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SUMMARY

Phosphoinositide-3 kinase (PI3K)-d and PI3K-g are
preferentially expressed in immune cells, and inhibi-
tors targeting these isoforms are hypothesized to
have anti-inflammatory activity by affecting the
adaptive and innate immune response. We report
on a potent oral PI3K-d and PI3K-g inhibitor (IPI-
145) and characterize this compound in biochemical,
cellular, and in vivo assays. These studies demon-
strate that IPI-145 exerts profound effects on
adaptive and innate immunity by inhibiting B and
T cell proliferation, blocking neutrophil migration,
and inhibiting basophil activation. We explored
the therapeutic value of combined PI3K-d and
PI3K-g blockade, and IPI-145 showed potent activity
in collagen-induced arthritis, ovalbumin-induced
asthma, and systemic lupus erythematosus rodent
models. These findings support the hypothesis that
inhibition of immune function can be achieved
through PI3K-d and PI3K-g blockade, potentially
leading to significant therapeutic effects in mul-
tiple inflammatory, autoimmune, and hematologic
diseases.

INTRODUCTION

Phosphoinositide-3 kinases (PI3Ks) are key cellular signaling

proteins that act as a central node for relaying signals from

cell-surface receptors to downstream mediators (Bi et al.,

1999; Clayton et al., 2002; Cushing et al., 2012; Hirsch et al.,

2000; Kulkarni et al., 2011; Puri and Gold, 2012). PI3Ks are lipid

kinases that phosphorylate the 3-position of phosphatidylinositol

lipids to create phosphatidylinositol-3,4,5-trisphosphate (PIP3).

Membrane-anchored PIP3 acts as a docking site for multiple

signaling proteins, leading to the activation of downstream effec-

tors such as AKT and BTK. The class IA PI3Ks are heterodimers

composed of a regulatory subunit (p85) and three different cata-
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lytic subunits (p110-a, p110-b, and p110-d) encoded by three

homologous genes (PIK3CA, PIK3CB, and PIK3CD). In contrast,

class IB contains a single member that utilizes unique related

regulatory subunits (p101 and p84) with the catalytic subunit

p110-g encoded by the genePIK3CG. Recent work has revealed

surprisingly different tissue expression levels and functions

for individual isoforms. PI3K-a is ubiquitously expressed and

genetic knockout of this isoform in mice is embryonically lethal

(Bi et al., 1999). PI3K-b knockouts exhibit a variable phenotype

ranging from embryonic lethality in some strains to defects in

platelet aggregation and neutrophil function in others (Kulkarni

et al., 2011). In contrast, ablation of PI3K-d and PI3K-g generates

viable, fertile mice that reveal defects in their immune system

(Clayton et al., 2002; Cushing et al., 2012; Hirsch et al., 2000;

Jou et al., 2002; Kulkarni et al., 2011; Puri andGold, 2012; Sasaki

et al., 2000).

The important role of PI3K-d and PI3K-g in adaptive and innate

immunity has been explored in murine knockout and kinase-

inactive knockin mutant animals (Al-Alwan et al., 2007; Bilancio

et al., 2006; Clayton et al., 2002; Condliffe et al., 2005; Cushing

et al., 2012; Dil and Marshall, 2009; Durand et al., 2009;

Garçon et al., 2008; Haylock-Jacobs et al., 2011; Hirsch et al.,

2000; Jou et al., 2002; Liu et al., 2007; Okkenhaug et al., 2002,

2006; Pinho et al., 2007; Puri and Gold, 2012; Sasaki et al.,

2000; Soond et al., 2010). PI3K-d mediates signaling through

receptor tyrosine kinases, cytokine receptors, integrins, B and

T cell receptors, and Fc epsilon receptor 1 (FcεR1). Examinations

of PI3K-d-deficient or kinase-impaired mice have linked PI3K-d

to the activation and proliferation of B and T cells, differentiation

of T helper 1 (TH1) and TH17 inflammatory cells, and effective

signaling in basophils, mast cells, monocytes, macrophages,

and dendritic cells (Al-Alwan et al., 2007; Bilancio et al., 2006;

Clayton et al., 2002; Condliffe et al., 2005; Dil and Marshall,

2009; Durand et al., 2009; Garçon et al., 2008; Haylock-Jacobs

et al., 2011; Liu et al., 2007; Okkenhaug et al., 2002, 2006; Pinho

et al., 2007; Roller et al., 2012; Soond et al., 2010). In contrast,

PI3K-g is linked to chemokine receptor signaling through G

protein-coupled receptors (GPCR) and RAS-mediated signaling.

Murine PI3K-g knockout and kinase-dead knockin studies high-

lighted a vital role for this isoform in T cell development, T leuko-

cyte trafficking, Th1/Th17 responses, T cell receptor-induced
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CD4+ T cell activation and proliferation, dendritic cell migration,

and neutrophil and monocyte activation and migration (Konrad

et al., 2008; Liu et al., 2007; Schmid et al., 2011). This work pro-

vides strong evidence that the combined effects of PI3K-d and

PI3K-g activity are essential for a wide array of adaptive and

innate immune functions.

Due to the immune-cell-specific expression and nonoverlap-

ping roles of PI3K-d and PI3K-g, loss of activity of both isoforms

has broader effects on adaptive and innate immune function

than loss of one alone. Mice lacking these isoforms show

enhanced resistance to models of inflammatory and autoim-

mune-mediated diseases. For example, murine knockouts of

either PI3K-d or PI3K-g alone showed reduced joint injury in a

serum-induced arthritis model; however, PI3K-d,g double-

knockout mice possessed even greater resistance to arthritis in-

duction (Randis et al., 2008). Additionally, the differential effects

of PI3K-d or PI3K-g inhibition are evident in rodent models of

airway inflammation. In these models, mice lacking PI3K-g

exhibit reduced levels of eosinophilic airway inflammation and

reduced peribronchial fibrosis (Takeda et al., 2009), whereas

animals lacking PI3K-d display a similar reduction in the levels of

eosinophil recruitment and additionally demonstrate a reduced

type 2 cytokine response (Nashed et al., 2007).

IPI-145 (also known as INK-1197), a small-molecule inhibitor

of PI3K-d and PI3K-g, was designed (L.-S.L., K. Chan, K.A.J.,

L. Darjania, L. Kessler, J. Kucharski, J. Stewart, U. Banerjee,

M. Elia, J. Staunton, A. Luzader, M. Zhang, Y. Su, D. Shao,

M. Martin, Y.L., G. Birrane, N. Khudaynazar, S. Smith, C.M.M.,

T.T. Tibbitts, C. Evans, A.C. Castro, C.R., and P.R., unpublished

data) to investigate the hypothesis that simultaneous inhibition of

these isoforms would demonstrate broad adaptive and innate

immune cell inhibitory activity and enhanced efficacy in inflam-

matory diseases, autoimmune diseases, and hematologic malig-

nancies. A broad array of biochemical and functional cell-based

assays demonstrate that IPI-145 is a potent inhibitor of PI3K-d

and PI3K-g kinase activity. In this work, we explored the

therapeutic value of combined PI3K-d and PI3K-g blockade

with IPI-145 in a rat collagen-induced arthritis (CIA) model, a

rat ovalbumin (OVA)-induced asthma model, and a spontaneous

murine model of systemic lupus erythematosus. Our findings

demonstrate that combined inhibition of adaptive and innate

immune function can be achieved through PI3K-d and PI3K-g

blockade, leading to significant therapeutic effects in multiple in-

flammatory and autoimmune diseases. Moreover, given the key

role of PI3K-d and PI3K-g in immune cell function, targeting

these isoforms may provide opportunities to develop differenti-

ated therapies for the treatment of hematologic malignancies.

RESULTS

IPI-145 Is a Potent Inhibitor of PI3K-d and PI3K-g
The significant, often nonoverlapping roles that the PI3K-d and

PI3K-g isoforms play in immune cells motivated us to identify

small-molecule inhibitors that target both isoforms. An optimiza-

tion effort resulted in the discovery of a potent oral inhibitor of

PI3K-d and PI3K-g, the isoquinolinone derivative IPI-145 (Fig-

ure 1A). To determine the affinity of IPI-145 for all PI3K isoforms,

the individual rate constants (koff and kon) were measured,

yielding the KD for each PI3K isoform (Figure 1B; Figure S1 avail-
Chemistry & Biology 20, 1364–137
able online). The KD values for the class I PI3K isoforms were

determined to be 0.023 nM for PI3K-d, 0.24 nM for PI3K-g,

1.56 nM for PI3K-b, and 25.9 nM for PI3K-a (Figure 1B). The

kon and koff determinations for IPI-145 on PI3K-d are shown as

an example in Figures 1C–1E. The remarkable affinity, and in

particular the koff, of IPI-145 for its target predicts a long average

target residence time of 45 min per PI3K-dmolecule, which may

translate to more durable pharmacodynamic effects. For com-

parison, the affinity of the PI3K-d specific inhibitor, GS-1101

(formerly CAL-101) (Lannutti et al., 2011), was also determined

for PI3K-d and PI3K-g, yielding KD values of 0.273 nM and

85.7 nM, respectively (Table S1). The structural differences

between IPI-145 and GS-1101 have a significant and surprising

impact on the binding affinities for PI3K-d and PI3K-g. IPI-145

is an ATP-competitive inhibitor; therefore, we determined the

relative potencies of IPI-145 for the different PI3K isoforms by

using an enzymatic assay to monitor the hydrolysis of 32P ATP

at physiological (3 mM) concentrations. This assay yielded IC50

values for PI3K-d and PI3K-g of 2.5 nM and 27 nM, respectively,

and IC50 values of 1602 nM and 85 nM for the PI3K-a and PI3K-b

isoforms, respectively (Figures 1B and 1F).

To determine kinase selectivity, IPI-145 was screened against

a panel of 442 diverse kinases, comprised of 386 nonmutant and

56 mutant kinases, utilizing KINOMEscan technology. IPI-145

selectively bound to PI3K class I isoforms with no significant

activity against any other protein or lipid kinases, including class

II PI3Ks. Furthermore, IPI-145was selective against a panel of 50

GPCRs, ion channels, and transporters (Tables S2 and S3).

IPI-145 Is a Potent Inhibitor of PI3K-d andPI3K-gActivity
in Cellular Assays
Assays designed to allow activity readouts for individual PI3K

isoforms were used to assess IPI-145 in a cellular context. To

assess PI3K-d isoform inhibition, the B cell receptor of the

human lymphoma cell line RAJI was cross-linked with an anti-

immunoglobulin M (anti-IgM) antibody. In this PI3K-d-specific

cellular assay, IPI-145 inhibited pSer473-Akt phosphorylation

with an average IC50 value of 0.36 nM (Table 1). IPI-145 was

�14 times more potent than the PI3K-d-specific inhibitor GS-

1101 when compared directly (Table S1). Next, the ability of

IPI-145 to inhibit PI3K-g was assessed by measuring AKT phos-

phorylation in the murine macrophage-like cell line RAW 264.7

after a 3 min stimulation with the complement component frag-

ment C5a, a GPCR agonist (Pinho et al., 2007). IPI-145 inhibited

PI3K-g in C5a-activated RAW cells with an average IC50 value

of 19.6 nM. Cellular assessment of PI3K-a and PI3K-b inhibi-

tion was completed using SKOV-3 (human ovarian adenocarci-

noma) and 786-O (human renal cell carcinoma) cell lines, which

predominantly express constitutively active PI3K-a or PI3K-b,

respectively. In these experiments, IPI-145 generated an

average IC50 value of 1,410 nM and 26.2 nM for cellular inhibition

of PI3K-a and PI3K-b, respectively (Table 1).

IPI-145 Is Active in PI3K-d- and PI3K-g-Driven Immune
Functional and Whole-Blood Assays
Given the potent cellular activity of IPI-145 against PI3K-d and

PI3K-g, we next explored isoform-dependent immune cell func-

tion. Since PI3K-d has been described as essential for B cell and

T cell proliferation (Okkenhaug et al., 2002, 2006; Pinho et al.,
4, November 21, 2013 ª2013 Elsevier Ltd All rights reserved 1365



IPI-145 binding data PI3K-α PI3K-β PI3K-δ PI3K-γ

koff (s-1) 0.109 0.00426 0.000365 0.000832

kon (106 M-1 s-1) 4.20 2.73 15.6 3.43

t 1/2 (min) 0.10 2.7 31.6 13.8

KD (nM) 25.9 1.56 0.023 0.24 

IC50 Enzymatic assay 
at 3mM ATP (nM) 1602 85 2.5 27

kon = 1.6 x 107 M-1 s-1

koff =  0.00025 s-1
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Figure 1. IPI-145 Is a Potent and Selective Inhibitor of PI3K-d and PI3K-g

(A) Chemical structure of IPI-145.

(B) Summary of IPI-145 PI3K isoform affinity and binding-rate constants kon and koff. IC50 values for IPI-145 against each PI3K isoform were determined at 3 mM

ATP by monitoring the amount of radiolabeled ADP and ATP present as a function of IPI-145 concentration (see also Figure S1 and Supplemental Experimental

Procedures).

(C) The concentration- and time-dependent decrease of PI3K intrinsic fluorescence upon compound binding was measured with a stopped-flow fluorimeter.

Traces were fit to a single exponential function to determine the observed on-rate (kobs).

(D) Plot of kobs versus IPI-145 concentration, with kon determined by the slope of the least-squares linear fit. The linear relationship is indicative of a simple one-

step binding mechanism with no induced conformational change following binding.

(E) The off-rate was determined by competing the radiolabeled IPI-145:PI3K-d complex with excess unlabeled IPI-145. Compound dissociation was measured

over time after the addition of excess unlabeled IPI-145.

(F) Isotherms of IPI-145 inhibitory activity in enzymatic assays were determined by monitoring the hydrolysis of 3 mM 32P ATP, with PI3K-a, PI3K-b, PI3K-g, and

PI3K-d as labeled.

See also Figure S1 and Tables S1–S3.
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2007; Soond et al., 2010), we measured the effect of IPI-145 on

those activities. Human peripheral blood CD19+ B cells were

stimulated with anti-IgM and anti-CD40 antibodies in the pres-

ence or absence of IPI-145 for 96 hr. IPI-145 inhibited human

B cell proliferation with an average IC50 value of 0.5 nM (Table 1;

Figure S2A). To test the effect of IPI-145 on T cell proliferation,

human peripheral blood CD3+ T cells were stimulated with

Concanavalin A (ConA) in the presence or absence of IPI-145

for 72 hr. IPI-145 inhibited the proliferation of stimulated T cells

with an average IC50 value of 9.5 nM (Table 1; Figure S2B). These

data suggest that B and T cell proliferation can be inhibited by

IPI-145.

The PI3K pathway plays a critical role in the activation of baso-

phils by relaying signals from cell-surface receptors to down-
1366 Chemistry & Biology 20, 1364–1374, November 21, 2013 ª2013
stream mediators (Cushing et al., 2012; Puri and Gold, 2012).

Whereas stimulation via the immunoglobulin E (IgE) Fc receptor

by the addition of anti-FcεR1 antibody occurs through PI3K-d,

stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP)

occurs primarily through PI3K-g. When these two basophil

stimuli were used in whole blood, IPI-145 inhibited PI3K-d-spe-

cific degranulation of basophils with an average IC50 value of

96.1 nM, and PI3K-g-specific degranulation with an average

IC50 value of 1,028 nM (Table 1; Figures S2C and S2D).

The finding of higher IC50 values in the whole-blood assays

compared with the isoform-specific cellular assays (plasma

protein-free) is consistent with protein-binding determinations

for IPI-145, which indicate it is 86%–96% protein bound in hu-

man plasma at these concentrations. At higher concentrations,
Elsevier Ltd All rights reserved



Table 1. IPI-145-Mediated Inhibition of PI3K-d and PI3K-g Function in Cellular Assays

Cells Isoform Stimuli Conditions Readout IC50 (nM)

RAJI PI3K-d aIgM serum free pS473-Akt 0.36 ± 0.09 (n = 15)

RAW 264.7 PI3K-g C5a serum free pS473-Akt 19.6 ± 9.0 (n = 30)

786-O PI3K-b none 10% FCS pS473-Akt 26.2 ± 10.2 (n = 6)

SKOV-3 PI3K-a none 10% FCS pS473-Akt 1,410 ± 1,090 (n = 6)

Primary B cells PI3K-d aIgM/CD40 10% FCS proliferation 0.5 ± 0.16 (n = 3)

Primary T cells PI3K-d/g ConA 10% FCS proliferation 9.5 ± 3.6 (n = 3)

Basophils PI3K-d aFCεR1 whole blood degranulation 96.1 ± 75.5 (n = 7)

Basophils PI3K-g fMLP whole blood degranulation 1,028 ± 803 (n = 16)

Platelets PI3K-b thrombin peptide whole blood GPIIb/IIIa activation 4,700 ± 1,800 (n = 10)

ConA, concanavalin A; FCS, fetal calf serum; fMLP, formyl-methionyl-leucyl-phenylalanine.

See also Figure S2 and Tables S1–S3.
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IPI-145 shows activity against PI3K-b biochemically and in cell-

based assays. Therefore, we determined the effect of IPI-145 on

PI3K-b function in platelets by using a thrombin peptide stimulus

and measuring the inhibition of activated GPIIb/IIIa (Bowers

et al., 2007; Jackson et al., 2005). The average IC50 value for

IPI-145 in this PI3K-b-specific assay was 4,700 nM, indicating

an �4-fold window between PI3K-g and PI3K-b inhibition in

whole blood (Table 1).

IPI-145 Demonstrates Activity in a PI3K-g-Dependent
In Vivo Model
To characterize the ability of IPI-145 to specifically inhibit PI3K-g

in an in vivo setting, rats with previously established air pouches

were dosed orally with vehicle, increasing doses of IPI-145, or

the PI3K-d-selective compound IPI-3063 (Figures 2A, 2B, and

S3A; Table S4). One hour after compound dosing, blood was

harvested for pharmacokinetic (PK) analysis and the pouches

were injected with KC/GRO, a PI3K-g-dependent IL-8 family

chemokine (Hirsch et al., 2000; Sasaki et al., 2000). Five hours

after dosing (4 hr after chemokine injection), another PK sample

was taken and cells were harvested from the pouch. IPI-

145 significantly inhibited neutrophil migration in the 10 and

5 mg/kg dose groups (Figure 2A), but not at the lower doses of

2.5 and 1 mg/kg. A more detailed view of the relationship

between exposure and response for each animal in this model

is shown in Figure 2B. All animals in the 10 mg/kg dose group

showed significantly decreased neutrophil migration, whereas

animals from the 5 and 2.5 mg/kg dose groups were more

variable, with little inhibition at 1 mg/kg. The majority of animals

with drug concentrations at or above the cellular IC50 value

for PI3K-g (after correction for protein binding) demonstrated

reduced neutrophil influx (Figure 2B, black arrow). In contrast,

all animals demonstrated IPI-145 drug levels that were R10-

fold above the corresponding PI3K-d cell-based IC50 value (Fig-

ure 2B, red arrow), implying that this effect is not mediated by

PI3K-d. To further confirm a PI3K-g-dependent effect, IPI-

3063, which has potent activity in the PI3K-d cellular assay

(IC50 = 0.1 nM) and limited activity toward PI3K-g (cellular

IC50 = 418 nM) (Table S4), was evaluated in the air pouch

model. Animals were dosed with vehicle or 50 mg/kg IPI-3063

and PK samples were collected at 1 and 5 hr after dosing.

At these time points, the free drug concentration (�40 nM)

was >400-fold higher than the IC50 value in the PI3K-d cellular
Chemistry & Biology 20, 1364–137
assay, yet there was no significant inhibition of neutrophil

migration compared with control (Figure S3B). This lack of inhi-

bition was consistent with drug concentrations being well below

the corresponding IC50 value of IPI-3063 in the PI3K-g cellular

assay (418 nM; Table S4). Together, these studies support the

hypothesis that the KC/GRO air pouch model is primarily

PI3K-g dependent, and that inhibition of neutrophil migration

by IPI-145 requires exposures consistently at or above those

predicted by the corresponding PI3K-g-dependent cellular

assay IC50 value.

IPI-145 Is Active in a Therapeutic Rat CIA Model
We explored the therapeutic value of combined PI3K-d and

PI3K-g blockade in inflammatory and autoimmune disease

model systems. Previous studies suggested that both PI3K-d

and PI3K-g play a role in joint inflammation associated with

rheumatoid arthritis (RA) (Bartok et al., 2012; Camps et al.,

2005; Randis et al., 2008); therefore, we investigated the activity

of IPI-145 in an established disease version of CIA (Bendele,

2001). Reductions in ankle swelling in animals treated with IPI-

145 ranged from 25% to 89% relative to vehicle controls and

were statistically significant compared with vehicle, with the

exception of the lowest dose (0.1 mg/kg; Figure 3A). In the

same study, treatment with the TNF inhibitor etanercept

(10 mg/kg) as a positive control reduced ankle diameter area

under the curve (AUC) by 70% relative to vehicle (Figure 3A).

To construct a relationship between plasma exposure of IPI-

145 and the effect on ankle diameter, PK analysis was performed

on plasma samples collected on the last day of the 7-day

dosing period. Figure 3B depicts the plasma IPI-145 AUC over

a 24 hr period associated with increasing doses of IPI-145

(indicated as mg/kg below the AUC markers) relative to the

corresponding percent reduction in ankle diameter AUC. As

can be seen, there was a moderate plateau for the reduction

in ankle swelling, leading up to an AUC of �2,000 nM*hr

(5 mg/kg), with a further increase in efficacy at the highest expo-

sure (AUC �20,000 nM*hr at the 10 mg/kg dose). These doses

correspond to the same two doses at which IPI-145 was most

effective in the PI3K-g-dependent air pouch model (Figures 2A

and 2B). This dose-response correlation is consistent with the

hypothesis that efficacy at lower doses in the CIA model is

dependent on PI3K-d inhibition, but for maximal efficacy, inhibi-

tion of PI3K-g may also be required.
4, November 21, 2013 ª2013 Elsevier Ltd All rights reserved 1367
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Figure 2. Effect of IPI-145 on Neutrophil

Migration in a Rat Air Pouch In Vivo Model

System

(A) Dose-responsive inhibition of neutrophil migra-

tion to 2.4 mg KC/GRO by IPI-145. Doses of 5 and

10 mg/kg IPI-145 are significantly different from

vehicle (asterisks indicate p < 0.05, assessed using

the Mann-Whitney nonparametric t test). Data are

represented as themean, and error bars are ±SEM.

(B) Exposure-response relationship for individual

animals dosed with IPI-145 in the PI3K-g-depen-

dent air pouch model. Each marker represents the

average plasma concentration (nanomolar free

based on the value of 89% protein bound for IPI-

145 in rat plasma at 10 mM IPI-145) of IPI-145

taken at 1 and 5 hr after dosing versus the corre-

sponding number of neutrophils harvested from

the pouch 4 hr after KC/GRO injection. Arrows

below the x axis correspond to the PI3K-d (red)

and PI3K-g (black) cellular IC50.

See also Figure S3 and Table S4.

Chemistry & Biology

Inhibition of PI3K-d and PI3K-g by IPI-145
An effect on histopathologic parameters was observed in all

dose groups (Figures 3C and 3D). Significant reductions in

bone/cartilage erosion and resorption and pannus formation

were observed at doses > 0.1 mg/kg, whereas a reduction in

cellular infiltration required higher exposures (>0.5 mg/kg). A

notable further significant decrease in immune cell influx was

seen at 10 mg/kg compared with 5 mg/kg (Figure 3C). This

suggests an effect of PI3K-g inhibition on cell migration at higher

IPI-145 doses, similar to the observation in the air pouch model

(Figures 2A and 2B).

In a parallel study to evaluate the effect of IPI-145 treatment on

cytokines in rats with CIA, the levels of IL-1 and KC/GRO were

measured in paw lysates from disease control and IPI-145-

treated animals (5 mg/kg) on day 13. IPI-145 treatment reduced

these cytokines significantly, suggesting that control of inflam-

matory mediators could contribute to the efficacy of IPI-145 in

this model (Figure 3E).

IPI-145 Suppresses Cellular Inflammation in a RatModel
of OVA-Induced Asthma
OVA-induced asthma in rodents resembles allergic asthma and

is characterized by eosinophilic lung inflammation, increased IgE

production, airway hyperresponsiveness (AHR), mucus hyperse-

cretion, and airway remodeling (Leong and Huston, 2001). Since

PI3K-d and PI3K-g are implicated in different aspects of airway

inflammation (Lee et al., 2006; Nashed et al., 2007; Takeda

et al., 2009), the effect of IPI-145 in the OVA-induced asthma

model was examined. IPI-145 significantly reduced eosinophils

in the bronchoalveolar lavage (BAL) fluid of OVA-sensitized

and -challenged animals after the 1 and 10 mg/kg doses (Fig-

ure 4A). At 10 mg/kg IPI-145, the inhibition of eosinophil infiltra-

tion was equivalent to that obtained with the positive control,

10 mg/kg dexamethasone (Figure 4A). Levels of tumor necrosis

factor a (TNF-a), KC/GRO, interleukin-13 (IL-13), and IL-5 levels

in the BAL were significantly suppressed following treatment

with 10 mg/kg IPI-145, suggesting that reductions in these in-

flammatory mediators could be related to the efficacy observed

in this model (Figure 4B). Histological analysis of lung tissue re-

vealed that treatment with IPI-145 10 mg/kg markedly reduced

the number and density of inflammatory cell infiltrates compared
1368 Chemistry & Biology 20, 1364–1374, November 21, 2013 ª2013
with vehicle, whereas no inflammatory lesions were observed in

the dexamethasone control group (Figures 4C and 4D).

IPI-145 Is Highly Effective in the NZBWF1/J Murine
Lupus Nephritis Model
NZBWF1/J mice develop a syndrome that is similar to human

lupus, with the production of antinuclear and anti-double-

stranded DNA (dsDNA) autoantibodies, glomerulonephritis, pro-

teinuria, splenomegaly, lymphadenopathy, and eventually death

due to kidney failure (Banham-Hall et al., 2012; Perry et al., 2011).

Since both PI3K-d and PI3K-g have been shown to be important

for the development and maintenance of lupus in mouse models

(Barber et al., 2006; Maxwell et al., 2012), the efficacy of IPI-145

was evaluated in the NZBWF1/J model. By 23 weeks of age,

NZBWF1/J mice began to develop increasing anti-dsDNA anti-

body titers (Figure 5A) and evidence of proteinuria (data not

shown), indicative of kidney damage associated with lupus.

Beginning at this time, animals were orally dosed daily for

20weekswith vehicle, IPI-145 (1, 5, or 10mg/kg), or a dexameth-

asone control (2 mg/kg). Proteinuria was significantly reduced at

study termination for all IPI-145-treated mice compared with

vehicle animals, as well as in the dexamethasone control group

(Figure 5B). The effect on proteinuria was accompanied by

marked reductions in anti-dsDNA autoantibody production at 5

or 10 mg/kg (Figure 5A), but not at the 1 mg/kg dose level, indi-

cating that diminished kidney damage is not solely related to

reductions in anti-dsDNA titers. Histopathologic evaluation

confirmed the clinical observations, with the summation of kid-

ney histopathology parameters (summed scores of histopatho-

logic assessment of glomerulonephritis, interstitial nephritis,

vessel inflammation, and protein casts) being significantly

reduced for mice treated with IPI-145 in a dose-dependent

manner (Figure 5C).

DISCUSSION

PI3K-d and PI3K-g isoforms are preferentially expressed in leu-

kocytes, where they have distinct and nonoverlapping roles in

immune cell function (Bone andWelham, 2007; Burger andHoel-

lenriegel, 2011; Cushing et al., 2012; Hoellenriegel et al., 2011;
Elsevier Ltd All rights reserved



Figure 3. Activity of IPI-145 in a Rat CIA Model

(A) Dose-responsive decrease in mean ankle diameter by IPI-145 in the rat CIA model. All groups of IPI-145-treated animals are significantly different from

diseased (vehicle) control from day 11 to day 17, with the exception of 0.1 mg/kg IPI-145.

(B) IPI-145 levels (AUC) versus efficacy plot for the CIA study shown in (A). Corresponding IPI-145 dose levels are noted below each data point.

(C) Histopathology scoring (0 = normal, 5 = most severe) for ankles, showing dose-responsive control of disease. Histopathology includes separate scores for

cellular influx, pannus, cartilage damage, and bone resorption. The asterisk (*) denotes significance compared with vehicle control. The # symbol denotes

significant differences in cellular influx scores between 5 mg/kg and 10 mg/kg IPI-145-treated groups.

(D) Representative ankle photomicrographs from animals with the approximate mean group score from normal, vehicle (disease) control, 10 mg/kg IPI-145, and

10 mg/kg etanercept positive control animals. Cartilage and pannus are indicated by large and small arrows, respectively, and bone resorption is indicated by an

arrowhead. S, synovium.

(E) Effect of IPI-145 treatment on proinflammatory cytokines. Ankle lysates (five animals per group) from disease control or 5 mg/kg IPI-145-treated rats were

analyzed at day 13 for IL-1 and KC/GRO by Meso Scale Discovery (*p < 0.05 versus disease control).

Data are represented as the mean, and error bars are ±SEM. This experiment is representative of seven replicate experiments.
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Lannutti et al., 2011; Puri and Gold, 2012; Subramaniam et al.,

2012; Winer et al., 2012). Given these key roles, inhibitors of

these isoforms have been postulated to have therapeutic poten-

tial in immune-related inflammatory or hematologic diseases

(Williams et al., 2010). Here, we have described IPI-145, a mole-

cule that potently inhibits PI3K-d with a biochemical IC50 of

2.5 nM, a cellular IC50 in the subnanomolar range, and a

whole-blood IC50 of �100 nM. IPI-145 also has activity against

PI3K-g, with IC50 values at concentrations that are �10-fold

higher than the IC50 values for PI3K-d. This property makes it

possible to increasingly suppress PI3K-g activity with higher

concentrations of IPI-145 while continuously maintaining PI3K-

d inhibition. Inhibition of PI3K-b equivalent to that of PI3K-g

would require even greater concentrations of IPI-145. Early clin-

ical investigations with IPI-145 in patients with certain hemato-

logic malignancies demonstrated activity at doses in a range

that showed significant inhibition (>IC50) of PI3K-d and PI3K-g,

but below the IC50 for PI3K-b (Patel et al., 2013; Flinn et al., 2012).
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Human leukocyte in vitro cellular assays and rodent in vivo

studies have demonstrated that IPI-145 exerts effects on the

adaptive and innate immune response by inhibiting B and

T cell proliferation, blocking neutrophil migration, and reducing

basophil activation. The ability of IPI-145 to inhibit both PI3K-

d and PI3K-g simultaneously in a single cell is of particular

importance. Given the interdependence of these pathways

in immune cell function, the combined effect of this dual

inhibition can lead to an enhanced anti-inflammatory effect

compared with inhibition of one isoform alone (Williams et al.,

2010). IPI-145 demonstrated therapeutic activity in three

separate rodent inflammatory disease models: (1) a rat

CIA model in which IPI-145 inhibited ankle swelling, inflam-

mation, joint damage, and bone destruction; (2) a rat OVA-

induced asthma model in which dose-responsive reduction

of pulmonary inflammation and eosinophilia were observed;

and (3) a spontaneous murine systemic lupus erythematosus

model in which IPI-145 was associated with reductions in
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Figure 4. Anti-Inflammatory Effects of IPI-145 in the Rat OVA-Induced Asthma Model

(A) Effect of IPI-145 on eosinophil infiltration measured in BAL fluid in the rat OVA-induced asthma model.

(B) Effect of IPI-145 treatment on inflammatory cytokine production measured in BAL fluid in rats with OVA-induced asthma.

(C) Quantification of lung inflammatory lesions. Lungs from three animals from each group (vehicle, 10 mg/kg IPI-145, and 10 mg/kg dexamethasone) that were

not lavaged were fixed and stained for histological analysis.

(D) Low-power view of lung tissue.

(E) High-power view of lung tissue, focusing on inflammatory infiltrate.

Data are represented as the mean, and error bars are ±SEM. This experiment is representative of two replicate experiments.
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anti-dsDNA antibody titers and resolution of proteinuria and

glomerulonephritis.

PI3K-d and PI3K-g are proximal in the signal transduction cas-

cades utilized by the adaptive immune system, including B cell

and T cell receptor, Fc receptor, growth factor receptor, and

chemokine and cytokine receptor pathways. For innate immune

cells, these PI3K isoforms are involved in toll-like receptor

signaling and mediate chemokine and cytokine signaling and

production (Durand et al., 2009; Guiducci et al., 2008). IPI-145

will thus disrupt both adaptive and innate immune arms, leading

to efficacy in inflammatory disease models.

This is particularly true in RA models, where the importance

of both PI3K-d and PI3K-g in disease pathogenesis has been

clearly established (Camps et al., 2005; Randis et al., 2008). In a

serum-induced arthritis model system, PI3K-d genetic deletion

or pharmacological inhibition diminished joint erosion to a level

comparable to that observed with the PI3K-g-deficient counter-

part. However, the induction and progression of joint destruction

weremost potently reduced in the absence of both PI3K isoforms

(Randis et al., 2008). A role for PI3K-d in human inflammatory RA

synoviocyte migration and other functions was recently reported,
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suggesting another disease mechanism affected by the PI3K-

dpathway (Bartoket al., 2012). Additionally, investigatorsemploy-

ing a collagen antibody-induced arthritis model demonstrated

that genetic deletion of PI3K-g protected mice against disease

development and reduced neutrophil infiltrates in joints when

compared with PI3K-g wild-type animals (Camps et al., 2005).

In the CIA model, plasma exposures of IPI-145 above

100 nM*hr (achieved at a dose R 0.5 mg/kg) led to a significant

reduction in the degree of joint swelling in established CIA,

consistent with inhibition of PI3K-d playing a key role in this

effect. In addition, pannus, cartilage damage, and bone resorp-

tion were all significantly decreased with IPI-145, even at the

lowest dose level (0.1 mg/kg). Importantly, enhanced reductions

in joint swelling, beyond that seen with etanercept at 10 mg/kg,

were observed when IPI-145 plasma exposures were above

2,000 nM*hr, which is consistent with the additive effect of IPI-

145-mediated inhibition of PI3K-g. The ability of IPI-145 to inhibit

neutrophil migration through PI3K-g blockade may play an addi-

tional key role in the efficacy of IPI-145 in this model system, as

was demonstrated directly in the rat air pouch model. In this

model, KC/GRO-induced neutrophil influx was blocked by
Elsevier Ltd All rights reserved



Figure 5. Therapeutic Effects of IPI-145 in the NZBWF1/J Murine Model of Systemic Lupus Erythematosus Nephritis

Effects in mice treated with IPI-145 (1, 5, and 10 mg/kg), dexamethasone (2 mg/kg), or vehicle.

(A) Anti-dsDNA titers.

(B) Proteinuria at study termination (43 weeks).

(C) Histopathological assessment of kidneys (glomerulonephritis, interstitial nephritis, vessels, and protein casts) at study termination (*p < 0.05, assessed using

ANOVA compared with vehicle control).

Data are represented as the mean, and error bars are ±SEM. This study has been completed once.
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IPI-145 at doses of 5 or 10 mg/kg, which correspond to free drug

concentrations above the cellular IC50 value for PI3K-g. These

findings are pharmacologic confirmation that neutrophil migra-

tion in response to KC/GRO is PI3K-g dependent. Genetic

studies also corroborate the concept that promigratory signaling

through CXCR2 (the KC/GRO receptor) is PI3K-g dependent

(Hirsch et al., 2000; Sasaki et al., 2000). Further support for the

notion that neutrophil trafficking is dependent on PI3K-g, but

not PI3K-d, comes from the finding that the PI3K-d-selective

inhibitor IPI-3063 does not block neutrophil migration at concen-

trations where complete inhibition of only PI3K-d is expected.

Therefore, the enhanced inhibitory effect on cellular infiltration

into ankle joints with high concentrations of IPI-145 (e.g.,

10 mg/kg versus lower doses) in the CIA model is consistent

with greater PI3K-g inhibition of cell migration. The inhibition of

neutrophil migration, lymphocyte proliferation, and mast cell

activation (Table 1; Figure S2) likely contribute to the significant

therapeutic effect of combined PI3K-g and PI3K-d inhibition in

this model of RA.
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Small-molecule inhibitors of inflammatory pathways are

actively being investigated for RA therapy. Inhibitors of BTK

and SYK, which signal in conjunction with PI3K-d, as well as

JAK kinases, have been evaluated preclinically in RA models.

The most advanced of these inhibitors is tofacitinib, a recently

approved pan-JAK inhibitor (Chakravarty et al., 2013). Based

on preclinical data comparisons, the in-life efficacy and protec-

tion from joint damage seen histologically with IPI-145 in the

rat CIA model is equivalent to that demonstrated with tofacitinib

in the murine CIA model (Milici et al., 2008).

In the rat OVA-induced asthmamodel, IPI-145, at levels where

combined PI3K-d and PI3K-g inhibition is achieved, demon-

strated potent, dose-dependent inhibition of the alveolar influx

of eosinophils and inhibited granulocyte influx to the same extent

as dexamethasone (Figure 4A). In addition, IPI-145 suppressed

key inflammatory mediators such as IL-13, IL-5, KC/GRO, and

TNF-a as potently as dexamethasone (Figure 4B). The therapeu-

tic potential for PI3K inhibition in respiratory disease has been

demonstrated by the resistance of PI3K-d� andPI3K-g-deficient
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mice to disease in models of OVA-induced asthma (Lee et al.,

2006; Nashed et al., 2007; Takeda et al., 2009). In addition, the

effects of PI3K-d inhibitors on the cigarette-smoke-induced

model of chronic obstructive pulmonary disease and smooth

muscle AHR suggest a broader role for PI3K-d inhibitors in respi-

ratory diseases (Ge et al., 2012).

Finally, in the murine NZB/W F1 model of lupus nephritis,

IPI-145 demonstrated dose-responsive kidney protection

compared with control at all doses administered (1, 5, and

10 mg/kg). In this model system, efficacy has been demon-

strated with therapeutics that affect the adaptive immune path-

ways responsible for plasma cell differentiation and survival, as

well as those that block innate immune pathways leading to

interferon response (Neubert et al., 2008). With IPI-145, dose-

responsive reduction of anti-dsDNA autoantibodies occurred

with 5 and 10 mg/kg. Interestingly, a lower dose of IPI-145

(1 mg/kg) was able to protect the kidney (as demonstrated by

reduced proteinuria) even though it did not decrease autoimmu-

nity as measured by specific autoantibody levels. This suggests

that protection in this model may be afforded by more than one

PI3K-dependent pathway. PI3K-d plays a role in toll-like receptor

signaling leading to type 1 interferon production, and inhibition of

this pathway may contribute to the efficacy seen with IPI-145 in

this model (Guiducci et al., 2008). PI3K-d reduction (gene dele-

tion heterozygotes) or deletion (homozygotes) is protective in

an autoimmune lupus model, suggesting that even partial inhibi-

tion of this enzyme may be therapeutic. PI3K-g inhibition is also

protective in lupus models, and inhibition of this isoform may

contribute to the efficacy observed with higher doses of IPI-

145 (Maxwell et al., 2012).

Since PI3K signaling controls B and T cell proliferation and sur-

vival, the lymphocyte-specific isoforms PI3K-d and PI3K-g have

also been exploited by hematopoietic cancers, including chronic

lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and

non-Hodgkin’s lymphoma (NHL) (Billottet et al., 2006). In T cell

acute lymphoblastic leukemia (T-ALL), activation of the PI3K

pathway is a common event, and inhibition or deletion of both

PI3K-d and PI3K-g, but not single isoforms, was shown to be

therapeutic in a murine disease model (Subramaniam et al.,

2012). A PI3K-d inhibitor, GS-1101, is currently under clinical

development for use in hematologic malignancies as a single

agent and in combination with other cytotoxic therapies (Lannutti

et al., 2011). In addition, early phase 1 clinical data suggest that

IPI-145 is well tolerated and clinically active in patients with

advanced hematologic malignancies (Flinn et al., 2012). Prelim-

inary results indicate that clinical activity was observed in a

wide variety of B and T cell NHLs, CLL, and Hodgkin lymphoma,

supporting the hypothesis that both B cell and T cell malig-

nancies are sensitive to PI3K-d and PI3K-g inhibition.

In summary, IPI-145 is a potent oral inhibitor of PI3K-d and

PI3K-g, the isoforms that are predominantly expressed in im-

mune cells. The broad spectrum of IPI-145’s effects against cells

of the adaptive and innate immune system translates into signif-

icant efficacy in a variety of rodent inflammatory and autoim-

mune disease models. Activity against PI3K-g, with exposures

that are achievable in vivo, distinguishes IPI-145 from previously

described PI3K-d-selective inhibitors. Based on these studies,

clinical exploration of IPI-145 in inflammatory and autoimmune

disease and hematologic malignancies is merited.
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SIGNIFICANCE

IPI-145 is a potent oral class I PI3K inhibitor that targets

PI3K-d and PI3K-g, has a KD for these isoforms in the pico-

molar range, and employs an optimized single-step binding

mechanism. PI3K-d and PI3K-g isoforms are preferentially

expressed in leukocytes, where they have distinct and non-

overlapping roles in immune cell development and function.

As key enzymes in leukocyte signaling, PI3K-d and PI3K-g

facilitate normal lymphoid (B and T cells) and myeloid cell

functions, including differentiation, activation, and migra-

tion. Preclinical models of autoimmune and inflammatory

diseases demonstrate the critical role of PI3K-d and/or

PI3K-g activity in their pathophysiology. IPI-145 has pro-

found effects on adaptive and innate immune cell function

and is therapeutic in animal models of inflammatory and

autoimmune disease. In immune-mediated diseases, as

well as cancers of the immune system, IPI-145 has a unique

therapeutic potential that is currently being explored in

clinical trials. IPI-145 is being pursued in clinical trials for

various hematologic malignancies (ClinicalTrials.gov identi-

fiers: NCT01476657, NCT01882803, and NCT01871675) and

inflammatory diseases, such as asthma (NCT01653756)

and RA (NCT01851707).

EXPERIMENTAL PROCEDURES

Reagents

IPI-145 was prepared in our laboratories using methods described in U.S. Pat-

ent 8,193,182. IPI-3063 was prepared in our laboratories using methods

described in patent application WO2013032591. Small-molecule inhibitors

were stored as a 10 mM stock solution in DMSO at room temperature. All

human PI3K isoform proteins were purchased from Millipore. Radiolabeled

[a-32P] ATP was purchased from Perkin Elmer with a specific activity of 800

Ci/mmol. Phosphatidylinositol 4,5 bis phosphate (diC8-PIP2) was purchased

from Avanti Polar Lipids. For dissociation studies, [3H]IPI-145 was custom

synthesized at Ambios Labs. The dissociation studies are described in Supple-

mental Experimental Procedures.

Primary Human B and T Cell Proliferation Assays

Human peripheral blood CD19+ B cells and CD3+ T cells were purchased from

Allcells and proliferation assayswere conducted as described in Supplemental

Experimental Procedures.

Basophil Activation Assay

Evaluation of basophil function was performed using the FlowCast basophil

activation test (Bulmann Laboratories) according to the manufacturer’s

instructions, as described in Supplemental Experimental Procedures.

Platelet Activation Assay

The platelet activation assay was conducted as described in Supplemental

Experimental Procedures.

Air Pouch Model of Cell Migration

Female Wistar rats were obtained from Charles River Laboratories. All in vivo

research was conducted in accordance with the Guide for the Care and Use of

Laboratory Animals published by the National Research Council of the

National Academies and under the approval of the Institutional Animal Care

and Use Committee. On day 0, the rats were anesthetized, their backs were

shaved, and pouches were generated by a subcutaneous injection of 20 ml

sterile air filtered through a 0.2 mm filter. On day 3, the pouches were reinflated

with 10 ml of sterile air. On day 6, the rats were dosed orally with either test

compound or vehicle. One hour after dosing, rats were anesthetized and

blood was collected in EDTA tubes. Following blood collection, 2.4 mg of
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recombinant rat KC/GRO (Peprotech) in 2 ml of endotoxin-free water or water

alone (Teknova) was injected into the pouch. Four hours after KC/GRO stimu-

lation, the rats were euthanized and bled via cardiac puncture. Pouches were

washed with 5 ml of cold PBS (Teknova) and 4 ml of exudate was collected

from each pouch. Differential cell counts were measured using a CELL-DYN

3700 instrument (Abbott). Datawere analyzed usingGraphpadPrism software.

Induction of Rat Arthritis by Type II Collagen

Female Lewis rats weighing 125–150 g were used for the induction of arthritis

(Bendele, 2001). CIA studies are described in detail in Supplemental Experi-

mental Procedures.

Evaluation of IPI-145 in the Rat OVA-Induced Asthma Model

Rat OVA-induced asthma studies were performed at Charles River Labs as

described in Supplemental Experimental Procedures.

NZBWF1/J Model of Systemic Lupus Erythematosus Nephritis

Studies of the NZBWF1/J model of systemic lupus erythematosus nephritis

were performed at Bolder BioPATH as described in Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.chembiol.2013.09.017.
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