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a b s t r a c t

Let Γ denote a Q -polynomial distance-regular graph with diameter D ≥ 3 and standard
module V . Recently, Ito and Terwilliger introduced four direct sum decompositions of V ;
we call these the (µ, ν)-split decompositions of V , where µ, ν ∈ {↓,↑}. In this paper
we show that the (↓,↓)-split decomposition and the (↑,↑)-split decomposition are dual
with respect to the standard Hermitian form on V . We also show that the (↓,↑)-split
decomposition and the (↑,↓)-split decomposition are dual with respect to the standard
Hermitian form on V .

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider a distance-regular graph Γ with vertex set X and diameter D ≥ 3 (see Section 3 for formal definitions).
We assume that Γ is Q -polynomial with respect to the ordering E0, E1, . . . , ED of the primitive idempotents. Let V denote
the vector space over C consisting of column vectors whose coordinates are indexed by X and whose entries are in C. We
call V the standard module. We endow V with the Hermitian form 〈 , 〉 that satisfies 〈u, v〉 = utv for u, v ∈ V . We call this
form the standard Hermitian form on V . Recently, Ito and Terwilliger introduced four direct sum decompositions of V [12];
we call these the (µ, ν)-split decompositions of V , where µ, ν ∈ {↓,↑}. These are defined as follows. Fix a vertex x ∈ X . For
0 ≤ i ≤ D, let E∗i = E

∗

i (x) denote the diagonal matrix in MatX (C) that represents the projection onto the ith subconstituent
of Γ with respect to x. For−1 ≤ i, j ≤ D, we define

V↓↓i,j = (E
∗

0V + · · · + E
∗

i V ) ∩ (E0V + · · · + EjV ),

V↑↓i,j = (E
∗

DV + · · · + E
∗

D−iV ) ∩ (E0V + · · · + EjV ),

V↓↑i,j = (E
∗

0V + · · · + E
∗

i V ) ∩ (EDV + · · · + ED−jV ),

V↑↑i,j = (E
∗

DV + · · · + E
∗

D−iV ) ∩ (EDV + · · · + ED−jV ).

For µ, ν ∈ {↓,↑} and 0 ≤ i, j ≤ D, we have Vµνi−1,j ⊆ V
µν

i,j and V
µν

i,j−1 ⊆ V
µν

i,j ; therefore V
µν

i−1,j + V
µν

i,j−1 ⊆ V
µν

i,j . Let Ṽ
µν

i,j denote
the orthogonal complement of Vµνi−1,j + V

µν

i,j−1 in V
µν

i,j with respect to the standard Hermitian form. By [12, Lemma 10.3],

V =
D∑
i=0

D∑
j=0

Ṽµνi,j (direct sum).
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We call the above sum the (µ, ν)-split decomposition of V with respect to x. We show that with respect to the standard
Hermitian form the (↓,↓)-split decomposition (resp. (↓,↑)-split decomposition) and the (↑,↑)-split decomposition
(resp. (↑,↓)-split decomposition) are dual in the following sense.

Theorem 1.1. With the above notation, the following (i), (ii) hold for 0 ≤ i, j, r, s ≤ D.
(i) Ṽ↓↓i,j and Ṽ

↑↑

r,s are orthogonal unless i+ r = D and j+ s = D.
(ii) Ṽ↓↑i,j and Ṽ

↑↓

r,s are orthogonal unless i+ r = D and j+ s = D.

To prove Theorem 1.1 we use a result about tridiagonal pairs (Theorem 2.9) which may be of independent interest. We also
use some results about the subconstituent algebra of Γ .

2. Tridiagonal pairs

In this section we consider a tridiagonal pair for which the underlying vector space supports a certain Hermitian form.
Throughout this section V denotes a vector space over C with finite positive dimension. We start with the definition of a
tridiagonal pair.

Definition 2.1 ([10, Definition 1.1]). Let V denote a vector space over C with finite positive dimension. By a tridiagonal pair
(or TD pair) on V we mean an ordered pair A, A∗ of linear transformations on V that satisfy the following four conditions.
(i) A and A∗ are both diagonalizable on V .
(ii) There exists an ordering V0, V1, . . . , Vd of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0, Vd+1 = 0.
(iii) There exists an ordering V ∗0 , V

∗

1 , . . . , V
∗

δ of the eigenspaces of A
∗ such that

AV ∗i ⊆ V
∗

i−1 + V
∗

i + V
∗

i+1 (0 ≤ i ≤ δ),

where V ∗
−1 = 0, V

∗

δ+1 = 0.
(iv) There is no subspaceW of V such that both AW ⊆ W and A∗W ⊆ W , other thanW = 0 andW = V .

Note 2.2. According to a common notational convention, A∗ denotes the conjugate-transpose of A. We are not using this
convention. In a tridiagonal pair A, A∗, the linear transformations A and A∗ are arbitrary subject to (i)–(iv) above.

With reference to Definition 2.1, we have d = δ [10, Lemma 4.5]; we call this common value the diameter of A, A∗. See
[10,11] for more information on tridiagonal pairs.
With reference to Definition 2.1, by the construction we have the direct sum decompositions V =

∑d
i=0 Vi and

V =
∑d
i=0 V

∗

i . We now recall four more direct sum decompositions of V called the split decompositions.

Lemma 2.3 ([11, Lemma 4.2]).With reference to Definition 2.1, for µ, ν ∈ {↓,↑}, we have

V =
d∑
i=0

Uµνi (direct sum),

where

U↓↓i = (V
∗

0 + · · · + V
∗

i ) ∩ (V0 + · · · + Vd−i),

U↑↓i = (V
∗

d−i + · · · + V
∗

d ) ∩ (V0 + · · · + Vd−i),

U↓↑i = (V
∗

0 + · · · + V
∗

i ) ∩ (Vi + · · · + Vd),

U↑↑i = (V
∗

d−i + · · · + V
∗

d ) ∩ (Vi + · · · + Vd).

Definition 2.4. By a Hermitian form on V wemean a function ( , ) : V × V → C such that, for all u, v,w in V and all α ∈ C,
(i) (u+ v,w) = (u, w)+ (v,w),
(ii) (αu, v) = α(u, v),
(iii) (v, u) = (u, v).

Definition 2.5. Let ( , ) denote a Hermitian form on V . By Definition 2.4(iii), we have (v, v) ∈ R for v ∈ V . We say that ( , )
is positive definitewhenever (v, v) > 0 for all nonzero v ∈ V .

Lemma 2.6. Let ( , ) denote a positive definite Hermitian form on V . Suppose that we are given a linear transformation A : V →
V satisfying

(Au, v) = (u, Av) u, v ∈ V . (1)

Then all the eigenvalues of A are in R.



1830 J. Kim / Discrete Mathematics 310 (2010) 1828–1834

Proof. Let λ denote an eigenvalue of A. We show that λ ∈ R. Since C is algebraically closed there exists a nonzero v ∈ V
such that Av = λv. By (1), (Av, v) = (v, Av). Evaluating this using Definition 2.4(ii),(iii), we have (λ − λ)(v, v) = 0. But
(v, v) 6= 0, since ( , ) is positive definite so λ = λ. Therefore λ ∈ R. �

Assumption 2.7. Let A, A∗ denote a tridiagonal pair on V as in Definition 2.1. For 0 ≤ i ≤ d, let θi (resp. θ∗i ) denote the
eigenvalue ofA (resp.A∗) associatedwithVi (resp.V ∗i ).We remark that θ0, θ1, . . . , θd aremutually distinct and θ

∗

0 , θ
∗

1 , . . . , θ
∗

d
are mutually distinct. We assume that there exists a positive definite Hermitian form ( , ) on V satisfying

(Au, v) = (u, Av) u, v ∈ V , (2)

(A∗u, v) = (u, A∗v) u, v ∈ V . (3)

Lemma 2.8. With reference to Assumption 2.7, the following (i), (ii) hold.
(i) The eigenspaces V0, V1, . . . , Vd are mutually orthogonal with respect to ( , ).
(ii) The eigenspaces V ∗0 , V

∗

1 , . . . , V
∗

d are mutually orthogonal with respect to ( , ).

Proof. (i) For distinct i, j (0 ≤ i, j ≤ d), and for u ∈ Vi, v ∈ Vj, we show that (u, v) = 0. By (2), (Au, v) = (u, Av). Evaluating
this using Definition 2.4(ii), (iii), we find (θi − θj)(u, v) = 0. But θj = θj by Lemma 2.6, and θi 6= θj, so (u, v) = 0.
(ii) Similar to the proof of (i). �

Theorem 2.9. With reference to Lemma 2.3 and Assumption 2.7, the following (i), (ii) hold for 0 ≤ i, j ≤ d such that i+ j 6= d.

(i) The subspaces U↓↓i and U
↑↑

j are orthogonal with respect to ( , ).
(ii) The subspaces U↓↑i and U

↑↓

j are orthogonal with respect to ( , ).

Proof. (i) We consider two cases: i+ j < d and i+ j > d. First suppose that i+ j < d. By Lemma 2.3, U↓↓i ⊆ V
∗

0 + · · · + V
∗

i

and U↑↑j ⊆ V
∗

d−j + · · · + V
∗

d . Observe that V
∗

0 + · · · + V
∗

i is orthogonal to V
∗

d−j + · · · + V
∗

d by Lemma 2.8(ii), and since
i < d − j. Therefore U↓↓i is orthogonal to U↑↑j . Next, suppose that i + j > d. By Lemma 2.3, U

↓↓

i ⊆ V0 + · · · + Vd−i and
U↑↑j ⊆ Vj + · · · + Vd. Observe that V0 + · · · + Vd−i is orthogonal to Vj + · · · + Vd by Lemma 2.8(i), and since d − i < j.
Therefore U↓↓i is orthogonal to U

↑↑

j .
(ii) Similar to the proof of (i). �

3. Subconstituent algebra of distance-regular graphs

In this section we review some definitions and basic concepts concerning subconstituent algebra of distance-regular
graphs.
Let X denote a nonempty finite set. Let MatX (C) denote theC-algebra consisting of all matrices whose rows and columns

are indexed by X andwhose entries are inC. Let V = CX denote the vector space overC consisting of column vectors whose
coordinates are indexed by X and whose entries are in C. We observe that MatX (C) acts on V by left multiplication. We call
V the standard module. We endow V with the Hermitian form 〈 , 〉 that satisfies 〈u, v〉 = utv for u, v ∈ V , where t denotes
transpose and denotes complex conjugation. Observe that 〈 , 〉 is positive definite.We call this form the standard Hermitian
form on V . Observe that, for B ∈ MatX (C),

〈Bu, v〉 = 〈u, B
t
v〉 u, v ∈ V . (4)

Let Γ = (X, R) denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge
set R. Let ∂ denote the path-length distance function for Γ , and set D := max{∂(x, y) | x, y ∈ X}. We call D the diameter
of Γ . We say that Γ is distance-regular whenever, for all integers h, i, j (0 ≤ h, i, j ≤ D), and for all vertices x, y ∈ X with
∂(x, y) = h, the number

phij = |{z ∈ X | ∂(x, z) = i, ∂(z, y) = j}|

is independent of x and y. The phij are called the intersection numbers of Γ .
For the rest of this paper we assume that Γ is distance-regular with diameter D ≥ 3.
We recall the Bose–Mesner algebra of Γ . For 0 ≤ i ≤ D, let Ai denote the matrix in MatX (C)with xy entry

(Ai)xy =
{
1, if ∂(x, y) = i
0, if ∂(x, y) 6= i (x, y ∈ X).

We call Ai the ith distance matrix of Γ . We abbreviate A := A1 and call this the adjacency matrix of Γ . We observe that (i)
A0 = I; (ii)

∑D
i=0 Ai = J; (iii) Ai = Ai (0 ≤ i ≤ D); (iv) A

t
i = Ai (0 ≤ i ≤ D); (v) AiAj =

∑D
h=0 p

h
ijAh (0 ≤ i, j ≤ D),

where I (resp. J) denotes the identity matrix (resp. all 1’s matrix) in MatX (C). Using these facts we find A0, A1, . . . , AD form
a basis for a commutative subalgebraM of MatX (C). We callM the Bose–Mesner algebra of Γ . It turns out that A generatesM
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[1, p. 190]. By (4), and since A is real and symmetric,
〈Au, v〉 = 〈u, Av〉 u, v ∈ V . (5)

By [3, p. 45], M has a second basis E0, E1, . . . , ED such that (i) E0 = |X |−1J; (ii)
∑D
i=0 Ei = I; (iii) Ei = Ei (0 ≤ i ≤ D); (iv)

Eti = Ei (0 ≤ i ≤ D); (v) EiEj = δijEi (0 ≤ i, j ≤ D). We call E0, E1, . . . , ED the primitive idempotents of Γ .
We recall the eigenvalues ofΓ . Since E0, E1, . . . , ED form a basis forM , there exist complex scalars θ0, θ1, . . . , θD such that

A =
∑D
i=0 θiEi. Observe that AEi = EiA = θiEi for 0 ≤ i ≤ D. We call θi the eigenvalue of Γ associated with Ei (0 ≤ i ≤ D).

By Lemma 2.6 and (5), the eigenvalues θ0, θ1, . . . , θD are in R. Observe that θ0, θ1, . . . , θD are mutually distinct, since A
generatesM . Observe that

V = E0V + E1V + · · · + EDV (orthogonal direct sum).
For 0 ≤ i ≤ D, the space EiV is the eigenspace of A associated with θi.
We now recall the Krein parameters. Let ◦ denote the entrywise product in MatX (C). Observe that Ai ◦ Aj = δijAi for

0 ≤ i, j ≤ D, soM is closed under ◦. Thus there exist complex scalars qhij (0 ≤ h, i, j ≤ D) such that

Ei ◦ Ej = |X |−1
D∑
h=0

qhijEh (0 ≤ i, j ≤ D).

By [2, p. 170], qhij is real and nonnegative for 0 ≤ h, i, j ≤ D. The q
h
ij are called the Krein parameters. The graph Γ is said to be

Q -polynomial (with respect to the given ordering E0, E1, . . . , ED of the primitive idempotents) whenever, for 0 ≤ h, i, j ≤ D,
qhij = 0 (resp. q

h
ij 6= 0) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two [3, p. 59]. See [1,4,5,9,

13,14] for more information on the Q -polynomial property. From now on we assume that Γ is Q -polynomial with respect
to E0, E1, . . . , ED.
We recall the dual Bose–Mesner algebra of Γ . Fix a vertex x ∈ X . We view x as a ‘‘base vertex’’. For 0 ≤ i ≤ D, let

E∗i = E
∗

i (x) denote the diagonal matrix in MatX (C)with yy entry

(E∗i )yy =
{
1, if ∂(x, y) = i
0, if ∂(x, y) 6= i (y ∈ X). (6)

We call E∗i the ith dual idempotent of Γ with respect to x [15, p. 378]. We observe that (i)
∑D
i=0 E

∗

i = I; (ii) E
∗

i = E
∗

i (0 ≤
i ≤ D); (iii) E∗ti = E

∗

i (0 ≤ i ≤ D); (iv) E
∗

i E
∗

j = δijE∗i (0 ≤ i, j ≤ D). By these facts E
∗

0 , E
∗

1 , . . . , E
∗

D form a basis for
a commutative subalgebra M∗ = M∗(x) of MatX (C). We call M∗ the dual Bose–Mesner algebra of Γ with respect to x [15,
p. 378]. For 0 ≤ i ≤ D, let A∗i = A

∗

i (x) denote the diagonal matrix inMatX (C)with yy entry (A
∗

i )yy = |X |(Ei)xy for y ∈ X . Then
A∗0, A

∗

1, . . . , A
∗

D form a basis for M
∗ [15, p. 379]. Moreover, (i) A∗0 = I; (ii) A

∗

i = A
∗

i (0 ≤ i ≤ D); (iii) A
∗t
i = A

∗

i (0 ≤ i ≤ D);
(iv) A∗i A

∗

j =
∑D
h=0 q

h
ijA
∗

h (0 ≤ i, j ≤ D) [15, p. 379]. We call A
∗

0, A
∗

1, . . . , A
∗

D the dual distance matrices of Γ with respect to
x. We abbreviate A∗ := A∗1 and call this the dual adjacency matrix of Γ with respect to x. The matrix A

∗ generates M∗ [15,
Lemma 3.11]. By (4), and since A∗ is real and symmetric,

〈A∗u, v〉 = 〈u, A∗v〉 u, v ∈ V . (7)
We recall the dual eigenvalues of Γ . Since E∗0 , E

∗

1 , . . . , E
∗

D form a basis for M
∗, and since A∗ is real, there exist real scalars

θ∗0 , θ
∗

1 , . . . , θ
∗

D such that A
∗
=
∑D
i=0 θ

∗

i E
∗

i . Observe that A
∗E∗i = E

∗

i A
∗
= θ∗i E

∗

i for 0 ≤ i ≤ D. We call θ
∗

i the dual eigenvalue
of Γ associated with E∗i (0 ≤ i ≤ D). Observe that θ

∗

0 , θ
∗

1 , . . . , θ
∗

D are mutually distinct, since A
∗ generatesM∗.

We recall the subconstituents of Γ . For all y ∈ X , let ŷ denote the element of V with a 1 in the y coordinate and 0 in all
other coordinates. From (6), we find

E∗i V = span{ŷ | y ∈ X, ∂(x, y) = i} (0 ≤ i ≤ D). (8)
By (8), and since {ŷ | y ∈ X} is an orthonormal basis for V , we find

V = E∗0V + E
∗

1V + · · · + E
∗

DV (orthogonal direct sum).
For 0 ≤ i ≤ D, the space E∗i V is the eigenspace of A

∗ associated with θ∗i . We call E
∗

i V the ith subconstituent of Γ with respect
to x.
We recall the subconstituent algebra of Γ . Let T = T (x) denote the subalgebra of MatX (C) generated by M and M∗.

We call T the subconstituent algebra (or Terwilliger algebra) of Γ with respect to x [15, Definition 3.3]. We observe that T is
generated by A, A∗. We observe that T has finite dimension.Moreover, T is semi-simple since it is closed under the conjugate
transpose map [7, p. 157]. See [6,8,15–17] for more information on the subconstituent algebra.
For the rest of this paper we adopt the following notational convention.

Notation 3.1. We assume that Γ = (X, R) is a distance-regular graph with diameter D ≥ 3. We assume that Γ is Q -
polynomial with respect to the ordering E0, E1, . . . , ED of the primitive idempotents. We fix x ∈ X and write A∗ = A∗(x),
E∗i = E

∗

i (x) (0 ≤ i ≤ D), T = T (x). We abbreviate V = CX . For notational convenience we define E−1 = 0, ED+1 = 0 and
E∗
−1 = 0, E

∗

D+1 = 0.

We recall some useful results on T -modules. With reference to Notation 3.1, by a T-modulewe mean a subspaceW ⊆ V
such that BW ⊆ W for all B ∈ T . Let W denote a T -module. Then W is said to be irreducible whenever W is nonzero
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andW contains no T -modules other than 0 andW . LetW denote a T -module and letW ′ denote a T -module contained in
W . Then the orthogonal complement ofW ′ inW is a T -module [8, p. 802]. It follows that each T -module is an orthogonal
direct sum of irreducible T -modules. In particular, V is an orthogonal direct sum of irreducible T -modules. Let W denote
an irreducible T -module. By the endpoint of W we mean min{i|0 ≤ i ≤ D, E∗i W 6= 0}. By the diameter of W we mean
|{i|0 ≤ i ≤ D, E∗i W 6= 0}| − 1. By the dual endpoint ofW we mean min{i|0 ≤ i ≤ D, EiW 6= 0}. By the dual diameter ofW
we mean |{i|0 ≤ i ≤ D, EiW 6= 0}| − 1. The diameter ofW is equal to the dual diameter ofW [13, Corollary 3.3].

Remark 3.2. With reference to Notation 3.1, letW denote an irreducible T -module. Then A and A∗ act onW as a tridiagonal
pair in the sense of Definition 2.1. This follows from [15, Lemma 3.4, Lemma 3.9, Lemma 3.12], [18, Lemma 3.2], and since
A, A∗ generate T .

Lemma 3.3. With reference to Notation 3.1, let W denote an irreducible T -module with endpoint ρ , dual endpoint τ , and
diameter d. Then, for µ, ν ∈ {↓,↑}, we have

W =
d∑
h=0

Wµν

h (direct sum), (9)

where for 0 ≤ h ≤ d,

W↓↓h = (E
∗

ρW + · · · + E
∗

ρ+hW ) ∩ (EτW + · · · + Eτ+d−hW ),

W↑↓h = (E
∗

ρ+d−hW + · · · + E
∗

ρ+dW ) ∩ (EτW + · · · + Eτ+d−hW ),

W↓↑h = (E
∗

ρW + · · · + E
∗

ρ+hW ) ∩ (Eτ+hW + · · · + Eτ+dW ),

W↑↑h = (E
∗

ρ+d−hW + · · · + E
∗

ρ+dW ) ∩ (Eτ+hW + · · · + Eτ+dW ).

Proof. Immediate from Lemma 2.3 and Remark 3.2. �

We remark that the sum (9) is not orthogonal in general. However, we do have the following result.

Lemma 3.4. With reference to Notation 3.1, let W denote an irreducible T -module with diameter d. Then the
following (i), (ii) hold for 0 ≤ h, ` ≤ d such that h+ ` 6= d.
(i) The subspaces W↓↓h and W↑↑` are orthogonal with respect to the standard Hermitian form.
(ii) The subspaces W↓↑h and W↑↓` are orthogonal with respect to the standard Hermitian form.
Proof. Combine Theorem 2.9, (5), (7), Remark 3.2, and Lemma 3.3. �

4. The split decompositions of the standard module

In this section we recall the four split decompositions for the standard module and discuss their basic properties.

Definition 4.1 ([12, Definition 10.1]). With reference to Notation 3.1, for−1 ≤ i, j ≤ D, we define

V↓↓i,j = (E
∗

0V + · · · + E
∗

i V ) ∩ (E0V + · · · + EjV ),

V↑↓i,j = (E
∗

DV + · · · + E
∗

D−iV ) ∩ (E0V + · · · + EjV ),

V↓↑i,j = (E
∗

0V + · · · + E
∗

i V ) ∩ (EDV + · · · + ED−jV ),

V↑↑i,j = (E
∗

DV + · · · + E
∗

D−iV ) ∩ (EDV + · · · + ED−jV ).

In each of the above four equations, we interpret the right-hand side to be 0 if i = −1 or j = −1.

Definition 4.2 ([12, Definition 10.2]). With reference to Notation 3.1 and Definition 4.1, for µ, ν ∈ {↓,↑} and 0 ≤ i, j ≤ D,
we have Vµνi−1,j ⊆ V

µν

i,j and V
µν

i,j−1 ⊆ V
µν

i,j . Therefore,

Vµνi−1,j + V
µν

i,j−1 ⊆ V
µν

i,j .

Referring to the above inclusion, we define Ṽµνi,j to be the orthogonal complement of the left-hand side in the right-hand
side; that is,

Ṽµνi,j = (V
µν

i−1,j + V
µν

i,j−1)
⊥
∩ Vµνi,j .

Lemma 4.3 ([12, Lemma 10.3]). With reference to Notation 3.1 and Definition 4.2, the following holds for µ, ν ∈ {↓,↑}:

V =
D∑
i=0

D∑
j=0

Ṽµνi,j (direct sum). (10)
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Definition 4.4. We call the sum (10) the (µ, ν)-split decomposition of V with respect to x.

Remark 4.5. The decomposition (10) is not orthogonal in general.

Lemma 4.6. With reference to Notation 3.1, let W denote an irreducible T -module with endpoint ρ , dual endpoint τ , and
diameter d. Then, for 0 ≤ h ≤ d and 0 ≤ i, j ≤ D, the following (i)–(iv) hold.

(i) W↓↓h ⊆ Ṽ
↓↓

i,j if and only if i = ρ + h and j = τ + d− h.
(ii) W↑↓h ⊆ Ṽ

↑↓

i,j if and only if i = D− ρ − d+ h and j = τ + d− h.
(iii) W↓↑h ⊆ Ṽ

↓↑

i,j if and only if i = ρ + h and j = D− τ − h.
(iv) W↑↑h ⊆ Ṽ

↑↑

i,j if and only if i = D− ρ − d+ h and j = D− τ − h.

Proof. Immediate from [12, Lemma 11.4] and (10). �

Lemma 4.7. With reference to Notation 3.1, fix an orthogonal direct sum decomposition of the standard module V of Γ into
irreducible T -modules:

V =
∑
W

W . (11)

Then the following (i)–(iv) hold for 0 ≤ i, j ≤ D.

(i) Ṽ↓↓i,j =
∑
W↓↓h , where the sum is over all ordered pairs (W , h) such that W is assumed in (11) with endpoint ρ ≤ i, dual

endpoint τ = i+ j− ρ − d, diameter d ≥ i− ρ , and h = i− ρ .
(ii) Ṽ↑↓i,j =

∑
W↑↓h , where the sum is over all ordered pairs (W , h) such that W is assumed in (11) with endpoint ρ ≤ D − i,

dual endpoint τ = i+ j+ ρ − D, diameter d ≥ D− ρ − i, and h = ρ + d− D+ i.
(iii) Ṽ↓↑i,j =

∑
W↓↑h , where the sum is over all ordered pairs (W , h) such that W is assumed in (11) with endpoint ρ ≤ i, dual

endpoint τ = ρ + D− i− j, diameter d ≥ i− ρ , and h = i− ρ .
(iv) Ṽ↑↑i,j =

∑
W↑↑h , where the sum is over all ordered pairs (W , h) such that W is assumed in (11) with endpoint ρ ≤ D − i,

dual endpoint τ = 2D− ρ − d− i− j, diameter d ≥ D− ρ − i, and h = ρ + d− D+ i.

Proof. (i) For 0 ≤ i, j ≤ D define

vi,j =
∑
W↓↓h , (12)

where the sum is over all ordered pairs (W , h) such that W is assumed in (11) with endpoint ρ ≤ i, dual endpoint
τ = i + j − ρ − d, diameter d ≥ i − ρ, and h = i − ρ. We show that Ṽ↓↓i,j = vi,j. We first show that Ṽ

↓↓

i,j ⊇ vi,j. Let
W↓↓h denote one of the terms in the sum on the right in (12). We show thatW↓↓h is contained in Ṽ↓↓i,j . Let ρ, τ , d denote the
endpoint, dual endpoint, and diameter ofW , respectively. By construction, τ = i + j − ρ − d and h = i − ρ. Subtracting
the second equation from the first equation we find j = τ + d− h. NowW↓↓h is contained in Ṽ↓↓i,j by Lemma 4.6(i). We have
now shown that Ṽ↓↓i,j ⊇ vi,j. We can now easily show that Ṽ

↓↓

i,j = vi,j. Expanding the sum (11) using Lemma 3.3, we get

V =
∑
W

W (direct sum)

=

∑
W

∑
h

W↓↓h (direct sum),

where the second sum is over the integer h from 0 to the diameter ofW . In the above sumwe change the order of summation
to get

V =
D∑
i=0

D∑
j=0

∑
W↓↓h (direct sum),

where the third sum is over all ordered pairs (W , h) such that W is assumed in (11) with endpoint ρ ≤ i, dual endpoint
τ = i+ j− ρ − d, diameter d ≥ i− ρ, and h = i− ρ. In other words,

V =
D∑
i=0

D∑
j=0

vi,j (direct sum).

By this, (10), and since Ṽ↓↓i,j ⊇ vi,j for 0 ≤ i, j ≤ D, we find Ṽ
↓↓

i,j = vi,j for 0 ≤ i, j ≤ D.
(ii), (iii), (iv) Similar to the proof of (i). �

Now we have the main result.
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Theorem 4.8. With reference to Notation 3.1 and Definition 4.2, the following (i), (ii) hold for 0 ≤ i, j, r, s ≤ D.

(i) Ṽ↓↓i,j and Ṽ
↑↑

r,s are orthogonal unless i+ r = D and j+ s = D.
(ii) Ṽ↓↑i,j and Ṽ

↑↓

r,s are orthogonal unless i+ r = D and j+ s = D.

Proof. (i) Assume that i+r 6= D or j+s 6= D. We show that Ṽ↓↓i,j and Ṽ
↑↑

r,s are orthogonal. To do this wewill use Lemma 4.7(i),
(iv). LetW↓↓h (resp.W

′↑↑

h′ ) denote one of the terms in the sum in Lemma 4.7(i) (resp. Lemma 4.7(iv)). We show thatW
↓↓

h and
W ′↑↑h′ are orthogonal. There are two cases to consider. First, assume thatW 6= W

′. ThenW andW ′ are orthogonal soW↓↓h
and W ′↑↑h′ are orthogonal. Next, assume that W = W

′. Let ρ, τ , d denote the corresponding endpoint, dual endpoint, and
diameter. By Lemma 4.7(i),

τ = i+ j− ρ − d, h = i− ρ. (13)

By Lemma 4.7(iv),

τ = 2D− ρ − d− r − s, h′ = ρ + d− D+ r. (14)

Adding the equations on the right in (13) and (14), we get

i+ r − D = h+ h′ − d. (15)

Subtracting the equation on the left in (13) from the equation on the left in (14), and evaluating the result using (15), we get

j+ s− D = d− h− h′. (16)

By (15), (16), and since i+ r 6= D or j+ s 6= D, we find h+ h′ 6= d. NowW↓↓h andW↑↑h′ are orthogonal by Lemma 3.4(i).
(ii) Similar to the proof of (i). �

Corollary 4.9. With reference to Notation 3.1 and Definition 4.2, the following (i), (ii) hold for 0 ≤ i, j ≤ D.

(i) dim Ṽ↓↓i,j = dim Ṽ
↑↑

D−i,D−j.
(ii) dim Ṽ↓↑i,j = dim Ṽ

↑↓

D−i,D−j.

Proof. Immediate from Theorem 4.8 and elementary linear algebra. �
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