vertex p, the degree of p is greater than or equal to f(p)− 1.

Proof. This follows from Lemma 3. A vertex p with a label f(p)¿ 1 must be adja-
cent to vertices with labels 1::p − 1.

6.2. Iterated maximal-irredundant k-colorings

ITERATED MAXIMAL-IRREDUNDANT k-COLORING (*IRRk)
INSTANCE: graph G = (V; E)
QUESTION: does G have an iterated maximal-irredundant coloring that uses at
most k colors?

Lemma 20. If G is 2-colorable with property P = maximal irredundant, then G is
also 2-colorable with P = minimal dominating.

98 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

Proof. Let G be a graph with ir∗(G) = 2, and let � be a *irredundant 2-coloring of
G. Then � is also a *dominating 2-coloring. Note that a vertex v colored 2 must be
adjacent to some other vertex in G, as all isolates in G must be colored 1. Vertex
v cannot be adjacent to any other vertex colored 2, otherwise V2 is not irredundant.
Therefore, vertex v is adjacent to a vertex colored 1. Lemma 3 is satis7ed. We do not
have to check Lemma 4, since it is also a requirement for *irredundant colorings (see
Lemma 5.)

Theorem 9. The decision problem *IRRk is polynomial-time solvable for k = 2 and
NP-complete for any Bxed k, k¿ 3.

The case k=2 has just been shown. The NP-completeness proof is for space reasons
to be found in the appendix. We mention an observation used in the proof that may
be of independent interest.

Corollary 1. Let f :V → {1; 2; : : : ; k} be a *irredundant k-coloring for G. Then for
any two adjacent vertices p and q, if f(p)=f(q), there exists some vertex w∈N [p]−
N [q], with f(w)¿ f(p).

Proof. By Lemma 4, vertex p must be adjacent to a vertex with a higher color that
no other vertex with color f(p) is adjacent to. All neighbors of vertex p that are not
in N [p]− N [q] are also adjacent to vertex q.

6.3. Iterated independence, upper domination and upper irredundance

ITERATED UPPER IRREDUNDANCE
INSTANCE: graph G = (V; E)
QUESTION: does G have an iterated maximal-irredundant coloring using at least
k colors?

Theorem 10. ITERATED UPPER IRREDUNDANCE is NP-complete.

The proof can be found in the appendix.

ITERATED MAXIMUM INDEPENDENCE
INSTANCE: Graph G, positive integer k.
QUESTION: Does G have an iterated maximal-independent coloring that uses at
least k colors?

ITERATED UPPER DOMINATION
INSTANCE: Graph G, positive integer k.
QUESTION: Does G have an iterated minimal-dominating coloring that uses at
least k colors?

Theorem 11. ITERATED MAXIMUM INDEPENDENCE and ITERATED
UPPER DOMINATION are NP-complete.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 99

Proof. Clearly, the two problems are in NP. We use the same construction as for ITER-
ATED MAXIMUM IRREDUNDANCE. As shown in Theorem 10, if the G3C instance
is 3-colorable, then G′ would have an *independent, and *dominating, k-coloring.
If G′ has an *independent (or *dominating) k-coloring, then it has an *irredundant
k-coloring, and by the theorem, the G3C instance is 3-colorable.

7. Open problems

Many problems and questions have been raised by our study of iterated colorings of
graphs. We conclude by providing a list of some of the most interesting ones.
1. What can you say about ∗(G) and ir∗(G) for planar graphs? Since i∗(G)=�(G),

we know from the Four Color Theorem [1,2] that if G is planar, then

ir∗(G)6 ∗(G)6 i∗(G) = �(G)6 4:

Can you prove that, for planar graphs G, ∗(G)6 4, without using the Four Color
Theorem? Failing this, can you prove that ir∗(G)6 4, for planar graphs G, without
using the Four Color Theorem?
2. Investigate property P = irredundant, rather than P = maximal irredundant. The

graph in Fig. 7 can be 3-colored with P = irredundant, but requires four colors if
P = maximal irredundant.
3. What can you say about iterated coloring numbers for such properties as P =

maximal 2-packing or P = G[S] is acyclic.
4. What are the e8ects of adding or removing edges from G on ir∗(G) and ∗(G).

Adding edges to a graph cannot reduce i∗(G), but adding edges can reduce ir∗(G) or
∗(G). In Fig. 7 we see that ir∗(G) = 4, but if we add the new edge shown in Fig. 8,
ir∗(G) = 3. In Fig. 9 we show that ∗(G) can be reduced from 4 to 3 by the addition
of a new edge.

Fig. 7. This graph requires 3 colors if P = irredundant, but 4 colors if P = maximal irredundant.

100 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

Fig. 8. ir∗(G) is reduced from 4 to 3 by the addition of a new edge (see previous 7gure).

Fig. 9. Here we have reduced ∗(G) from 4 to 3 by the addition of a new edge.

Appendix.

We 7rst give the NP-completeness reduction completing the proof of Theorem 8.

Proof. Clearly *DOMk is in NP. We need only guess a coloring �, and in O(E) time,
using Lemmas 3 and 4, it can be veri7ed that � is a *dominating k-coloring that uses
at most k colors.
A transformation from the well-known SAT problem to *DOMk is given below.

We show that given an arbitrary instance of SAT, we can transform the instance into
a graph G, such that there exists a satis7able truth assignment for the SAT instance
if and only if there exists a *dominating coloring of G with at most k colors, where
k ¿ 2 is 7xed.
Let an arbitrary instance of SAT be represented by a set of variables U ={u1; u2; u3;

: : : ; un} and a set of clauses C = {c1; c2; c3; : : : ; cm}. Our transformation has three com-
ponents: variable components, clause components, and a communication component.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 101

1. Variable components: For each variable ui in the SAT instance, create a variable
component. Start with a complete graph Kk on k vertices and identify any two vertices
in Kk , labeling them pi and Spi. Create two new vertices labeled ui and Sui. Connect ui

to all vertices in Kk except for pi, and connect Su i to all vertices in Kk , except for Spi.
2. Clause components: For each clause cj in the SAT instance, create a clause

component, consisting of a path on three vertices, with the 7rst vertex in the path
labeled cj. Connect each cj vertex to the u variable vertices whose names correspond
to the literals in the clause cj.

3. Communication component: Create a complete graph K2k−2 on 2k − 2 vertices,
and label k − 1 of the vertices with labels r1 : : : rk−1. Add k − 1 additional vertices
s1 : : : sk−1 along with the edges (ri; si), 16 i6 k − 1. Add two more vertices x1 and
x2 and the two edges (x1; s1) and (x1; x2). Form a complete graph among the s vertices
and the c vertices from the clause components.

Clearly, this construction is polynomial with respect to the size of the SAT input.
The remainder of the proof requires two parts. First, we show that if the SAT instance
has a satis7able truth assignment, then G has a *dominating coloring that uses at
most k colors. Given a satis7able truth assignment g, an iterated dominating coloring
function f can be found in this manner:

1. Variable components: if SAT variable ui is assigned true, then f(ui)=f(pi)=1
and f(Su i) = f(Spi) = 3; otherwise if SAT variable ui is assigned false, then f(ui) =
f(pi)=3 and f(Su i)=f(Spi)=1. Assign the colors 2; 4; : : : ; k to the other k−2 vertices
in the variable component using a di8erent label for each of these vertices.
2. Clause components: assign all cj variables the color 2, and the middle vertices

in the component paths the color 3, and assign the color 1 to all the end-vertices in
the paths.
3. Communication component: Assign all r vertices the color 1, and assign to the

other k − 1 vertices in the complete graph the colors 2; 3; 4; 5; : : : ; k, using a di8erent
label for each of these vertices. Let f(x1) = 3 and f(x2) = 1. Let f(si) = i + 1, for
16 i6 k − 1.

We consider each vertex in turn to show that this assignment is a valid *dominating
coloring.

1. No two adjacent vertices in a variable component have the same color, and every
vertex is in a complete graph with k vertices, all which have di8erent colors. Therefore,
every vertex i with color f(i)¿ 1 is adjacent to some vertex with color f(j), for any
j, 16 j ¡ i. Note also that no ui or Su i variable has the same color as a ci variable.
2. In the clause components, no vertices, other than the cj vertices are adjacent to

any vertices with the same color. The vertices colored 3 are adjacent to vertices colored
1 and 2. All cj vertices are colored 2, and they are adjacent to a u or Su vertex that is
colored 1; note this u or Su vertex corresponds to a true literal from the SAT instance.
Each cj vertex is adjacent to a vertex colored 3 (the vertex in the middle of the path)
that no other vertex colored 2 is adjacent to.
3. In the communication component, the x1 and x2 variables are not adjacent to any

vertices that match their own color. Furthermore, x1 is adjacent to a vertex colored 1

102 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

and a vertex colored 2. Other than s1, no si variable is adjacent to a variable with the
same color as its own, and each si is adjacent to some vertex of every other color
between 1 and k inclusive. Vertex s1 is the only vertex with color 2 adjacent to x1,
so it can get a private neighbor from x1. Finally, consider the vertices in the 2k − 2
clique. The r vertices have private neighbors of the corresponding s vertices. The other
vertices in the clique are not adjacent to any other vertex with the same color, but
they are adjacent to all colors other than their own.
Second, we must show that if G has a *dominating coloring f using k or fewer

colors, then the SAT instance is satis7able. Given a *dominating coloring for G with
k or fewer colors, a truth assignment g can be found for the SAT instance in this
manner: if f(ui) = 1, then g(ui)= true, otherwise g(ui)= false. We show this is a
valid truth assignment by proving that each cj vertex is adjacent to a u-vertex with a
true label 1. We also show that it is not possible that f(ui)=f(Su i)= 1. This requires
several observations.
1. Consider the vertices in the 2k − 2 clique in the communication component. The

k − 1 unlabeled vertices all share the same closed neighborhoods, so by Corollary 18,
they must all be di8erent colors. Also, no unlabeled vertex can have the same color as
any one of the r vertices because the closed neighborhood of any unlabeled vertex is
a subset of the closed neighborhood of any r vertex. Since only k colors are used for
G, it follows that all r vertices are colored the same, and that they must get private
neighbors from the s-vertices. Since the s-vertices are private neighbors, each must
have a color greater than 1.
2. Two vertices si and sj, i ¡ j, cannot have the same color because N [j]− N [i] =

{rj}, and rj cannot be a private neighbor for sj, since sj is a private neighbor for rj.
Therefore all s-vertices must have di8erent colors other than 1, necessarily 2::k. These
vertices are private neighbors for r vertices which all must have been colored 1.
3. We now show that the c vertices must all be colored 2. Note that the c vertices

must have the same color as s1:

(a) Vertex cj cannot have a color of 1, because the s vertices are private neighbors
of the r vertices that are colored 1.

(b) Vertex cj cannot have the same color as any of the si vertices i ¿ 1, since N [si]−
N [cj] = {ri} and ri cannot be a private neighbor for si.

(c) There is only one color possible for cj and that is s1’s color. Vertex s1 will get its
private neighbor from x1 and x1 must be colored 3: vertex x1 cannot be colored
lower than 3 and be a private neighbor for s1, and it cannot have a higher color
than 3 since it is adjacent to only two vertices.

4. In any vertex component, either the k-clique is colored with k colors or the
k-clique is colored with k −1 colors and the two labeled vertices are colored the same
color (this is because all vertices in the clique have neighborhoods that are contained
in the neighborhood of any unlabeled vertex). If the k-clique is colored with k − 1
colors then the two u-vertices must be private neighbors for the labeled vertices, and
their color must be the same as the color missing in the clique.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 103

5. The two u-vertices in a vertex component must not both be assigned 1; otherwise
the k-clique would have to be colored with k colors, and the k-clique vertex colored
1 would have no private neighbor.
6. If a u-vertex is assigned a color greater than 1, then the k − 1 vertex component

clique vertices that it is joined to must be all di8erent colors, and these colors must
be di8erent from u, otherwise either the u vertex or the two clique vertices would not
have private neighbors in the case of a match.
7. No ci clause vertex can use a u-vertex as a private neighbor, because if the

u-vertex is assigned a color other than 1, then it is adjacent to a vertex colored 2 in
its component’s clique. Therefore all ci vertices get their private neighbors from the
center vertices in the paths. These center vertices are colored 3. Each ci clause vertex
must be adjacent to a vertex colored 1. These must come from the u-vertices.

We now give the NP-completeness reduction completing the proof of Theorem 9.

Proof. Clearly *IRRk is in NP. We need only guess a coloring f, and in O(E) time,
using Lemmas 5 and 6, it can be veri7ed whether f is a *irredundant coloring that
uses at most k colors.
A transformation from the Exact Cover by 3-Sets problem (X3C) from [6] to *IRRk

is given below. We show that given an arbitrary instance of X3C, we can transform
the instance into a graph G, such that there exists a satis7able truth assignment for the
X3C instance if and only if there exists an iterated irredundance coloring of G with at
most k colors, where k ¿ 2 is 7xed.

EXACT COVER BY 3-SETS
INSTANCE: Set X of elements, |X |=3q, and a collection C of 3-element subsets
of X .
QUESTION: Does C have an exact cover C′; i.e., every element of X appears in
exactly one subset in C′?

Let a set of elements X = {x1; x2; x3; : : : ; x3q} and a collection of subsets C =
{c1; c2; c3; : : : ; cm} be an arbitrary instance of X3C. Our transformation has two types
of components: element components and subset components.

1. Element components: For each element xi in the X3C instance, create an element
component. Start with a complete graph on k + 1 vertices and select any two vertices
in the complete graph, labeling them xi and yi. Create another vertex labeled pi, and
add the edge {pi; yi}.
2. Subset components: For each subset cj in the X3C instance, create a subset

component. For the subset components, again begin with a complete graph on k + 1
vertices, and select any three vertices in the complete graph labeling them cj;1, cj;2,
and cj;3/Create three new vertices qj;1, qj;2, qj;3 and add edges {qj;1; cj;1}, {qj;2; cj;2}
and {qj;3; cj;3}. Connect cj;1, cj;2, and cj;3 to the xi element vertices whose names
correspond to the elements in the subset cj.

Clearly, this construction is polynomial with respect to the size of the X3C input.
Fig. 10 illustrates the construction described above for k = 4.

104 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

Fig. 10. Transformation to *IRRk from X3C where X = {x1; x2; : : : ; x6} and C = {{x1; x2; x6}; {x1; x2; x4};
{x2; x3; x5}; {x3; x4; x5}}.

In this part of the proof, we will use the notation cj∗ to refer to an arbitrary vertex
from cj1, cj2, or cj3. Similarly, the notation qj∗ will be used. Also, the term xvertex
will refer to any vertex labeled xi. First we show that if the X3C instance has an exact
cover, then G has a *irredundant coloring that uses at most k colors. Given an exact
cover C′, a *irredundant coloring f can be found in this manner:

1. Subset components: If cj is a subset in the exact cover, let f(cj1) = f(cj2) =
f(cj3) = 2, and f(qj1) = f(qj2) = f(qj3) = 3, and assign the colors 3; 4; : : : ; k to the
other k − 2 vertices in the subset component using a di8erent color for each of these
vertices. If cj is not a subset in the exact cover, let f(cj1) = f(cj2) = f(cj3) = 1, and
f(qj1) = f(qj2) = f(qj3) = 2, and assign the colors 2; 3; : : : ; k − 1 to the other k − 2
vertices in the complete graph in the subset component using a di8erent color for each
of these vertices.
2. Element components: For each element component assign xi and yi the value 1,

and pi the value 2. Assign 2; 3; 4; : : : ; k to the other k − 1 vertices in the complete
graph.

We consider each vertex in turn to show that this assignment is a valid *irredundant
coloring.

1. The only two adjacent vertices in an element component that have the same color
are xi and yi. The yi vertices will have the pi vertices as private neighbors, and the
xi vertices will have private neighbors in the cj component that covers it from the

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 105

exact cover. No vertex in an element component can be given a lower value because
it would not have a private neighbor with respect to that value.
2. In the subset component, all vertices have private neighbors within the subset

component. In the components where the corresponding subsets form the exact cover,
the cj;∗ vertices are being used as private neighbors by some x vertices, and so no
vertices in these subset components can be colored 1. No vertex can be given a lower
color greater than 1 because it would not have a private neighbor with respect to that
color.

Now we must show that if G has a *irredundant coloring f using k or fewer colors
that the X3C instance has an exact cover. Given a *irredundant coloring for G with k
or fewer colors, an exact cover C′ can be found for the X3C instance in this manner:
if f(q1j)¿ 2, then cj is in C′; otherwise cj is not in C′. We show this is a valid
exact cover by proving that each of the xi vertices is colored 1 and must get its private
neighbor from a cj∗ vertex. Further we show that if a cj∗ vertex is used as a private
neighbor, then cj1, cj2, and cj3 must all be used as sole private neighbors for some x
vertices. This is the only case in which f(q1j)¿ 2.

This requires several observations.

1. Consider the vertices in the k +1 clique in an element component. To color these
vertices with k colors, two vertices must be the same color, and the private neighbors
must come from outside the clique. Therefore the two vertices with the same color
are xi and yi. Every other vertex inside the clique will use itself as a private neighbor
with respect to its color set. The vertex pi is a private neighbor for yi, so clearly
f(pi)¿ 1. By Lemma 2, if f(pi)¿ 1, then either p(i) would have to be adjacent
to a vertex colored 1, or it would have to destroy a private neighbor set for a vertex
colored 1. This can only occur if f(yi) = 1.
2. Consider a vertex cj∗ that is used as a private neighbor for some vertex xi. We

show that all three of cj1, cj2, and cj3 must be used as sole private neighbors for some
x vertices.
First, no vertex in the cj clique can be colored 1, otherwise cj;∗ could not be used

as a private neighbor for the xi vertex. It follows that the k + 1 vertices in the subset
clique are assigned from the k − 1 colors {2; 3; 4; : : : ; k}. The k − 2 unlabeled vertices
in the clique must all have di8erent colors, and these must be colored di8erently than
the labeled vertices. Therefore, all the labeled vertices in the cj component must be
the same color. The labeled clique vertices must have private neighbors from the q
vertices. Note then that the q vertices in this component must have colors greater than
2. By Lemma 6, we know that a vertex colored greater than 2 must either have no
private neighbor with respect to V1 or must be adjacent to all private neighbors of
some vertex in V1. A q vertex in this component is not adjacent to any vertex with
value one, so it must destroy the private neighbor set of some vertex with color 1,
namely an x vertex. Therefore it must be that cj1, cj2, and cj3 are all needed as a sole
private neighbor for some x vertex.
3. Using the reasoning from above, if f(qj1 ¿ 2, then either cj1 = 1 or vertex cj1 is

used as a unique private neighbor for an xi vertex. If f(cj1)= 1, then qj1 is an isolate

106 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

in G2 and must be colored 2, a contradiction. Therefore, if f(qj1)¿ 2, then cj1, cj2,
and cj3 must all be used as sole private neighbors for x vertices.
4. We have shown that each of the x vertices (and there are 3q of these vertices)

must have a private neighbor from a c vertex. These private neighbors must be sole
private neighbors, and must be from a subset component where all three c vertices are
used as sole private neighbors. Therefore there are exactly q subset components with
f(qj1)¿ 2, and the corresponding subsets form an exact cover C′.

We give the proof of Theorem 10:

Proof. Clearly ITERATED UPPER IRREDUNDANCE is in NP. We need only guess
a coloring f, and in polynomial time verify that f is a *irredundant coloring that uses
at least k colors.
Given an arbitrary instance G of Graph 3-Colorability, we transform the instance

into a graph G′ and positive integer k, such that there exists a (proper) 3-coloring for
G if and only if there exists a *irredundant k-coloring for G′.

First, create a graph G′′ by adding a disjoint K2 to G. Label the K2 vertices with
v|V |+1 and v|V |+2 and the edge with e|E|+1. We will transform G′′ to a graph G′ that
has two types of components: vertex-edge components and edge components.

1. Vertex-edge components: For each vertex vi in G′′ create a tree as shown in
Fig. 11, rooting the tree at vi. For each edge ej in graph G′′, add the same tree as
shown in Fig. 11, rooting the tree at v|V ′′|+j.
2. Edge components: For each edge ej in G′′, create an additional vertex ej. Three

edges will be added from this vertex to the vertex-edge components: add edges from
this vertex to the two v-vertices that are endpoints of the edge and also to the v|V ′′|+j

vertex from the vertex-edge component. Form a clique among the ej vertices.
3. Let k = |E′′|+ 3.

Clearly, this construction is polynomial with respect to the size of the G3C input.
First we show that if G has a 3-coloring, then G′ has a *irredundant coloring that

uses k colors. Given a 3-coloring g for G, an iterated irredundance coloring function
f can be found in this manner:

1. Vertex-edge components: Let f(vi) = g(vi), for i6 |V |. Let f(v|V |+1) = 1 and
f(v|V |+2) = 2. For each vi vertex, i = |V ′′|+ j, representing an edge ej with endpoints
va and vb in G′′, let f(v|V |+j) = 6 − g(va) − g(vb); in other words either 1, 2, or
3, whichever of those colors is not used for its endpoints va and vb. Color the other

Fig. 11. Vertex-edge component.

S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108 107

Fig. 12. Coloring a vertex-edge component.

vertices in the vertex-edge trees corresponding to the tree in Fig. 12 that has the same
root color as f(vi).
2. Edge components: Let f(ej) = 3 + j.

It is easy to see that this assignment is a valid *irredundant k-coloring. Each color
class Ci is a maximal independent set (and therefore maximal irredundant) with respect
to the graph G′

i . Note that each ej vertex is adjacent to vertices colored 1, 2, and 3
from the vertex-edge component.
Now we must show that if G′ has an iterated irredundance coloring f using k or

more colors, then the G3C instance has a proper 3-coloring. Given a *irredundant
coloring f for G′ with k or more colors, a proper 3-coloring g for G can be found
by letting g(vi) = f(vi) for each vertex vi in G. We will show that this is a proper
3-coloring.
This requires several observations.

1. In each vertex-edge component tree, at least one of the vertices vi, wi, or xi must
be colored 1. Otherwise C1 is not a maximal irredundant set.
2. If two adjacent vertices in a vertex-edge component tree are the same color, then

the two vertices must be vi and wi. In this case, vi and wi must be colored 1, and both
can get private neighbors from within the tree. No vertex outside the clique will have
its private neighborhood set contained within the clique.
3. Every vertex p in the clique must be adjacent to vertices colored m, for 16m

¡ f(p). Otherwise Cm ∪ p is irredundant in Gm, contradicting the maximality of Cm.
4. Since there are k − 3 vertices in the clique, and k colors used to color G′, there

are at least three colors missing from the clique. Consider the largest color m missing
in the clique, and let y be a vertex with f(y)=m. Then for every other missing color
in the clique, y must be adjacent to some vertex of that color, otherwise y could be
given a lower color. Since no nonclique vertex is adjacent to more than two other
nonclique vertices, there are only three colors missing from the clique, and all vertices
in the clique have a di8erent color.
5. Let c16 c26 c3 be the three colors missing from the clique. Let y be any vertex

not in the clique. Then if f(y)¿ c1, then y must be adjacent to a vertex colored c1,
if f(y)¿ c2, then y must be adjacent to a vertex colored c2, and if f(y)¿ c3, then
y must be adjacent to a vertex colored c3. Note that no vertex outside the clique can
have a value greater than c3, because its degree outside the clique is at most 2.
6. Consider a vertex y with value c3. It is adjacent to two vertices outside the clique,

so y must either be a v or w vertex from a vertex-edge component. If y is a v vertex,

108 S.M. Hedetniemi et al. / Discrete Mathematics 278 (2004) 81–108

then the w vertex is colored c2 and the other two vertices in the tree component are
colored c1. If y is a w vertex, then the v vertex is colored c2. In either case, c1 = 1.

7. Let y be a vertex with f(y)=c3 in a vertex-edge component with root vi (possibly
vi=y). Let p be any clique vertex that is not adjacent to vi. Then, f(p)¿ f(wi); other-
wise Cf(p)∪wi would be irredundant in Gp. Therefore, f(p)¿ c2. Further, f(p)¿ c3,
otherwise Cf(p) ∪ y would be irredundant in Gp. Note that p cannot be adjacent to
another vertex colored p (all clique vertices are di8erent colors, and an adjacent vj

vertex colored f(p) would have to be adjacent to a c1 and c2 by (4) above and could
not get a private neighbor with respect to Cf(p).
8. Let p be any clique vertex. If f(p)¡ c3, then p must be adjacent to all

vertex-edge components that contain a vertex colored c3. Also, if f(p)¿ c3, then
p must be adjacent to some vertex-edge component colored c3. Consider the clique
vertex that represents the K2 edge added to make G′′. Its neighborhood outside the
clique is disjoint from any other clique vertex. Therefore, no clique vertex can be
adjacent to all vertex-edge components containing c3 vertices. The clique vertices are
colored 4::|E′′|, and each must be adjacent to a vertex colored 1–3.
9. The function g will employ only the colors 1–3. Also, any two endpoints of an

edge in G will be colored di8erently.

References

[1] K. Appel, W. Haken, Every planar map is four colorable. Part I: Discharging, Illinois J. Math. 21
(1977) 429–490.

[2] K. Appel, W. Haken, J. Koch, Every planar map is four colorable. Part II: Reducibility, Illinois J. Math.
21 (1977) 491–567.

[3] T. Beyer, S.M. Hedetniemi, S.T. Hedetniemi, A linear algorithm for the Grundy number of a tree,
Proceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory and Computing,
Congr. Numer. 36 (1982) 351–363.

[4] C.A. Christen, S.M. Selkow, Some perfect coloring properties of graphs, J. Combin. Theory Ser. B 27
(1979) 49–59.

[5] E.J. Cockayne, S.T. Hedetniemi, D.J. Miller, Properties of hereditary hypergraphs and middle graphs,
Canad. Math. Bull. 21 (1978) 461–468.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness,
Freeman, New York, 1979.

[7] N. Goyal, S. Vishwanathan, NP-completeness of undirected Grundy numbering and related problems,
preprint, 1997.

[8] P.M. Grundy, Mathematics and games, Eureka 2 (1939) 6–8.
[9] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker,

New York, 1998, 446pp.
[10] D.J. Ho8man, P.D. Johnson, Greedy colorings and the Grundy chromatic number of the n-cube, Bull.

Inst. Combin. Appl. 26 (1999) 49–57.
[11] G. Prins, Unpublished manuscript, February 8, 1963.
[12] J.A. Telle, A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM

J. Discrete Math. 10 (4) (1997) 529–550.

	Iterated colorings of graphs
	Introduction
	Iterated coloring algorithm
	Alternative characterizations
	Iterated maximal-independent colorings
	Iterated minimal-dominating colorings
	Iterated maximal-irredundant colorings

	Relationships between colorings
	Monotonicity properties of parameters
	Algorithmic issues
	Iterated minimal-dominating k-colorings
	Iterated maximal-irredundant k-colorings
	Iterated independence, upper domination and upper irredundance

	Open problems
	Appendix.
	References

