
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 45, 204232 (1992)

Multiparty Protocols, Pseudorandom Generators for Logspace,
and Time-Space Trade-offs

LAszt6 BABAI*

University of Chicago, Chicago, Illinois 60637-1504,
and Eijtviis University, Budapest, Hungary

NOAM NISAN’

Hebrew University, Mount Scopus,

AND

Jerusalem, Israel

MARIO SZEGEDY *

AT&T Bell Laboratories, Murray Hill, New Jersey 07974-0636

Received August 17, 1989

Let f (xl, xk) be a Boolean function that k parties wish to collaboratively evaluate, where
each xi is a bit-string of length n. The ith party knows each input argument except x,; and
each party has unlimited computational power. They share a blackboard, viewed by all
parties, where they can exchange messages. The objective is to minimize the number of bits
written on the board. We prove lower bounds of the form Q(n c?), for the number of bits
that need to be exchanged in order to compute some (explicitly given) polynomial time com-
putable functions. Our bounds hold even if the parties only wish to have a 1% advantage at
guessing the value off on random inputs. The lower bound proofs are based on discrepancy
upper bounds for specilic functions over “cylinder intersection” sets. These results may be of
independent interest. We give several applications of the lower bounds. The tirst application
is a pseudorandom generator for Logspace. We explicitly construct (in polynomial time)
pseudorandom sequences of length n from a random seed of length exp(c &) that no
Logspace Turing machine will be able to distinguish from truly random sequences. As a
corollary we give an explicit construction of a universal traversal sequence of length

exp(exp(c JTogn)) f or arbitrary undirected graphs on n vertices. We then apply the multi-
party protocol lower bounds to derive several new time-space trade-offs. We give a tight
time-space trade-off of the form TS = @(n’), for general, k-head Turing machines; the bounds
hold for a function that can be computed in linear time and constant space by a k + l-head
Turing machine. We also give a new length-width trade-off for oblivious branching programs;
in particular, our bound implies new lower bounds on the size of arbitrary branching
programs, or on the size of Boolean formulas (over an arbitrary finite base). Using universal
hashing, Nisan has recently constructed considerably improved random generators for
Logspace, with the implication of shorter explicit universal traversal sequences. The .
time-space and related trade-off results mentioned above are not affected by this
development. 0 1992 Academic Press, Inc.

* Partly supported by NSF Grant CCR-8706518. Research was done while the third author was a
student at the University of Chicago.

+ Part of this research was done while the second author was a student at U.C. Berkeley, supported
by NSF Grant CCR-8411954.

204
0022~0000192 S5.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved

PROTOCOLSANDTRADE-OFFS 205

1. INTRODUCTION

This paper is composed of three parts. The first part considers a multiparty com-
munication game and gives some lower bounds on the complexity in this model.
The next two parts give applications of these bounds. The second part shows how
to construct pseudorandom generators for Logspace and in the third part we obtain
some new time-space trade-offs.

1.1. Multiparty Communication Complexity

Chandra, Furst, and Lipton [CFL] introduced the following multiparty com-
munication game: Let f(xl , xk) be a Boolean function that accepts k arguments
each n bits long. k parties wish to collaboratively evaluate f; the ith party knows
each input argument except xi; and each party has unlimited computational power.
They share a blackboard, viewed by all parties, where they can exchange messages.
The objective is to minimize the number of bits written on the board.

DEFINITION. The multiparty communication complexity of f, C(f) is the mini-
mum number of bits that .need to be exchanged in the worst case, by any k-party
protocol which computes f:

We shall also be interested in the number of bits needed in order to compute f
correctly on most inputs.

DEFINITION. The E-distributional communication complexity of f, C,(f) is the
minimum number of bits that need to be exchanged in the worst case by any
k-party protocol that computes f correctly on a (1 + s)/2 fraction of the inputs.

For the special case k = 2, this multiparty game is exactly the game standard in
communication complexity theory, where one party knows x,, and the other x2.
This case has been extensively investigated in many different contexts and many dif-
ferent lower bounds appear in the literature ([AUY, Yl, BFS], and many more).
The distributional communication complexity has been studied as well. Yao [Y3]
first considered the distributional communication complexity and proved a lower
bound of Q((log n)‘) for the “inner product mod 2” function. Vazirani [Va]
improved this bound to Q(n/log n), and Chor and Goldreich [CG] improved it to
Q(n).

For other values of k less is known. Chandra, Furst, and Lipton [CFL]
considered the complexity of the function E, defined by EN(xI, xk) = 1 iff
x,+x,+ . . . + xk = A? For k = 3 they showed that EN has a communication com-
plexity of Q(m). For general k they gave very slowly growing lower bounds,
showing that the complexity tends to infinity. For the distributional communication
complexity, no previous lower bounds were known.

We prove lower bounds to the distributional communication complexity of two
functions. Let

fib,, .--, x/c) = 1 iff x1 + .e. + xk iS a quadratic residue mod p

206 BABAI,NISAN, AND SZEGEDY

and

fZ(X,, x,d = 1 iff the number of positions where

We call fi the k-wise inner product function.

THEOREM 1. For any n-bit long prime number p:

C,(fl)=Q @flogs).

THEOREM 2.

c,(fd=a (;+lW+
Theorem 2 is close to best possible. V. Grolmusz
protocol demonstrating that

all the xls have 1 is odd.

[Gr] has recently given a

.
The major open problem is to prove lower bounds that do not decrease exponen-

tially in k for some explicit function. Such bounds would give considerable
improvements in the applications. Recent results of [Y4, HG] indicate another
motivation for such bounds: for any function in ACC’ (constant depth, polynomial
size circuits using “and,” “ or,” and “mod N” gates for some integer N) there exist
constants c, d such that the distributional multiparty communication complexity for
k = (log n)’ players is O((log n)“). Thus good lower bounds for the distributional
(or, in fact, even randomized) multiparty communication complexity of a function
f would prove that f is not in ACC’. For comparison, we should mention that if
the Boolean function f is selected at random (uniformly from all functions
(0, 1 }nk --) (0, 1)) then with high probability,

n logk
C&(f)2~-2+log&.

1.2. Pseudorandom Generators for Logspace

In the last few years there has been much research directed towards the construc-
tion of pseudorandom sequences-sequences that “appear” random to some large
class of statistical tests. Blum and Micali [BM], Yao [Yl], and, recently,
Impagliazzo, Levin, and Luby [ILL] have designed sequences that pass all polyno-
mial time computable tests under some unproven “hardness” assumptions. Reif and
Tygar [RT] constructed sequences that pass all NC tests, again under some
unproven “hardness” assumption. Ajtai and Wigderson [AW] give sequences that
pass all AC0 tests, using the known “hardness” results for AC’. Nisan and
Wigderson [NW] give general constructions of sequences that pass all tests from

PROTOCOLSAND TRADE-OFFS 207

a complexity class C, given any function that is “hard” for C. In particular, Nisan
constructs pseudorandom sequences for AC? using the “hardness” of the parity
function [Ni3].

Unfortunately, no lower bounds, “hardness” results, are known for any com-
plexity class but AC’. Thus in particular no sequences are provably pseudorandom
for any class but AC’.

In this paper we show how to construct sequences that pass all statistical tests
that can be performed by Logspace Turing machines (or generally any “small”-
space machines). We do this without relying on any unproven “hardness” assump-
tion, but rather by using the multiparty communication complexity lower bounds.

An exact definition of pseudorandom generators for Logspace appears in
Section 3. In general, the definition ensures that the output of a pseudorandom
generator for Logspace may always be used instead of truly random sequences in
any randomized Logspace computation.

THEOREM 3. There exists an (explicitly given) pseudorandom generator G for
Logspace which stretches a seed of 2O’fi’ random bits to n bits. Moreover, G can
be computed in polynomial time (actually, even in Logspace, given multiple access to
the input bits).

A particularly interesting class of tests that can be performed in RL are walks
on graphs. The output of our generator will behave just like a random walk on
any graph. This allows us to give an explicit construction of universal traversal
sequences for general graphs.

THEOREM 4. There exists an (explicitly given) universal traversal sequence

for general undirected graphs of length 220’JG’. Moreover the sequence can be
constructed by a Turing machine running in space logarithmic in the length of the
sequence.

Remark. Recently Nisan [Ni2] constructed stronger pseudorandom generators
based on universal families of hash functions. These generators convert a random
seed of length Slog R into a string of length R that looks random to any
SPACE(S)-bounded computation. In particular, out of random seeds of length
O(log2 n) one obtains strings of polynomial length that look random to Logspace
machines.

This result and its consequences, including explicit universal traversal sequences
of length nouOg “), supersede Theorems 3 and 4 and could be matched by the techni-
ques of this paper only if much stronger (Q(n/k)) lower bounds for the communica-
tion complexity of some Logspace computable function were available.

On the other hand, the time-space and related trade-off results to be described
in Subsection 1.3 are not affected by the results of [Ni2].

We should mention another recent application of Theorem 2. Luby et al. [LVW]
construct pseudorandom sequences that fool depth-2 circuits over GF[2] (explicit
multivariate polynomials). Like in Theorem 3, their pseudorandom sequence of

208 BABAI, NISAN, AND SZEGEDY

length n is generated from a random seed of length 2 O(s). But their construction
is based on a different principle and mimics the idea of [Ni3, NW], The requisite
hardness result is provided by our lower bound for the k-wise inner product; no
substitute is known to work.

1.3. Time-Space Trade-o&

1.3.1. Turing Machines

The first time-space trade-off we give is for general Turing machines. The
machines have a read-only input tape, as well as an arbitrary number of read-write
work tapes which count as space. For Turing machines that have only one head on
the input tape, quadratic time-space trade-offs were given in 1966 in Cobham’s
classic paper [Co], and apply, e.g., to such simple languages as the language of all
palindromes. However, when the Turing machine is allowed to have two or more
heads on the read-only tape, the situation is more complicated.

For multihead Turing machines the known time-space trade-offs are not tight
and are significantly sub-quadratic. Duris and Galil [DG] and Karchmer [Ka]
exhibit languages that require a time-space trade-off of T’S 2 12(n3). Gurevich and
Shelah [GS] give a language that requires a time-space trade-off of T2S>B(n2~‘)
on deterministic machines, but can be solved in linear time and logarithmic space
nondeterministically.

We give a very simple proof, that relies on our multiparty communication
complexity lower bounds, of a tight, quadratic, time-space trade-off for multihead
Turing machines. We actually prove a tight separation between the power of k-head
and (k + 1)-head Turing machines :

THEOREM 5. The (k + 1)-wise inner product function over n bit strings requires
a time-space trade-off of TS = O(n*) on any k-head Turing machine.

Note that this function can be computed in linear time and constant space on a
(k + 1)-head Turing machine. Note also that this lower bound, as well as the
separation proved between k-head and (k + l)-head Turing machines, is tight as
even a l-head Turing machine can simulate a (k + 1)-head Turing machine with
only a quadratic penalty in time and no penalty in space. Our bounds apply to the
nondeterministic, probabilistic, and average complexities as well.

1.3.2. Branching Programs and Formula Size

Our next time-space trade-off is for Boolean branching programs. Although the
improvements we have here over known results are rather modest (an extra log n
factor), we believe that the techniques are interesting. In particular, significantly
stronger bounds would follow if one could improve the lower bounds for multiparty
communication complexity.

A branching program is a directed acyclic graph with one source and with two
kinds of vertices: vertices that are labeled by an input variable; in this case they
must have out-degree two and one of the out-going edges must be labeled with 0
and the other with 1; the other kind of vertices are sinks and they are labeled with

PROTOCOLSAND TRADE-OFFS 209

1 or 0. The branching program computes a Boolean function in the natural way.
The size of the branching program is the number of vertices. A branching program
is called leveled if the vertices are partitioned into subsets, L,, L,, called the
levels, such that all the edges out of Li go to Li+ , . The number of levels is called
the length of the branching program, and the size of the largest level is called the
width. A leveled branching program is called oblivious if all the vertices on a single
level are labeled by the same variable.

The log of the width of a branching program corresponds to the space, and the
length corresponds to the time. In [CFL] it was observed that lower bounds for
multiparty communication complexity imply lower bounds on the length of
constant width branching programs. Their techniques, however, do not give any
nontrivial bounds when the width is allowed to be linear. Currently there is no
known result which would given even a 2n lower bound on the length of general
polynomial width branching programs. The best result along these lines is due to
Alon and Maass [AM] which gives an n log n lower bound on the length of
polynomial width oblivious branching programs.

We generalize the techniques of [AM] to take advantage of multiparty
communication complexity lower bounds and achieve stronger bounds. We present
an explicit function f* (in Logspace) such that:

THEOREM 6. Any oblivious branching program of length o(n log* n) computing f *
requires exponential size.

This time-space trade-off implies some new lower bounds for general branching
program size and for Boolean formula size. So far there was only one lower bound
technique known that achieves bounds above n log n, either for the size of formulas
over an arbitrary basis, or for general branching program size. This is the nearly
quadratic bound (n*/log n) due to NeEiporuk [Ne]. We give a new technique for
proving such lower bounds. Although the lower bounds we obtain are weaker than
Neciporuk’s, they apply to a different class of functions, and the technique we use
might be of interest.

COROLLARY 4.4. Any branching program computing f * requires Q(n log* n) size.

To obtain lower bounds on formula size, we show that formulas over an
arbitrary basis can be converted to branching programs of polynomial size, and of
length similar to that of the formula.

COROLLARY 4.5. Any boolean formula over an arbitrary finite basis that
computes f * requires Q(n log* n) size.

2. MULTIPARTY COMMUNICATION COMPLEXITY

2.1. Definitions

Chandra, Furst, and Lipton [CFL] introduced the following multiparty com-
munication game: Let j-(x,, xk) be a Boolean function that accepts k arguments

210 BABAI, NISAN, AND SZEGEDY

each n bits long. There are k parties, each having unlimited computational power,
who wish to collaboratively evaluate J The ith party knows all the input arguments
except xi. They share a blackboard, viewed by all parties, where they can exchange
messages. The objective is to minimize the number of bits written on the board.

The game proceeds in rounds. In each round some party writes one bit on the
board. The last bit written on the board is considered to be the outcome of the
game and should be the value of f(xl, xk). The protocol specifies which party
does the writing and what is written in each round. It must specify the following
information for each possible sequence of bits that is written on the board so far:

(1) Whether the game is over, and in case it is not over, which party writes
the next bit: this should be completely determined by the information written on
the board so far.

(2) What that party writes: this should be a function of the information
written on the board so far and of the parts of the input that the party knows.

DEFINITION. The cost of a protocol is the number of bits written on the board
for the worst case input. The multiparty communication complexity off, C(f), is the
minimal cost of a protocol that computes f:

We shall also be interested in the number of bits needed in order to compute f
correctly on most inputs.

DEFINITION. The bias a protocol P achieves on f, B(P, f), is defined to be

B(P, f I= lPrCP(x) =fb)l - PrCP(x) Pfb)ll,

where x = (x1, xk) is chosen uniformly over all k-tuples of n-bit strings.

DEFINITION. The .+distributional communication complexity of f, C,(f) is the

minimal cost of a protocol which achieves a bias of at least E on f:

Let us mention that it is possible to define natural probabilistic and nondeter-
ministic versions of the multiparty communication complexity. As we shall see in
Section 2.6, our techniques are strong enough to give the same lower bounds for all
these complexity measures (Subsection 2.6).

These measures of complexity refer to worst case inputs. There are natural
corresponding concepts of aoerage case complexities, and we shall see that similar
lower bounds apply to them.

2.2. Cylinder Intersections

In this subsection we study the basic structure that a multiparty protocol induces
on the set of possible inputs, the set of k-tuples.

Consider a multiparty protocol for evaluating a function. For every possible

PROTOCOLS AND TRADE-OFFS 211

k-tuple x = (x,, xk) a certain communication takes place, and some string is
written on the board. The k-tuples may be partitioned according to the string that
gets written on the board.

DEFINITION. Let s be a string and P a multiparty protocol. The s-component,
x P,SY is defined to be the set of k-tuples x E ((0, 1 }n)k such that on input x the
protocol P results in exactly s being written on the board.

The s-components have a special structure, which we will now specify.

DEFINITION. A subset S of k-tuples is called a cylinder in the ith dimension, if
membership in S does not depend on the ith coordinate. A subset of k-tuples is
called a cylinder intersection if it can be represented as an intersection of cylinders.

LEMMA 2.1. For any protocol P and string s, X,, s is a cylinder intersection.

Proof Define Si to be the set of k-tuples that is consistent with the communica-
tion string from the ith party’s point of view. I.e.,

si= {(Xi, . ..) xk) : for some xi, (x,, xi, xk) E X,, s}.

It is clear that for each i, Si is a cylinder in the ith coordinate. We shall show that
XP,s=ni si-

It is clear that X,, c ni Si, so it remains to show that ni Sic X,,,. Let
(x 1, ---3 xk) E ni Si. Then for every i there exists xi such that (x,, xi, Q)E
x . We claim that on input (xi, xk) the protocol will write s on the board.
Tl%’ reason is that all through the communication process the ith party cannot
distinguish between the input of (x,, xk) and the input of (xi, x], xk). Thus,
the bits written on the board will never deviate from s. 1

Given a protocol which computes a function f, the value off must be constant
over any single s-component. Our lower bounds will be based upon the fact that for
our particular functions f, any cylinder intersection must contain approximately the
same number of l’s and O’s of the function.

DEFINITION. Let f: ({ 0, 1 In)’ + { 0, 1 } be a boolean function. The discrepancy of
f is

Qf)=m;x IPr[f(x)=l and XES]-Pr[f(x)=O and XES]I,

where S ranges over all cylinder intersections and x is chosen uniformly over all
k-tuples.

LEMMA 2.2. For any function f,

C(f 12 1%
1 (> r(s)

212

and

BABAI, NISAN, AND SZEGEDY

C,(f) ~1% f;f) . (4
ProofI Consider a protocol P achieving a bias of E on 1: We can compute the

bias of P on f as the sum of the biases achieved on the different s-components,

Bias(P, f) = IPr[P(x) =f(x)] - Pr[P(x) #f(x)]1

<c IPr[P(x)=f(x) and XEX~,~I-Pr[P(x)#f(x)andx~X,.]I,

where s ranges over all the possible strings that may be written on the board by the
protocol.

For any XEX,,., P(x) was defined to be the last bit of s, thus

IPr[P(x)=f(x)andxEX,,.]-Pr[P(x)#f(x)andxEX,,.]I

=)Pr[f(x)=landx~X~,,]-Pr[f(x)=Oandx~X~,~](.

Since X, s is a cylinder intersection, we find that the last quantity is bounded from
above by f(f). Thus, if M is the number of different possible strings that may be
written on the board by the protocol P, we obtain

Bias(P, f) < A4 . r(f).

The statement of the lemma follows, since to produce M different strings requires
at least log, M bits. 1

2.3. The Discrepancy of Near Hadamard Matrices

In this subsection we give some motivation to the proof technique for the
discrepancy bounds to follow in the subsequent two subsections. Although the
direct implications of the observations below pertain to the two-party situation
only, it may be instructive to see the root from which the general idea evolved.

Our lower bounds for multiparty protocols will be based on discrepancy
estimates over cylinder intersections (Lemma 2.2; see also Subsection 2.6). The
situation for two parties is greatly simplified by the fact that a “cylinder intersec-
tion” in dimension 2 is simply a rectangle, i.e., a submatrix.

An N x N matrix A with (1, - 1)-entries is called an Hadamard matrix, if
A’A = NZ, where Z is the identity matrix and A’ is the transpose of A.

For N = 2”, an N x N Hadamard matrix can be constructed as follows: let the
rows and columns be labeled by the n-dimensional vectors over GF(2), the field of
two elements; and let the entry in position (x, y) be (- l)X.y, where x . y denotes
the standard inner product C x,y, (over GF(2)).

PROTOCOLS AND TRADE-OFFS 213

The Chor-Goldreich proof of the 6?(n) lower bound for the (two-party) distribu-
tional communication complexity of the “inner product mod 2” function is based on
the observation, attributed to J. H. Lindsey (see [ES, p. 88]), that the sum of the
entries in any r x s rectangle of an N x N Hadamard matrix is at most &?. The
matrix corresponding to the “inner product modulo 2” function being Hadamard,
the result applies directly. Chor and Goldreich also point out that the p x p matrix
(p an n-digit prime) with (i, j) entry ((i - j)/p) (Legendre symbol) is “nearly
(Hadamard” and therefore a similar argument proves an Q(n) lower bound on its
distributional communication complexity.

The results of the next two subsections will generalize these observations to
k parties; and the proof of Lindsey’s result for “nearly Hadamard” matrices,
essentially a Cauchy-Schwarz argument, is at the root of the idea of the proofs.

We review the generalized Lindsey inequality. We use I(u[(to denote the
Euclidean norm of the vector U, and llBllol, to denote max Ibiil, where B= (b,) is a
matrix. The entries of the matrix A in the proposition below are arbitrary complex
numbers. The asterisk denotes conjugate-transpose; so for a vector u we have
llull = fi; and if th e entries of A are real then A * = A’.

PROPOSITION 2.3. Let A = (au) be an N x N matrix and D = IIA*A - NIlI,. Let
R, SE { 1, N}, I RI = r, I SI = s. Let T be the sum of entries in the rectangle R x S,
i.e..

T= c 1 au.
ieR jaS

Then

Remarks. In the case of Hadamard matrices D=O, so we obtain the upper
bound @. “Small perturbations” typically yield near Hadamard matrices with
D = O(,/$; in this case (Tl = 0(N7’8). It is this latter bound that will be
generalized in the next two subsections to the discrepancy of the k-dimensional
matrices describing the “generalized inner product” and the “quadratic character of
the sum of coordinates” functions.

For (1, -1)-matrices, the quantity D measures the deviation from Hadamardness.
Since the proposition does not restrict the entries of A to + 1, it is actually more
natural to consider its deviation from being unitary. Let D,, = I(A *A - III o. denote
this quantity. Now the proposition is equivalent to the following statement:

(To see the equivalence, divide A by ,/%.)

Proof: Let u and w denote the incidence vectors of R and S, respectively, i.e.,
(0, 1)-vectors of length N indicating the elements of R and S. Then T= o*Aw. It

571/45/2-S

214 BABAI, NISAN, AND SZEGEDY

follows by the Cauchy-Schwarz inequality that (TI < ((VII . IIAw/. We note that
ljvll = ,,/? and estimate the other term,

IIAwl(*=w*A*Aw<Nw*w+ Iw*(A*A-NZ)w(<Ns+ Ds*.

The stated inequality now follows. t

We state a corollary regarding two-party distributional complexity. A Boolean
function f in 2n variables can be described by a 2” x 2” (0, 1)-matrix. Replacing’
each zero by - 1, we obtain the (1, - 1)-matrix representing f:

COROLLARY 2.4. Zf the 2” x 2” (1, -l)-matrix representing the Boolean function f
is near Hadamard with D = O(N’ -‘) f or some constant c > 0 (N = 2”), then
C,(f) = Q(n).

2.4. A Lower Bound for Generalized Inner Product

In this subsection we prove a lower bound on the multiparty communication
complexity of the generalized inner product (GIP). The bound will follow via
Lemma 2.2 from an upper bound on the discrepancy of GIP over cylinder intersec-
tions (Lemma 2.5).

DEFINITION. The k-wise generalized inner product function of n-bit strings
x,, xk is defined by

GIP, ,Jxi, xk) = 1 iff the number of positions in which each xi has 1 is odd.

We first introduce the f l-version of GIP for easier handling of the discrepancy.

DEFINITION. f(x,, xk) is 1 if GIP(x,, ..,, x,J = 0 and - 1 if GIP(x,, xk) = 1.

DEFINITION. Let

&r)=+m,a;l lx, EXk f(x,, xk) dl(xl, xk)...&(xIY +A > 3

where the maximum is taken over all functions #i: ((0, l}“)” + (0, 1 > s.t. di does
not depend on xi.

The E stands for expected value over all the possible 2”k choices of xi, xk.
Note that dk(n) is exactly T(GIP,,.), the discrepancy of the k-wise inner product
function on n-bits.

LEMMA 2.5.

where pk is given by the recursion : pl = 0, and & = ,/=2$

PROTOCOLS AND TRADE-OFFS 215

Note. It can be shown by induction that j& < 1 - 4iPk < e-4’-k.

ProoJ We proceed by induction on k. It is clear that d’(n) = 0, except for the
case n = 0, where we obtain 1 (let us define 0’ = 1 for this paper).

Let k 2 2. Since 4k does not depend on xk and l$kl G 1,

Ak(n) < E IE f(x,, xk) &(x1, xk) “‘dk- 1(x1, +)I.
X,r Xk-, Xk

In order to estimate the right-hand side, we shall use the following version of the
Cauchy-Schwarz inequality :

Cuuchy-Schwarz Inequality. For any random variable z: E[z]’ < E[z’].

Thus our estimate is

dk(n)< E [Ef(xr, +)41(x,,&)..‘&_.(xi, &]2]1’2
X,r...rXk-I Xk

= [: E f(x,,...,x,-,,U)f(X1,...,Xk-l,u)~f;~(;.”~~_1~~-,]1’2,
U, “, X1, w-t

where 4; stands for Qi(x,, x&i, u), and & for bi(x,, xk_,, u).
To estimate this we shall need the following observation: For every particular

choice of 2.4 and 0, f(xi , xk _ 1, u) f(xl , xk _ 1, u) can be expressed in terms of
the function f on k - 1 strings of a possibly shorter length. Inspection reveals that
f@ 1, .*., xk-_l, U)f(XI, .**, xk_ , , 0) iS Simply f(Z,, zk_ ,), where zi iS the
restriction of xi to the coordinates j such that uj # vi. We shall now view each xi
as composed of two parts: zi and yi, where zi is the part of the x where uj # uj, and
yi is the rest (this is done separately for every u, u).

For every particular ‘choice of u, u and consequently y , , yk_ i, we define a
function of the “z-parts”,

where each xi is obtained by the concatenation of the corresponding yi and zi. We
can now rewrite the previous estimate as

dk(n) < [E E S”, 0, Y,.yk-I 112 1 7 u,u Y,.....Yk-,

where S”,“*YL~ ..‘*Yk-l is defined by

S U.".YI.-.Y~-I= E f(z,,...,zk_l)~I;.".Y~.~~~.~k-~(zl,...,zk_-l)...
=I. =k - I

. . . <lt”‘y”““yk-‘(z,, . ..) Zk_ ,).

Now 9 S”,“*Y1~~~~~Yk-l can be estimated via the induction hypothesis. Indeed note

216 BABAI, NISAN, AND SZEGEDY

that <y. U.Yl. -..Yk-l does not depend on zi. Thus the previous estimate of k(n) is
bounded by

A%)<[E Ak- ‘(m, ,)]“*
U,“,Y ,...., .X-l

where m, v is the length of the strings zi, which is equal to the number of positions
j such that uj # uj.

Since u and u are distributed uniformly in { 0, 1 }“, m, u is distributed according
to the binomial distribution. For any constant m, the probability that m, D = m is
exactly (i) 2-“. Thus the previous estimate is given by:

d*(n)+_ (3 ~-“P:-I]I-~

= [2-“(1 +&I)n]1’2=&.

This completes the proof of the lemma. 1

Combining this bound with Lemma 2.2 we obtain:

THEOREM 2.

2.5. A Lower Bound for the Quadratic Character

In this section we prove a lower bound on the multiparty communication
complexity of the “quadratic character of the sum of coordinates” function (QCS).

DEFINITION. Let QCS,, k(xl, xk) be ((xi + . .. + x,)/p), where p is an n-bit
prime, x,, xk are n-bit integers (zeros allowed on the left), and (x/p) denotes the
Legendre symbol.

As in the previous subsection, the lower bound on the communication
complexity of QCS, k will follow via Lemma 2.2 from an upper bound on the
discrepancy of this function over cylinder intersections. The discrepancy bound in
turn will be derived by extending character sum estimates of A. Weil.

Let x be a multiplicative character of order d > 1 over Fp. (In our applications
d= 2 and x(x) = (x/p) is the Legendre symbol.) Let g(x) be a polynomial over Fp.
We say that g is a constant times a full dth power if g(x) = c. (h(x))d for some
CE Fp and h(x) E F,[x]. We shall use the following estimate from the theory of
character sums (cf. Schmidt [Sch, p. 43, Theorem 2C]).

PROTOCOLS AND TRADE-OFFS 217

THEOREM (A. Weil). If g E F,[x] has m distinct roots in the algebraic closure of
Fp and g is not a constant times a full dth power then

,ZIF x(g(x)) G (m - 1) ~5. (1)
P

Our chief tool will be a generalization of this result. We replace x by Cr= 1 Xi and
extend the summation over a subdomain of Fi only. The subdomain will be an
intersection of k cylinders.

LEMMA 2.6. Let p be an odd prime and d, s, k be positive integers. Assume d 2 2
and s < p. Let x: F, + C be a multiplicative character of degree d and let g E F,[x].
If g has at most s distinct roots in the algebraic closure of F, and g is not constant
times a full dth power, then for arbitrary (0, 1)-valued functions 4,(x1, xk),
4k(X, > --., xk), 4i: Fi -+ (0, I}, such that q5i does not depend on the ith variable, we
have

c c ... 1 xMx,+ ... +x/c))h
x, E I$ x2 E Fr XkEFp

-+I <c(s, k).pk-2-‘, (2)

where c(s, k) = 2. ((2k-1s- 1)/2)2-‘k-“.

Remark. Observe that for s <k, we have c(s, k) < 3. In our applications, s = 1.
We need the more general result for the sake of the proof by induction.

Proof We first observe that g must satisfy the following condition:

Condition (*). For some root a of g in the algebraic closure of F,, not all
elements a + t, t E Fp, have the same multiplicity modulo d.

Indeed, this follows from the two assumptions that s < p and g is not a constant
times a full dth power. For the inductive proof, we shall drop these two assump-
tions and assume Condition (*) only. (This, of course, still implies that g is not a
constant times a full dth power, but weakens the s < p condition.)

Now we proceed by induction on k. The case k = 1 is precisely Weil’s character
sum estimate (1).

Assume k > 2. Let S denote the sum to be estimated. Then, clearly

We use the Cauchy-Schwarz inequality to estimate the right-hand side:

218 BABAI, NISAN, AND SZEGEDY

We expand the squares on the right-hand side. The following notation will be
convenient:

F”,“(x) = g(x + u) g(x + II);

I)? “(x,, . ..) ~k-l)=~i(~l~~~~~xk-l~u)~i(xl~~~~~xk-l~u)~

Observe that ll/> ” does not depend on xi. With this notation the right-hand side of
inequality (3) expands to

P (k- I)/2 . 1 S(u, u), (4)
U,UEFp

where

(We have used u and u to denote the two occurrences of xk and moved the summa-
tion over (x1, xk_ i) inside.)

For u # u we observe that S(u, u) is just an instance of the sum S in (2), with
k - 1 in the place of k and 2s in the place of s.

In order to justify this claim, we have to see that F”, ’ satisfies Condition (*).
Let R be the multiset of roots of g in the algebraic closure of FP. Then R has a

member 01 defined in Condition (*).
The set of roots of F"* ” is the multiset (R - u) u (R - u). Let pi denote the multi-

plicity of 01+ i(u - u) in R. Observe that the multiplicity of c(7 u+ i(u- u) in the
multiset (R - u) u (R - u) is pip 1 + pi. Therefore if F”* ” does not satisfy Condi-
tion (*) then for some A, we have pi_ 1 + pi = 1 mod d for every integer i (subscripts
are taken mod p). Hence pi_ 1 = pi+ 1 mod d. Since p is odd, it follows that all the
pi are congruent mod d, contrary to the choice of ~1. This observation sets up the
conditions for an inductive step.

We infer by induction that for u # u

IS(u, u)l < ~(2s k - 1) pk-’ -2m(lr-“, . 3

For the case u = u we use the trivial estimate

IS(u, u)l <pk-‘.

Substituting into Eq. (4) we obtain

ISI <P’k-1)/2(P .pk-’ +p(p_ 1) c(2s, k- 1) pk----2-(k-“)1/2

+,&(2s, k- l)“* P~-~@=c(s, k) pkP2+.

This completes the proof of the lemma. 1

PROTOCOLSAND TRADE-OFFS 219

COROLLARY 2.7. For the discrepancy of the “quadratic character of the sum of
coordinates” function we have

Z-(QCS,,) < 2~-~-~.

ProoJ We just have to substitute the right parameters in Lemma 2.6. Let d= 2,
s= 1, and let x(x)=(x/p). Let the identity function x play the role of g in
Lemma 2.6. Now c(s, k) = c(1, k) < 2; the order of x is d = 2; the polynomial x is
not a full square and has s = 1 root. Thus all the conditions are met. The conclusion
is that the sum off over any cylinder intersection is less than

2pk- 2-‘.

Dividing by pk, the size of the space, we obtain the desired bound. 1

Combining this bound with Lemma 2.2, we obtain:

THEOREM 1. If p is an n-bit prime, then

C,(QCS, k) = Q(n2 -k + log E).

2.6. Probabilistic and Nondeterministic Protocols and Average Case Complexity

Upper bounds for the discrepancy over cylinder intersections yield lower bounds
for the communication complexity in models far more powerful than the deter-
ministic protocols considered so far, and they extend to average case complexity.

Next we consider nondeterministic and probabilistic protocols. In a nondeter-
ministic protocol each player may act nondeterministically. In this model, at each
step the protocol may specify a set of possible moves for each player instead of just
one possible move. A nondeterministic protocol computes a function f if for any
input x such that f(x) = 1 there exists a nondeterministic choice for which the
protocol outputs 1, and for each x. such that f(x) = 0 for all nondeterministic
choices the protocol outputs 0. The cost of a protocol is the worst case number of
bits written over all inputs and all nondeterministic choices, and the nondeter-
ministic complexity off, C”(f), is the minimal cost of a nondeterministic protocol
that computes f:

The discrepancy may also be used to give lower bounds on the nondeterministic
complexity.

LEMMA 2.7. Let p be the fraction of k-tuples x for which f(x) = 1. Then

C”(f)2 lOg,(P/r(f))

Proof: As in the case of deterministic protocols, for a nondeterministic protocol
P and each string s that may be written on the board consider the s-component,
x P,SV which is the set of inputs x for which some nondeterministic choices result in
s being written on the board. As opposed to the deterministic case now the various
s-components do not necessarily partition the space of k-tuples. It is still true,

220 BABAI, NISAN, AND SZEGEDY

however, that each s-component is a cylinder intersection (the proof of Lemma 2.1
carries over). Finally, all the l’s of f must be covered by some component which
outputs 1. No such component may contain any zeros of f and thus its size is
bounded by r(f). 1

A probabilistic protocol is a probability distribution over deterministic protocols.
It computes a function f if for every input it produces the correct answer with
probability 3 (probability taken over the distribution of deterministic protocols).
The cost of a randomized protocol is the worst case over all inputs of the expected
number of bits written on the board. The randomized complexity off, CR(f), is the
minimal cost of a randomized algorithm that computes f. (Note. We consider here
a strong notion of randomized protocols; they are allowed to make a bounded two-
sided error, and the parties have shared common random coins-the description
of the deterministic protocol that was chosen randomly.) The distributional
complexity gives a lower bound to the randomized complexity.

LEMMA 2.8.

C”(f) 2 C,,,(f) 2 l%(W~(f))).
Proof A straightforward averaging argument shows that one of the deter-

ministic protocols making up a probabilistic protocol for f must be correct on at
least 3 of the inputs. The rightmost inequality is a restatement of Lemma 2.2. m

The deterministic, nondeterministic, and probabilistic models considered so far
are all worst cuse models. We may be interested in the median cost (over all inputs)
of a (deterministic, nondeterministic, or probabilistic) protocol. One can in fact
show that the discrepancy upper bound implies that in each of these models, almost
every input is hard.

Let X be one of the letters D, N, P, referring to deterministic, nondeterministic,
and probabilistic protocols, respectively. The b-threshold of a set S of real numbers
is the smallest CK such that a 6 fraction of the members of S is <a. The &threshold
complexity of a protocol of type X is the d-threshold of the costs of the protocol
over all inputs (all “yes” inputs in the nondeterministic case). The b-threshold com-
plexity of a function f in model X is the minimum of the b-threshold complexities
of all protocols of type X, computing the function f: We denote this quantity by

Cx- 6(f). If this quantity is large then a 1 - 6 fraction of the inputs is hard for
protocols of type X.

LEMMA 2.9.

CYf) 2 l%,(Wr(f)).

C”*?f) 3 l%,(~Pl~(f)).

C”?f)2 ,lo; 6, .lW
6

(> Wf) .

(Here, c is an absolute constant < 20.)

PROTOCOLSAND TRADE-OFFS 221

Proof The number of homogeneous (all zeros or all ones) cylinder intersections
required to cover a 6 fraction of the input is at least S/r(f), hence the first
inequality.

The argument for the nondeterministic case is the same except we cover the “yes”
inputs only.

For the probabilistic case, we repeat the protocol c /log 61 times and take the
majority vote. This ensures that the probability of error will be (6/3 on every input.
Now, as before, by the usual averaging argument we see that one of the deter-
ministic protocols making up the probabilistic protocol must be correct on a
1 - 6/3 fraction of the inputs. Restricting our attention to the least expensive 6
fraction, we see that on that set the protocol still achieves a bias > 5 and therefore
has cost >log,(1/3r(f)). 1

We thus obtain that the lower bounds given in Theorems 1 and 2 apply also to
randomized and to nondeterministic protocols, even in the average case. In the
results below, 6 is an arbitrary positive constant.

THEOREM 1'. If p is an n-digit prime then

C N, '(QCS, k) = f2(n/2&)

CR, ‘(QCS,,, k) = f2(n/2k).

THEOREM 2'.

CNsG(GIPk,.) = Q(n/4k)

CR, ‘(GIP,, .) = f2(n/4k).

3. PSEUDORANDOM GENERATORS FOR LOGSPACE

In this section we show how to use our lower bounds for multiparty protocols
in order to construct pseudorandom generators for Logspace (or generally any
small-space machines).

3.1. Randomized Space Bounded Computation

We first review the definition of randomized space bounded computation. There
are several subtle points to consider when defining randomized space-bounded
classes. We shall present here the “correct” definition. For an overview of the
subtleties involved we refer, e.g., to [BCDRT].

DEFINITION. A randomized, space s(n) Turing machine is defined to have the
following properties:

222 BABAI, NISAN, AND SZEGEDY

(1) The Turing machine runs in space s(n) on any input of size n.

(2) The Turing machine may flip a fair unbiased coin at any stage.
(3) The Turing machine may never get into an infinite loop, for any sequence

of coin flips. In particular, with probability 1 it terminates in time exp(s(n)) on any
input of length n.

A Turing machine accepts a language L with one-sided error if for every x E L the
machine accepts with probability at least $ and for any x not in L it rejects with
probability 1. A Turing machine accepts a language L with two-sided error if for
any x E L, the Turing machine accepts with probability of at least 3, and for any x
not in L it rejects with probability of at least 3.

RSPACE(s(n)) is the class of languages accepted with one-sided error by space
s(n) randomized Turing machines. BPSPACE (s(n)) is the class of languages
accepted with two-sided error by randomized space s(n) Turing machines. RL is
RSPACE(O(log n)), and BPL is BPSPACE(O(log n)). (Our notation differs slightly
from [BCDRT]. They use RLP and BPLP, resp., to denote these classes.)

We want to focus attention on condition (2), the kind of access the machine has
to the random bits. As defined, the randomized Turing machine has access to the
random bits one by one. When it wants a random bit it can flip a coin, but in no
case can it go “back” and review the result of a previous coin flip. Any bit that it
wishes to “remember” must be kept in the limited storage. This restriction that the
machine does not have multiple, two-way, access to the random bits is essential, as,
for example, random-Logspace machines with two-way access to the random bits
are not even known to be in deterministic polynomial time (in contrast to RL and
BPL being in P).

It is interesting to note that the same apparent difference in power between one-
way and two-way access holds also for nondeterministic computation. In the
“correct” definition of NL, the Turing machine has one-way access to the
nondeterministic bits. If the definition is changed to allow two-way access to
nondeterministic bits, then the machines turn out to have the full power of NP.

3.2. Space Bounded Statistical Tests

We are interested in producing pseudorandom sequences that might be used
instead of truly random sequences in space bounded computations. Thus the
statistical tests that must be passed by the generator are the ones that can be per-
formed by a space bounded Turing machine on its random source. Note that this
class of tests is a proper subset of the tests that can be performed by space bounded
machines on their input tape.

We shall allow non-uniform statistical tests as well.

DEFINITION. A space-s(n) statistical test is a deterministic space s(n) Turing
machine M, and an infinite sequence of binary strings a= (a,, a,,, . ..) called the
advice strings. We require that the length of a, is at most exp(s(n)).

PROTOCOLS AND TRADE-OFFS 223

The result of the test on input x, M”(x), is determined as follows: The string a,,
where n is the length of x, is put on a special read-only tape of M called the advice
tape. The machine A4 is run on the advice tape, treating it as a normal input tape.
The machine has the following one-way mechanism to access x: at any point it may
request the next bit of x (in the same fashion as a randomized Turing machine may
request the next random bit).

Note that these tests have considerable power. We next give some examples of
operations that can be performed and combined by Logspace tests:

Consider the input as partitioned into consecutive words, each of some fixed
small length (O(log n)). The following questions can all be answered by a Logspace
test.

?? Count the number of times a certain value appears.

?? Compute the average value of a word.

?? Compute the standard deviation, or higher moments.

?? Compute any of the previous measures for an arbitrary subset of the words,
or of the bits.

In fact most of the statistical tests described by Knuth [Kn] lie in this class.

3.3. Pseudorandom Generators for Space Bounded Computation

A pseudorandom generator for space s(n) must produce strings that look random
to any space s(n) statistical test.

DEFINITION. G= (G,: (0, l}‘(“)+ (0, l}“} is called a pseudorandom generator
for s(n), if for every polynomial p(n), all large enough n, and every space s(n)
statistical test M”,

IPr[M”(y) accepts] - Pr[M”(G(x)) accepts]1 6 l/p(n),

where y is chosen uniformly in (0, 1 }” and x is chosen uniformly in (0, 1 }I@).

The first observation we should make when trying to construct a pseudorandom
generator for space-bounded Turing machines is that, without loss of generality, we
can restrict the class of statistical tests that have to be passed. In a fashion similar
to Yao’s [Y2] results for general (polytime-hard) pseudorandom generators, one
can show that any generator that passes all space s(n) prediction tests will be a
pseudorandom generator for space s(n).

DEFINITION. The family G = { G,: (0, 1 } en) + { 0, 1 }” > of functions passes all
space-s(n) prediction tests to within E(n) if for every space s(n) statistical test M”,
and every 1~ i < n,

IPr[M”(first(i- 1) bits of G(x)) = ith bit of G(x)] - fl <e(n),

224 BABAI, NISAN, AND SZEGEDY

where x is chosen uniformly from (0, 1 } 'W G is said to pass all space s(n) predic- .
tion tests if for any polynomial p(n), G passes all space s(n) prediction tests to
within l/p(n) for all sufficiently large n.

LEMMA 3.1. G is a pseudorandom generator for space s(n) iff it passes all space
s(n) prediction tests.

Proof. Similar to Yao’s proof [Y2]. I

3.4. The Generator

Our generator is based on a function f that takes k arguments, each r bits long,
and has high multiparty communication complexity.

THE GENERATOR.

Input. The input to the generator will consist of t boolean strings, each r bits
long (all together, rt random bits).

Output. Each output bit will be of the form f(S), where S is some cardinality
k subset of the input strings. The order is extremely important, and we shall take
all the k-subsets in the antilexicographic order. (I.e., f(S,) appears before f(S,) if
the last string in the symmetric difference of S, and S2 belongs to S,.) All together
there are (L) output bits.

LEMMA 3.2. For any E > 0 and s < C,(f)/k, the above generator passes all space
s prediction tests to within E.

Proof. Assume not; we shall give a multiparty protocol that predicts f with bias
E using less than C,(f) bits of communication. Suppose the Ith bit, f(S), can be
predicted by the Turing machine, where S = {xi,, xi,, xik}, and i, > i, > ... > i,.
We shall now show how k parties, the jth knowing the values of each xi in S except
xi/, can predict f(xi,, xi,, x,), with low communication.

By an averaging argument, it is possible to fix the values of all x;s not in S to
constants in some way, while preserving the prediction bias of the Turing machine.
Thus we can assume w.1.o.g. that all x;s not in S are fixed and known to all the
parties beforehand.

The parties will simulate the Turing machine running on the first I- 1 bits of the
output of the generator. Since the parties have unlimited power, they have no
problem simulating the Turing machine as long as they have access to the input bits
which the Turing machine reads (or can compute them from the information they
have). In our case, however, no single party can do so, since each party is missing
the value of xi, for some j, which is needed to compute some of the input bits (i.e.,
bits of the form f(T), where T contains xi,).

In our simulation each party simulates the Turing machine for as long as it can
and then sends the current state of the machine to the next party to continue the

PROTOCOLSANDTRADE-OFFS 225

simulation. The simulation starts with the first party (i.e., the party missing only
xi,). Note that this player can simulate the Turing machine until the lirst time that
a bit involving xi, is read by the Turing machine. At this point the first player sends
the total state of the Turing machine to the second player who continues with the
simulation. This player can now continue the simulation until the first point where
a bit involving xiZ is read, at which point he sends the state of the machine to the
third player, etc. This continues all way to the kth player.

The important thing to notice is that once the last player starts with the simula-
tion, he can continue it until the prediction of f(S). This is so because of the
ordering of the bits of the generator that we chose. Consider the point where the
first party cannot continue the simulation since a bit involving xi, first appears.
Because the sets used to compute the bits of the generator were ordered in anti-
lexicographic order, we observe that all sets from this point on, until S, contain xi,.
Similarly, once xi2 appears it remains in every set until S, etc. So, when the kth
party cannot continue the simulation, the next set must contain all of xi,, x4; i.e.,
it must be S that is the point where the Turing machine makes the prediction.

Sending the total state of the Turing machine requires s bits, and since this is
done in our simulation only k - 1 times, we obtain a protocol that requires only
(k- 1)s bits and predicts f(S) with a bias of E. This contradicts the choice of
s < C&f)/k. I

We can now state the main result of this section:

THEOREM 3. For some constants c, , cz > 0, there exists an explicit pseudorandom
generator, G= {G,: (0, l}‘@)+ (0, l}“>, for space 2’l*, where I(n)=2C2fi.
Moreover, G can be computed by a Logspace Turing machine (having multiple access
to its input bits).

Proof We use the construction of the generator described in this section, with
f being the “generalized inner product” function, k = 2 &, t = 2k, and r = 8k.
Theorem 1 guarantees the high communication complexity of this function, and
thus Lemma 3.2 shows that the generator passes all prediction tests, and Lemma 3.1
concludes that it is a pseudorandom generator. 1

3.5. One- Way vs. Two-way Access to Randomness

Our generator sheds some light on the difference between one-way and two-way
access to the random bits given to Logspace machines. We show that two-way
access is better, at least in the sense that fewer random bits are necessary.

COROLLARY 3.3. A randomized Logspace Turing machine with one-way access to
the random bits that uses a polynomial number of random bits can be simulated by
a randomized Logspace machine with two-way access to the random bits that uses
only 2 O(6) random bits.

571145/2-6

226 BABAI, NISAN, AND SZEGEDY

Proof: Our generator can be implemented by a Logspace machine having two-
way access to the random bits. The generator can be easily run “on the fly” and can
generate one bit at a time to supply to the original, simulated machine, whenever
it flips a coin. 1

Recently, Nisan [Nil] exhibited another way in which two-way access is better
than one-way access; any randomized Logspace machine with one-way access to
the random bits which accepts a language with two-sided error can be simulated by
a zero-error randomized Logspace machine that has two-way access to the random
bits.

3.6. Universal Sequences

One of the most interesting subclasses of Logspace statistical tests are those
related to walks on graphs. Given a graph H on the advice tape, a Logspace
machine can treat the input to the test as directions for a walk on the graph and
perform the walk. Thus the output of a pseudorandom generator for Logspace will
behave like a random walk on any graph. We use this fact to construct universal
traversal sequences.

DEFINITION. A graph is called (d, n)-labeled if it is a d-regular graph on n ver-
tices and the edges adjacent to each vertex are labeled by a permutation of
{ 1, d} (an edge may be labeled differently at each of its two vertices). A string
w E { 1, . ..) d} * is said to cover a (d, n)-labeled graph, if w, when treated as directions
to a walk on the graph, visits all vertices on the graph, whatever the starting vertex
is.

DEFINITION. A string w E { 1, d}* is said to be a (d, n) universal traversal
sequence if it covers every (d, n)-labeled graph.

[AKLLR] showed that a random string of length 0(d2n3 log n) is a (d, n)-
universal sequence with high probability. Results shown in [KLNS] imply that a
random string of length O(dn3 log n) actually suffices. However, explicit construc-
tion of short universal sequences is more difficult. Explicit constructions are known
for two special cases: for d = 2 an explicit construction is known of polynomial
length universal sequences [Is]; and for d= n - 1 an explicit construction of length
n logn is known [KPS]. Our pseudorandom sequences allow us to give (d, n)-univer-

sal sequences of length 22o’fi’ for all values of d.
We shall be using the output of the generator as a random walk. A technical

issue that should be mentioned is that we need to convert the binary string which
is the output of the generator to a string in (1, d}. One way to do this is to take
every 5 log n consecutive bits modulo d. This way a uniform distribution on a
binary string will be converted to an almost uniform distribution on walks.

PROTOCOLS AND TRADE-OFFS 227

LEMMA 3.4. Let G= {G,: (0, 1)““) + (0, 1 }““} be a pseudorandom generator for
Logspace. Then for every (d, n)-labeled graph H, G(x) (converted as mentioned) will
cover H with probability at least 4 (probability taken over a random choice of x).

Proof. The description of H can be put in the oracle, and then a Logspace
machine can perform the walk on H given by its input. A truly random string y of
length n4 converted in this manner will result in a nearly uniformly random walk
on H and, as such, will visit every vertex, starting from every vertex with proba-
bility of at least 1 - 1/3n2. A Logspace machine can determine whether vertex i is
reached in a walk starting from vertex j, and thus for every i, j, the probability that
G(x) (converted to a walk) will reach vertex i starting from vertex j, should be at
least 1 - 1/2n2. Thus the probability that there exist i, j such that the walk from i
does not reach j is at most), 1

LEMMA 3.5. Let G= {G,: (0, l}‘@)+ { 0, 1 }“‘} be a pseudorandom generator for
Logspace. Then the string achieved by the concatenation of G(x) for all possible 2’(“)
values of x (and converted as mentioned) is a (d, n) universal traversal sequence.

Proof: For each (d, n)-labeled graph H, half the substrings of the form G(x) will
cover H. Thus when one of these substrings is reached, whatever vertex the walk
is in, H will be covered by it. 1

Applying our generator to this lemma we obtain:

THEOREM 4. For every d and n, there exists an (explicitly given) (d, n) universal

traversal sequence of length 220’JG’. Moreover, the sequence can be constructed by
a Turing machine running in space logarithmic in the length of the sequence.

4. TIME-SPACE TRADE-OFFS

4.1. Trade-offs for Turing Machines

LEMMA 4.1. Let f(x,, xk) be a boolean function with multiparty communica-
tion complexity of C(f). Then any (k - 1)-head Turing machine that computes f from
the following input:

(where # # # # # # # means 1 spaces on the input tape) requires a time-space
trade-off of TS 2 1. C(f)/k.

Proof: We shall simulate the machine by a k-party protocol. At any point in
time the k - 1 heads may lie in at most k - 1 different xls (some heads may lie in
the same Xi or in the space between adjacent xi’s). At that point in time the TM

228 BABAI, NISAN, AND SZEGEDY

can be simulated by the party who has these k - 1 x;s (provided that party has the
total state of the TM). This party can continue to simulate the TM until some head
moves into the region of the “missing” xi. We call this event a transition. In this
case the simulation can be continued by a different party, one that now has all the
current xi)s. Thus the current simulating party will send the total state of the TM
to the new simulator, who will continue the simulation until the next transition.

The number of bits communicated at each transition is exactly S, the total space
of the TM. A TM that runs in time T can have at most kT/I transitions, since for
any head, the head must travel the I spaces between some two adjacent xi’s between
any two transitions that are caused by this head. All together at most kTS/f bits
were communicated in order to compute f thus this number is bounded from below
by C(f). The statement of the lemma follows. 1

We thus obtain the following lower bound:

THEOREM 5. For any fixed k, any (k - I)-head Turing machine computing the
k-wise generalized inner product function on n bit strings requires a time-space trade-
off of TS > Q(n’).

Proof: Theorem 1 assures the high multiparty communication complexity of the
generalized inner product function. In order to obtain the required spaces between
any two adjacent xls in the input, we can restrict ourselves to the case where the
first and last quarter of the bits in each xi are fixed to zeroes (or any constants).
This leaves the problem of computing the generalized inner product on n/2-bit long
strings, with n/2 spaces between each two arguments, and the bound follows
directly from the previous lemma. 1

The bound given in Theorem 5 applies also to nondeterministic and to
probabilistic (bounded two-sided error) Turing machines. This follows from
Theorem 2’ (end of Section 2) and the fact that the simulation given in the proof
of Lemma 4.1 carries over directly to allow probabilistic multiparty protocols to
simulate probabilistic Turing machines (that compute f with bounded two-sided
error) and nondeterministic protocols to simulate nondeterministic Turing
machines.

4.2. Trade-offs for Branching Programs and Formulas

The cornerstone of the argument of Alon and Maass [AM] is a Ramsey-like
lemma, which allowed them to use communication complexity lower bounds to
obtain lower bounds for branching programs. The following generalization of that
lemma will allow us to use multiparty communication complexity lower bounds to
achieve improved lower bounds for branching programs.

DEFINITION. Let C,, C,, C, be disjoint subsets of an alphabet z, and let
w E z*. We say w has t alternations relative to L,, .,., 2, if it can be broken up into
w = wi w2. .. w,, where for each i there exists jj such that wi E (z - Xj,)*.

PROTOCOLS AND TRADE-OFFS 229

LEMMA 4.2. Let C,, C,, Ck be disjoint subsets of Z such that for each i,
IZil = n. Let w E C*, where for every i, each letter in pi appears at most li times in
w, and let I= xi li. Then it is possible to choose 17, c .Z,, IIlk c C,., such that, for
every i, 1 nil 2 n/3”lk2 and such that w has at most [41/kJ alternations relative to
17 Ilk. 1,

Proof. The proof will proceed by induction on 1. For 1 <k the lemma is trivial
since some li=O. We shall assume the lemma is true for all integers smaller than
1 and prove it for 1. During the proof we shall assume w is “very long,” and thus
every letter appears in it at some point; this will focus attention on the general case,
and in the cases that w is “simpler” we can always imagine extending w to have the
desired properties.

For a string U, we shall say u uses Zi, if at least 3 of the letters rr E Zi appear in
U. Let wr be the longest prefix of w that uses exactly k - 1 of the Zls. (Such a prefix
must exist since the number of Cls used can increase by at most one at every
letter.) Let i, be the subscript of the “unused” Zi. Let w2 be the longest prefix of
w - w1 (i.e., w, after the w1 prefix is removed) that uses exactly k - 2 of the k - 1
Z;s used by wl, and let i2 be the unused index. We continue in this fashion
obtaining a sequence wl, wkl2 and i,, i,,, such that for 1 d j< k/2 we have:
(1) wj does not use Zi, and (2) for all i different from i,, ii, wj uses Zi (we do
not care whether w, uses Gil, C,_, or not). Let w’ be the suffix of w left after the
removal of w 1 . . . w~,~.

For j = 1, k/2, define c; to be the subset of Zi/ of letters that did not appear
in wj. Note that l&i,l > n/3, and that relative to these r,‘s, each wj has just one
alternation.

For all i different from i,, ik,, define l-,. to be the subset of Zi of letters that
appeared in at least k/4 of the strings wl, wk12. We count the total number pairs
(0, j) such that CJ E Ci, 1 <j< k/2, and Q appears in wj. Since each letter in &
appears in at most k/2 of the strings, and each letter in C - fi appears in at most
k/4 of the strings, we obtain an upper bound of (k/4). (n - ICI) + (k/2). I&l. Since
each of the strings w,, w,,, uses Ci we obtain a lower bound of (2n/3). (k/2).
A comparison of these two bounds implies that IIJ 2 n/3.

Since for all i different from i 1, ik,,, each letter of ri appeared at least k/4 times
in the prefix w, w2 . . . w,@, we obtain that each such letter may appear at most
li - k/4 times in w’. We are now ready to invoke the induction hypothesis on w’ and
r 1, &, with n replaced by n/3 and 1 replaced by I- k2/8 (since for k/2 values of
i, li decreased by at least k/4). This gives subsets ZT,, I7,, each of size at most
(43)I3 a(1 ~ k218 j/k2 = n,3 W/k=, relative to which w’ has r4(1- k*/8)/kl alternations, to
which we should add at most one alternation for each of wl, wk12. This adds up
to at most r41/kl, as stated. 1

This allows us to give width-length trade-offs for oblivious branching programs.
Let f be a boolean function on k-tuples of n-bit binary strings with multiparty com-
munication complexity C(f) and let m be any integer. Define the function f * as
follows:

230 BABAI, NISAN, AND SZEGEDY

INPUT. k ternary strings each of length 2n3” : x1, xk E (0, 1, *)2n3m. Each
ternary digit is encoded by two bits. (The total input size is N= 4nk3” bits).

OUTPUT. f computed on the strings derived after the deletion of the *‘s
from the input. (If the strings obtained after the deletion of the *‘s are not all of
length n, then output say, 0.)

LEMMA 4.3. Any oblivious branching program computing f * with length
L < NkmJ32 has width W > 2’(/)lkm.

Proof We shall restrict the domain of f * such as to achieve few alternations
and still remain with the function f. First, for each 1 < i< k let li be the median of
the number of times that each letter of xi appears in the branching program
(i.e., one of the two bits composing the ternary digit is queried by a level of the
branching program). From the bound on the length of the branching program,
an averaging argument shows that xi li< k2m/8. Our first restriction will be to
substitute * for all the letters in xi that appear more than Ii times in the branching
program; this leaves n3” letters in each xi.

We can now look at the string of input letters accessed by the branching
program; this string is composed of letters belonging to the different x;s. Viewed
this way we now use the preceding lemma and conclude that there exist subsets of
letters of each xi, of size n, such that the branching program has at most km alter-
nations relative to these sets. Let us restrict all the other input bits off * to *‘s and
look at the restricted branching program on these bits; this program computes f:

Note that k players in a multiparty communication protocol can simulate the
branching program, with one player doing the simulation till an alternation occurs,
and, on alternation, the name of the current vertex is sent to the next player. This
requires log W bits of communication per each alternation of the branching
program. The statement of the lemma follows, since the computation of f by
simulating our restricted branching program will take km log W bits and that
should be at least C(f). 1

Lemma 4.3, together with the lower bounds obtained in Theorem 1 on multiparty
communication complexity, yields the following bound.

THEOREM 6. Let f be the generalized inner product function, with k = log n/4, and
let f * be as described previously for m = log n/4, and let N be the total length of the
input. Then any obliviuous branching program of length o(N log’ N) requires width of
exp(NRo’) to compute f *.

COROLLARY 4.4. Any branching program computing f * requires size
S-2(N log’ N).

COROLLARY 4.5. Any boolean formula over an arbitrary finite basis computing f *
requires size B(N log’ N).

Proof Immediate from the following lemma. m

PROTOCOLS AND TRADE-OFFS 231

LEMMA 4.6. A boolean formula of size I over a basis of arity d can be simulated
by an oblivious branching program of length 1 and width ld.

Proof. By induction on the structure of the formula. Let the top gate of the for-
mula be G, of arity k (k < d), and let the subformulas feeding to G be fi , fk. We
shall simulate the formula by simulating an oblivious decision tree for G, where
each access to the value of some fi will be replaced by recursively simulating fi. The
important thing to take care of is that the width does not grow too fast. This can
be ensured by accessing the largest subformula first, then the second largest, etc.
This way the largest subformula need only be simulated once, the second largest
twice, and in general, the ith largest 2’-’ times.

The length of the resulting branching program is clearly the sum of the lengths
of the subformulas. The size of the ith largest subformula is bounded from above
by l/i, and the ith largest subformula is simulated at most 2’-’ times. Using the
induction hypothesis we can therefore bound the width of the branching program
by maxj=,...d2’-‘ld/id=ld. 1

REFERENCES ’

[AKLLR] R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. LovIsz, AND C. RACKOFF, Random walks,
universal traversing sequences and the complexity of maze problems, in “20th FOCS, 1979,”
pp. 218223.

CAM1 N. ALAN AND W. MAASS, Meanders, Ramsey theory and lower bounds for branching
programs, in “27th FOCS, 1986,” pp. 410-417.

CAUYI A. V. AHO, J. D. ULLMANN, AND M. YANNAKAKIS, On notions of information transfer in
VLSI circuits, in “15th STOC, 1983,” pp. 133-139.

[Awl M. AJTAI AND A. WIGDERSON, Deterministic simulation of probabilistic constant depth
circuits, in “26th FOCS, 1985,” pp. 11-19.

[BCDRT] A. BORODIN, S. A. COOK, P. W. DYMOND, W. L. Ruzzo, AND M. TOMPA, Two applications
of complementation via inductive counting, “Proceedings, 3rd IEEE Symposium on
Structure in Complexity Theory, 1988,” pp. 116-125.

CBFSI L. BABAI, P. FRANKL, AND J. SIMON, Complexity classes in communication complexity
theory, in “27th FOCS, 1986, pp. 337-347.

CBMI M. BLUM AND S. MICALI, How to generate cryptographically strong sequences of pseudo
random bits, in “23rd FOCS, 1982,” pp. 112-117.

CCFLI A. K. CHANDRA, M. L. FURST, AND R. J. LIPTON, Multiparty protocols, in “15th STOC,
1983,” pp. 9499.

cc01 A. COBHAM, “The Recognition Problem for the Set of Perfect Squares,” Research Paper
RC-1704, IBM, 1966.

CCGI B. CHOR AND 0. GOLDREICH, Unbiased bits from sources of weak randomness and
probabilistic communication complexity,” in “26th FOCS, 1985,” pp. 429442.

CDGI P. DURIS AND Z. GALIL, A time-space tradeoff for language recognition, Math. Systems
Theory 17 (1984), 3-12.

PSI P. E&S AND J. SPENCER, “Probabilistic Methods in Combinatorics,” Academic Press,
New York. 1974.

i FOCS=IEEE Symposium on Foundations of Computer Science. STOC=ACM Symposium on
Theory of Computing.

232 BABAI, NISAN, AND SZEGEDY

CGrl

CGSI

CHGI

CILLI

CIsl

CKal

[KLNS]

CKnl

CKPSI

CLVWI

CNel
[Nil]

[Ni2]

[Ni3]
CNWI
CRT1

CSchl

CVal

CYll

WI
cy31
cy41

V. GROLMUSZ, The BNS lower bound for multi-party protocols is nearly optimal, Inform.
and Cornput., to appear.
Yu. GUREVICH AND S. SHELAH, Nondeterministic linear time tasks may require substantially
nonlinear deterministic time in the case of sublinear work space, in “20th STOC, 1988,”
pp. 281-289.
J. H&TAD AND M. GOLDMANN, On the power of small depth threshold circuits, in
“31st FOCS, 1990,” pp. 610-618.
R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY, “Pseudorandom generation from one-way
functions, in “21st STOC, 1989,” pp. 12-24.
S. ISTRAIL, Polynomial universal traversing sequences for cycles are constructible, in
“20th STOC, 1988,” pp. 491-503.
M. KARCHMER, Two time-space tradeoffs for element distinctness, Theoret. Comput. Sci. 47
(1986) 237-246.
J. D. KAHN, N. LINIAL, N. NISAN, AND M. E. SAKS, On the cover time of random walks in
graphs, .I. Theorer. Probab. 2 (1989), 121-128.
D. E. KNUTH, “The Art of Computer Programming, Vol. II: Seminumerical Algorithms,”
Addison-Wesley, Reading, MA, 1981.
H. J. KARLOFF, R. PATURI, AND J. SIMON, “Universal traversal sequences of length no(log”)
for cliques,” Inform. Process. Lett. 28 (1988), 241-243.
M. LUBY, B. VELICKOVI~, AND A. WIGDERSON, Deterministic approximate counting for
multivariate polynomials over GF[Z], in preparation.
E. I. NEEIFQRUK, A boolean function, Sou. Math. Dokl. 7, No. 4 (1966), 999-1000.
N. NISAN, On read-once vs. multiple access to randomness in Logspace, in “Proceedings,
5th IEEE Structure in Complexity Theory Conference Barcelona, 1990,” pp. 179-184.
N. NISAN, Pseudorandom generators for space-bounded computation, in “22nd STOC,
Baltimore, 1990,” pp. 204212.
N. NISAN, Pseudorandom bits for constant depth circuits, Combinatorics 11 (1991), 63-70.
N. NISAN AND A. WIGDERSON, Hardness vs. randomness, in “29th FOCS, 1988,” pp. 2-11.
J. H. REIF AND J. D. TYGAR, “Towards a Theory of Parallel Randomized Computation,”
TR-07-84, Aiken Computation Laboratory, Harvard University, 1984.
W. M. SCHMIDT, “Equations over Finite Fields, An Elementary Approach,” Lecture Notes
in Mathematics, Vol. 536, Springer-Verlag, Berlin/New York, 1976.
U. V. VAZIRANI, Strong communication complexity or generating quasi-random sequences
from two communicating semirandom sources, Combinatorics 7 (1987), 375-392.
A. C. YAO, Some complexity questions related to distributive computing, in “11th STOC,
1979,” pp. 209-213.
A. C. YAO, Theory and applications of trapdoor functions, in “23rd FOCS, 1982,” pp. 8@91.
A. C. YAO, Lower bounds by probabilistic arguments, in “24th FOCS, 1984, pp. 42w28.
A. C. YAO, “On ACC and threshold circuits,” in “31th FOCS, 1990,” pp 619627.

