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1. Introduction

We consider a distance-regular graph I" with vertex set X and diameter D > 3 (see Section 3 for formal definitions).
We assume that I" is Q -polynomial with respect to the ordering Eg, E1, . . ., Ep of the primitive idempotents. Let V denote
the vector space over C consisting of column vectors whose coordinates are indexed by X and whose entries are in C. We
call V the standard module. We endow V with the Hermitian form {, ) that satisfies (u, v) = u'v for u, v € V. We call this
form the standard Hermitian form on V. Recently, Ito and Terwilliger introduced four direct sum decompositions of V [12];
we call these the (u, v)-split decompositions of V, where i, v € {], 1}. These are defined as follows. Fix a vertex x € X. For
0 <i <D, letE = E](x) denote the diagonal matrix in Matyx (C) that represents the projection onto the ith subconstituent
of I with respect to x. For —1 < i, j < D, we define

Vi = BV + -+ V)N (BV + - + EV),
Vi = EV A B V)N BV 4+ EY),
Vil = (BgV + -+ EV)N(EpV + - + EpyV),
VIl = BV 4+ B V) N BV + -+ Ep V).

Forjt, v € {},1}and 0 < i,j < D,we have V", ; € V/;" and V{}" | C V/"; therefore V" ; + V{}" | C V/}". Let \7{;” denote

ij i,j—1 ij * i—1,j ij—1
the orthogonal complement of V,“ ”1 it V“ ! _;1in V,’j with respect to the standard Hermitian form. By [12, Lemma 10.3],
D D B
V= Z Z Vi’;” (direct sum).
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We call the above sum the (i, v)-split decomposition of V with respect to x. We show that with respect to the standard
Hermitian form the (|, | )-split decomposition (resp. ({,, 1)-split decomposition) and the (1, 1)-split decomposition
(resp. (1, | )-split decomposition) are dual in the following sense.

Theorem 1.1. With the above notation, the following (i), (ii) hold for 0 <1i,j,r,s < D.

(i) \7,%.¢ and V,TJ are orthogonal unlessi+r = Dandj+ s = D.

(ii) \7,.f and Wj are orthogonal unlessi+r =Dandj+s = D.

To prove Theorem 1.1 we use a result about tridiagonal pairs (Theorem 2.9) which may be of independent interest. We also
use some results about the subconstituent algebra of I'.

2. Tridiagonal pairs

In this section we consider a tridiagonal pair for which the underlying vector space supports a certain Hermitian form.
Throughout this section V denotes a vector space over C with finite positive dimension. We start with the definition of a
tridiagonal pair.

Definition 2.1 ([10, Definition 1.1]). Let V denote a vector space over C with finite positive dimension. By a tridiagonal pair
(or TD pair) on V we mean an ordered pair A, A* of linear transformations on V that satisfy the following four conditions.

(i) Aand A* are both diagonalizable on V.
(ii) There exists an ordering Vg, V1, ..., V4 of the eigenspaces of A such that

AV CVii+Vi+ Vi (0<i<d),

whereV_; =0, V411 = 0.
(iii) There exists an ordering V', V5, ..., V{ of the eigenspaces of A* such that

AV CVE + Vi + VL, 0=<i<9),
where V¥, =0,V{, ; =0.
(iv) There is no subspace W of V such that both AW C W and A*W C W, otherthan W =0and W = V.
Note 2.2. According to a common notational convention, A* denotes the conjugate-transpose of A. We are not using this
convention. In a tridiagonal pair A, A*, the linear transformations A and A* are arbitrary subject to (i)-(iv) above.

With reference to Definition 2.1, we have d = § [10, Lemma 4.5]; we call this common value the diameter of A, A*. See
[10,11] for more information on tridiagonal pairs.
With reference to Definition 2.1, by the construction we have the direct sum decompositions V = Z?:o V; and

V= Z?:O V. We now recall four more direct sum decompositions of V called the split decompositions.

Lemma 2.3 ([11, Lemma 4.2]). With reference to Definition 2.1, for ., v € {|, 1}, we have

V= U™ (direct sum),

d
i
i=0

where
U =g+ + V)N Vot + Vi,
UM = (Vi VDN Vot Vasa),
U= g+ V)N Vit V),
UMM = VD N Vi V).

Definition 2.4. By a Hermitian form on V we mean a function (, ) : V x V — C such that, forallu, v, winV and alla € C,

(i) w+v,w) = (u, w) + (v, w),
(i) (au, v) = a(u, v),
(iii) (v, u) = (u, v).

Definition 2.5. Let (, ) denote a Hermitian form on V. By Definition 2.4(iii), we have (v, v) € R forv € V. We say that (, )
is positive definite whenever (v, v) > 0 for all nonzerov € V.

Lemma 2.6. Let (, ) denote a positive definite Hermitian form on V. Suppose that we are given a linear transformationA : V —
V satisfying

(Au,v) = (u,Av) u,veV. (M

Then all the eigenvalues of A are in R.
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Proof. Let A denote an eigenvalue of A. We show that A € R. Since C is algebraically closed there exists a nonzerov € V
such that Av = Av. By (1), (Av, v) = (v, Av). Evaluating this using Definition 2.4(ii),(iii), we have (A — A)(v, v) = 0. But
(v, v) # 0, since (, ) is positive definite so A = A. Therefore A ¢ R. O

Assumption 2.7. Let A, A* denote a tridiagonal pair on V as in Definition 2.1. For 0 < i < d, let 6; (resp. 6;") denote the

eigenvalue of A (resp. A*) associated with V; (resp. V;*). We remark that 6, 61, . .., 63 are mutually distinctand 6§, 65, .. ., 6]
are mutually distinct. We assume that there exists a positive definite Hermitian form (, ) on V satisfying
(Au,v) = (u,Av) u,vev, (2)
(A*u,v) = (u,A*v) u,vevV. (3)

Lemma 2.8. With reference to Assumption 2.7, the following (i), (ii) hold.

(i) The eigenspaces Vy, V1, ..., V4 are mutually orthogonal with respect to (, ).

(ii) The eigenspaces Vi, V5, ..., V; are mutually orthogonal with respect to (, ).

Proof. (i) For distincti, j (0 <i,j < d),and foru € V;, v € V;, we show that (u, v) = 0. By (2), (Au, v) = (u, Av). Evaluating
this using Definition 2.4(ii), (iii), we find (6; — gj)(u, v) =0. Butgj = 6; by Lemma 2.6, and 6; # 6;, so (u, v) = 0.

(ii) Similar to the proof of (i). O

Theorem 2.9. With reference to Lemma 2.3 and Assumption 2.7, the following (i), (ii) hold for 0 <i,j < d such that i+ j # d.

(i) The subspaces UiN and UjM are orthogonal with respect to (, ).
(ii) The subspaces U,-H and UjN are orthogonal with respect to (, ).

Proof. (i) We consider two cases: i +j < dand i + j > d. First suppose thati+j < d. By Lemma 2.3, UiN SVy+- 4V
and UjTT < V4 ;+ -+ Vy. Observe that Vg + --- + V" is orthogonal to Vg ; + -+ 4 Vg by Lemma 2.8(ii), and since
i < d — j. Therefore UiN is orthogonal to UjTT. Next, suppose that i 4+ j > d. By Lemma 2.3, U,“ CVo+---+ Vs and
UjTT C Vj+ .-+ + V4. Observe that Vo + - - - + V,_; is orthogonal to V; + - - - + V; by Lemma 2.8(i), and since d — i < j.
Therefore Uiu is orthogonal to UJM.

(ii) Similar to the proof of (i). O

3. Subconstituent algebra of distance-regular graphs

In this section we review some definitions and basic concepts concerning subconstituent algebra of distance-regular
graphs.

Let X denote a nonempty finite set. Let Maty (C) denote the C-algebra consisting of all matrices whose rows and columns
are indexed by X and whose entries are in C. Let V = CX denote the vector space over C consisting of column vectors whose
coordinates are indexed by X and whose entries are in C. We observe that Maty (C) acts on V by left multiplication. We call
V the standard module. We endow V with the Hermitian form (, ) that satisfies (u, v) = u'v for u, v € V, where t denotes
transpose and ~ denotes complex conjugation. Observe that (, ) is positive definite. We call this form the standard Hermitian
form on V. Observe that, for B € Maty (C),

(Bu,v) = (u,Bv) u,veV. (4)

Let I' = (X, R) denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge
set R. Let 0 denote the path-length distance function for I, and set D := max{d(x,y) | x,y € X}. We call D the diameter
of I'. We say that I is distance-regular whenever, for all integers h, i,j (0 < h,i,j < D), and for all vertices x, y € X with
d(x,y) = h, the number

pi=1zeX|d(x.2) =10y =j}

is independent of x and y. The pg are called the intersection numbers of I".
For the rest of this paper we assume that I” is distance-regular with diameter D > 3.
We recall the Bose-Mesner algebra of I". For 0 < i < D, let A; denote the matrix in Maty (C) with xy entry

L)1, ifaxy) =i
We call A; the ith distance matrix of I". We abbreviate A := A; and call this the adjacency matrix of I". We observe that (i)
Ao = I; (i) YA = J; (i) A = A (0 < i < D); (iv)Al = A; (0 < i < D);(vV)AA = Yp_oplAy (0 < i.j < D),
where I (resp.J) denotes the identity matrix (resp. all 1’s matrix) in Maty (C). Using these facts we find A, Ay, ..., Ap form
a basis for a commutative subalgebra M of Maty (C). We call M the Bose-Mesner algebra of I'. It turns out that A generates M
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[1, p. 190]. By (4), and since A is real and symmetric,
(Au, v) = (u,Av) u,veV. (5)

By [3, p. 45], M has a second basis Eg, Ei, . .., Ep such that (i) Eg = |X|~Y; (ii) Z?:o E = I; (iii)E; = E (0 < i < D); (iv)
Ef = E; (0 <i < D); (V) EE = §;E (0 <1i,j < D). Wecall Eg, Eq, .. ., Ep the primitive idempotents of I".

We recall the eigenvalues of I'". Since Eg, Eq, . . ., Ep form a basis for M, there exist complex scalars 6y, 61, . . ., 6p such that
A= Zf’: o OiEi. Observe that AE; = E;A = 6;E; for 0 < i < D. We call 6; the eigenvalue of I" associated with E; (0 < i < D).
By Lemma 2.6 and (5), the eigenvalues 6y, 61, ..., 6p are in R. Observe that 6y, 61, ..., 6p are mutually distinct, since A

generates M. Observe that
V =EWV +EV+---+EpV (orthogonal direct sum).
For 0 < i < D, the space E;V is the eigenspace of A associated with 6;.
We now recall the Krein parameters. Let o denote the entrywise product in Maty (C). Observe that A; o A; = §;A; for
0 <i,j < D,soM is closed under o. Thus there exist complex scalars qg. (0 < h,i,j < D) such that

D
EoE=IX|""> qiEy (0<ij<D).
h=0

By [2, p. 170], qg is real and nonnegative for 0 < h, i, j < D.The q?- are called the Krein parameters. The graph I" is said to be
Q-polynomial (with respect to the given ordering Eg, E1, . .., Ep ofz the primitive idempotents) whenever, for0 < h,i,j < D,
qg. = 0 (resp. qg # 0) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two [3, p. 59]. See [1,4,5,9,
13,14] for more information on the Q -polynomial property. From now on we assume that /" is Q-polynomial with respect
tOEo, El, ey ED.

We recall the dual Bose-Mesner algebra of I'. Fix a vertex x € X. We view x as a “base vertex”. For 0 < i < D, let
Ef = E;(x) denote the diagonal matrix in Maty (C) with yy entry

. 1, ifo(y) =i
(Ef)w={o, &a%;ﬁi ¥ €X). (6)

We call Ef* the ith dual idempotent of I" with respect to x [15, p. 378]. We observe that (i) Z?:O Ef =1; (i) Ef = E'(0 <
i < D); (iii) EY = Ef (0 < i < D); (iv) E;‘Ej* = §iEf (0 < i,j < D). By these facts Eg, ET, ..., E} form a basis for
a commutative subalgebra M* = M*(x) of Maty (C). We call M* the dual Bose-Mesner algebra of I with respect to x [15,
p.378].For0 < i < D, letAf = A} (x) denote the diagonal matrix in Maty (C) with yy entry (A}),, = |X|(E;)x, fory € X.Then
A AL, ..., A} form a basis for M* [15, p. 379]. Moreover, (i) A5 = I; (i) AF = AF (0 < i < D); (iii) A = AF (0 <i < D);
(iv) ATA;‘ = ZE:O quﬁ (0 <i,j < D) [15, p. 379]. We call A§, A, . .., A}, the dual distance matrices of I" with respect to
X. We abbreviate A* := A7 and call this the dual adjacency matrix of I" with respect to x. The matrix A* generates M* [15,
Lemma 3.11]. By (4), and since A* is real and symmetric,

(A*u,v) = (u,A*v) u,vev. (7)
We recall the dual eigenvalues of I'. Since Ej, ET, ..., E} form a basis for M*, and since A* is real, there exist real scalars
0r, 6%, ..., 6% such that A* = Y2 6*E*. Observe that A*E* = E*A* = 6E} for 0 < i < D. We call 6;* the dual eigenvalue
of I" associated with E/* (0 < i < D). Observe that 67, 67, ..., 6} are mutually distinct, since A* generates M*.

We recall the subconstituents of I'. For all y € X, let y denote the element of V with a 1 in the y coordinate and 0 in all
other coordinates. From (6), we find

E'V =span{y |y € X, 3(x,y) =i} (0<i<D). (8)
By (8), and since {Jy | y € X} is an orthonormal basis for V, we find

V=E;V+EV+---+E;V (orthogonal direct sum).
For 0 <i < D, the space E'V is the eigenspace of A* associated with 6. We call E'V the ith subconstituent of I" with respect
to x.

We recall the subconstituent algebra of I'. Let T = T(x) denote the subalgebra of Maty(C) generated by M and M*.

We call T the subconstituent algebra (or Terwilliger algebra) of I" with respect to x [15, Definition 3.3]. We observe that T is
generated by A, A*. We observe that T has finite dimension. Moreover, T is semi-simple since it is closed under the conjugate

transpose map [7, p. 157]. See [6,8,15-17] for more information on the subconstituent algebra.
For the rest of this paper we adopt the following notational convention.

Notation 3.1. We assume that I" = (X, R) is a distance-regular graph with diameter D > 3. We assume that I" is Q-
polynomial with respect to the ordering Ey, Eq, . .., Ep of the primitive idempotents. We fix x € X and write A* = A*(x),
Ef =Ef(x) (0 <i<D), T = T(x). We abbreviate V = CX. For notational convenience we define E_; = 0, Ep;; = 0 and
E*,=0,E,=0.

We recall some useful results on T-modules. With reference to Notation 3.1, by a T-module we mean a subspace W C V
such that BW C W forall B € T. Let W denote a T-module. Then W is said to be irreducible whenever W is nonzero
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and W contains no T-modules other than 0 and W. Let W denote a T-module and let W’ denote a T-module contained in
W. Then the orthogonal complement of W’ in W is a T-module [8, p. 802]. It follows that each T-module is an orthogonal
direct sum of irreducible T-modules. In particular, V is an orthogonal direct sum of irreducible T-modules. Let W denote
an irreducible T-module. By the endpoint of W we mean min{i|0 < i < D, EfW # 0}. By the diameter of W we mean
[{il0 <i <D, EfW # 0}| — 1. By the dual endpoint of W we mean min{i|0 < i < D, E;W # 0}. By the dual diameter of W
we mean [{i|0 <i < D, EW # 0}| — 1. The diameter of W is equal to the dual diameter of W [13, Corollary 3.3].

Remark 3.2. With reference to Notation 3.1, let W denote an irreducible T-module. Then A and A* act on W as a tridiagonal
pair in the sense of Definition 2.1. This follows from [15, Lemma 3.4, Lemma 3.9, Lemma 3.12], [18, Lemma 3.2], and since
A, A* generate T.

Lemma 3.3. With reference to Notation 3.1, let W denote an irreducible T-module with endpoint p, dual endpoint t, and
diameter d. Then, for u, v € {{, 1}, we have

d
W= Z wW;" (direct sum), (9)
=0

where for 0 < h < d,
Wi = (EXW 4 + By W) N (EW A+ -+ ErpgpW),
W = (Bl g W+ + E W) N (EW + -+ + Erg aW),
Wi = (ESW + -+ EX W) N (ErhW + - - + Er W),
WhTT = (Epyg W+ +E W) N (EcppW + - + ErgW).
Proof. Immediate from Lemma 2.3 and Remark 3.2. O

We remark that the sum (9) is not orthogonal in general. However, we do have the following result.

Lemma 3.4. With reference to Notation 3.1, let W denote an irreducible T-module with diameter d. Then the
following (i), (ii) hold for 0 < h, £ < d such that h+ ¢ # d.

(i) The subspaces W,f Y and WlTT are orthogonal with respect to the standard Hermitian form.
(ii) The subspaces WhL " and WEN are orthogonal with respect to the standard Hermitian form.

Proof. Combine Theorem 2.9, (5), (7), Remark 3.2, and Lemma 3.3. O
4. The split decompositions of the standard module

In this section we recall the four split decompositions for the standard module and discuss their basic properties.
Definition 4.1 ([12, Definition 10.1]). With reference to Notation 3.1, for —1 < i, j < D, we define
Vi =BV + -+ EV)N(BV + - + EV),
Vit = EV 4+ By V)N (EV + - + EV),
Vi = BV + -+ EFV) N (EpV + -+ + EpiV),
Vil = (EpV + -+ Ep V)N (EpV + - + EpjV).
In each of the above four equations, we interpret the right-hand side tobe 0 ifi = —1orj = —1.

Definition 4.2 ([12, Definition 10.2]). With reference to Notation 3.1 and Definition 4.1, for u, v € {{, 1} and 0 < i,j < D,
we have Vi’i"lyj C Vif;” and Vi’j.il C Vi’fj”. Therefore,
Vilivl.j + Vilj'il < Vifj'v-

Referring to the above inclusion, we define \Z’j“ to be the orthogonal complement of the left-hand side in the right-hand
side; that is,

(7 v oL v

Vil,j'u = (Viliul,j + Vil,j?]) n Vil,j' :
Lemma 4.3 ([12, Lemma 10.3]). With reference to Notation 3.1 and Definition 4.2, the following holds for , v € {|, 1}:

D D
V= Z Z V" (direct sum). (10)
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Definition 4.4. We call the sum (10) the (u, v)-split decomposition of V with respect to x.
Remark 4.5. The decomposition (10) is not orthogonal in general.

Lemma 4.6. With reference to Notation 3.1, let W denote an irreducible T-module with endpoint p, dual endpoint t, and
diameter d. Then, for 0 < h < dand 0 < i,j < D, the following (i)-(iv) hold.
(i) Wyt Viﬁi ifandonlyifi=p+handj=17v+d—h.
(i) w,* CVN ifandonlyifi:D—,o—d+handj:t+d—h.
(iii) WH C VH ifandonlyifi=p+handj=D— 17 — h.
(iv) WhTT gViTjT 1fandonlyzfl:D—p—d—i—handj:D—r—h.
Proof. Immediate from [12, Lemma 11.4] and (10). O

Lemma 4.7. With reference to Notation 3.1, fix an orthogonal direct sum decomposition of the standard module V of I' into
irreducible T-modules:

V=ZW. (11)
w

Then the following (i)-(iv) hold for 0 <i,j < D.

(i) \7&¢ =Y Wh“, where the sum is over all ordered pairs (W, h) such that W is assumed in (11) with endpoint p < i, dual

endpoint t =i+j— p —d, diameterd >i— p,andh =i — p.

(ii) VN > WN, where the sum is over all ordered pairs (W, h) such that W is assumed in (11) with endpoint p < D — i,
dualendpomtr =i+j+ p—D,diameterd >D—p —i,andh=p+d— D +i.

(iii) VH > W“, where the sum is over all ordered pairs (W, h) such that W is assumed in (11) with endpoint p < i, dual
endpomtr =p+D—i—jdiameterd>i— p,andh =i— p.

(iv) fo 3 WM, where the sum is over all ordered pairs (W, h) such that W is assumed in (11) with endpoint p < D — i,
dual endpoint t = 2D — p —d — i — j, diameterd > D — p —i,andh=p+d — D +1i.

Proof. (i) For 0 <i,j < D define
vij =y Wit (12)

where the sum is over all ordered pairs (W, h) such that W is assumed in (11) with endpoint p < i, dual endpoint
T =1i+j— p—d diameterd > i — p,and h = i — p. We show that V. W = v;;. We first show that V#ﬁ D ;. Let

WN denote one of the terms in the sum on the right in (12). We show that th is contalned in VN Let o, T, d denote the
endpomt dual endpoint, and diameter of W, respectively. By construction,t =i+j— p — d and h = i — p. Subtracting

the second equation from the first equation we find j = 7 4+ d — h. Now W,f Vis contained in Wﬁ by Lemma 4.6(i). We have
now shown that Wﬁ D v;j. We can now easily show that \7,.%]-¢ = v;;. Expanding the sum (11) using Lemma 3.3, we get

V = Z W (direct sum)
w

= Z Z Whu (direct sum),
W h

where the second sum is over the integer h from 0 to the diameter of W. In the above sum we change the order of summation
to get

D D
V= Z Z Z Wh“ (direct sum),

i=0 j=0

where the third sum is over all ordered pairs (W, h) such that W is assumed in (11) with endpoint p < i, dual endpoint
T=i+j— p—d, diameterd >i— p,and h =i — p. In other words,

D D
= Z Z vij (direct sum).
i=0 j=0

By this, (10), andsmceVN Duyjfor0 <i,j<D, weﬁndV AG. =v;jfor0<i,j<D.
(ii), (iii), (iv) Similar to the proof of (i). O

Now we have the main result.
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Theorem 4.8. With reference to Notation 3.1 and Definition 4.2, the following (i), (ii) hold for 0 <i,j,r,s <D.

(i) le and VrTST are orthogonal unlessi+r =Dandj+s = D.
(ii) \N/ibT and \N/TT,Si are orthogonal unlessi+r =Dandj+s = D.

Proof. (i) Assume thati+r # Dorj+s # D. We show that Vi’ljl and \N/f,sT are orthogonal. To do this we will use Lemma 4.7(i),
(iv). Let Whu (resp. W/,I,T) denote one of the terms in the sum in Lemma 4.7(i) (resp. Lemma 4.7(iv)). We show that Whu and
W/E,T are orthogonal. There are two cases to consider. First, assume that W # W’. Then W and W' are orthogonal so W,f v

and W/,T,T are orthogonal. Next, assume that W = W'. Let p, 7, d denote the corresponding endpoint, dual endpoint, and
diameter. By Lemma 4.7(i),

t=i+j—p—d, h=i—p. (13)
By Lemma 4.7(iv),
t=2D—p—d—r—s, HW=p+d—-D+r. (14)

Adding the equations on the right in (13) and (14), we get
i+r—D=h+h —d. (15)
Subtracting the equation on the left in (13) from the equation on the left in (14), and evaluating the result using (15), we get
j+s—D=d—h-"H. (16)

By (15),(16), and sincei +r # Dorj+ s # D, we find h + i’ # d. Now th and W,f,T are orthogonal by Lemma 3.4(i).
(ii) Similar to the proof of (i). O

Corollary 4.9. With reference to Notation 3.1 and Definition 4.2, the following (i), (ii) hold for 0 <i,j <D.
g Sl .-
(i) dimV;;" = dim VDT_Ti’D_j.

(ii) dim V" = dim V¥, .

Proof. Immediate from Theorem 4.8 and elementary linear algebra. 0O
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