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Let f (xl, . . . . xk) be a Boolean function that k parties wish to collaboratively evaluate, where 
each xi is a bit-string of length n. The ith party knows each input argument except x,; and 
each party has unlimited computational power. They share a blackboard, viewed by all 
parties, where they can exchange messages. The objective is to minimize the number of bits 
written on the board. We prove lower bounds of the form Q(n c?), for the number of bits 
that need to be exchanged in order to compute some (explicitly given) polynomial time com- 
putable functions. Our bounds hold even if the parties only wish to have a 1% advantage at 
guessing the value off on random inputs. The lower bound proofs are based on discrepancy 
upper bounds for specilic functions over “cylinder intersection” sets. These results may be of 
independent interest. We give several applications of the lower bounds. The tirst application 
is a pseudorandom generator for Logspace. We explicitly construct (in polynomial time) 
pseudorandom sequences of length n from a random seed of length exp(c &) that no 
Logspace Turing machine will be able to distinguish from truly random sequences. As a 
corollary we give an explicit construction of a universal traversal sequence of length 

exp(exp(c JTogn)) f or arbitrary undirected graphs on n vertices. We then apply the multi- 
party protocol lower bounds to derive several new time-space trade-offs. We give a tight 
time-space trade-off of the form TS = @(n’), for general, k-head Turing machines; the bounds 
hold for a function that can be computed in linear time and constant space by a k + l-head 
Turing machine. We also give a new length-width trade-off for oblivious branching programs; 
in particular, our bound implies new lower bounds on the size of arbitrary branching 
programs, or on the size of Boolean formulas (over an arbitrary finite base). Using universal 
hashing, Nisan has recently constructed considerably improved random generators for 
Logspace, with the implication of shorter explicit universal traversal sequences. The . 
time-space and related trade-off results mentioned above are not affected by this 
development. 0 1992 Academic Press, Inc. 
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1. INTRODUCTION 

This paper is composed of three parts. The first part considers a multiparty com- 
munication game and gives some lower bounds on the complexity in this model. 
The next two parts give applications of these bounds. The second part shows how 
to construct pseudorandom generators for Logspace and in the third part we obtain 
some new time-space trade-offs. 

1.1. Multiparty Communication Complexity 

Chandra, Furst, and Lipton [CFL] introduced the following multiparty com- 
munication game: Let f(xl , . . . . xk) be a Boolean function that accepts k arguments 
each n bits long. k parties wish to collaboratively evaluate f; the ith party knows 
each input argument except xi; and each party has unlimited computational power. 
They share a blackboard, viewed by all parties, where they can exchange messages. 
The objective is to minimize the number of bits written on the board. 

DEFINITION. The multiparty communication complexity of f, C(f) is the mini- 
mum number of bits that .need to be exchanged in the worst case, by any k-party 
protocol which computes f: 

We shall also be interested in the number of bits needed in order to compute f 
correctly on most inputs. 

DEFINITION. The E-distributional communication complexity of f, C,(f) is the 
minimum number of bits that need to be exchanged in the worst case by any 
k-party protocol that computes f correctly on a (1 + s)/2 fraction of the inputs. 

For the special case k = 2, this multiparty game is exactly the game standard in 
communication complexity theory, where one party knows x,, and the other x2. 
This case has been extensively investigated in many different contexts and many dif- 
ferent lower bounds appear in the literature ([AUY, Yl, BFS], and many more). 
The distributional communication complexity has been studied as well. Yao [Y3] 
first considered the distributional communication complexity and proved a lower 
bound of Q((log n)‘) for the “inner product mod 2” function. Vazirani [Va] 
improved this bound to Q(n/log n), and Chor and Goldreich [CG] improved it to 
Q(n). 

For other values of k less is known. Chandra, Furst, and Lipton [CFL] 
considered the complexity of the function E, defined by EN(xI, . . . . xk) = 1 iff 
x,+x,+ . . . + xk = A? For k = 3 they showed that EN has a communication com- 
plexity of Q(m). For general k they gave very slowly growing lower bounds, 
showing that the complexity tends to infinity. For the distributional communication 
complexity, no previous lower bounds were known. 

We prove lower bounds to the distributional communication complexity of two 
functions. Let 

fib,, .--, x/c) = 1 iff x1 + .e. + xk iS a quadratic residue mod p 
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and 

fZ(X,, . . . . x,d = 1 iff the number of positions where 

We call fi the k-wise inner product function. 

THEOREM 1. For any n-bit long prime number p: 

C,(fl)=Q @flogs). 

THEOREM 2. 

c,(fd=a (;+lW+ 
Theorem 2 is close to best possible. V. Grolmusz 
protocol demonstrating that 

all the xls have 1 is odd. 

[Gr] has recently given a 

. 
The major open problem is to prove lower bounds that do not decrease exponen- 

tially in k for some explicit function. Such bounds would give considerable 
improvements in the applications. Recent results of [Y4, HG] indicate another 
motivation for such bounds: for any function in ACC’ (constant depth, polynomial 
size circuits using “and,” “ or,” and “mod N” gates for some integer N) there exist 
constants c, d such that the distributional multiparty communication complexity for 
k = (log n)’ players is O((log n)“). Thus good lower bounds for the distributional 
(or, in fact, even randomized) multiparty communication complexity of a function 
f would prove that f is not in ACC’. For comparison, we should mention that if 
the Boolean function f is selected at random (uniformly from all functions 
(0, 1 }nk --) (0, 1)) then with high probability, 

n logk 
C&(f)2~-2+log&. 

1.2. Pseudorandom Generators for Logspace 

In the last few years there has been much research directed towards the construc- 
tion of pseudorandom sequences-sequences that “appear” random to some large 
class of statistical tests. Blum and Micali [BM], Yao [Yl], and, recently, 
Impagliazzo, Levin, and Luby [ILL] have designed sequences that pass all polyno- 
mial time computable tests under some unproven “hardness” assumptions. Reif and 
Tygar [RT] constructed sequences that pass all NC tests, again under some 
unproven “hardness” assumption. Ajtai and Wigderson [AW] give sequences that 
pass all AC0 tests, using the known “hardness” results for AC’. Nisan and 
Wigderson [NW] give general constructions of sequences that pass all tests from 
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a complexity class C, given any function that is “hard” for C. In particular, Nisan 
constructs pseudorandom sequences for AC? using the “hardness” of the parity 
function [Ni3]. 

Unfortunately, no lower bounds, “hardness” results, are known for any com- 
plexity class but AC’. Thus in particular no sequences are provably pseudorandom 
for any class but AC’. 

In this paper we show how to construct sequences that pass all statistical tests 
that can be performed by Logspace Turing machines (or generally any “small”- 
space machines). We do this without relying on any unproven “hardness” assump- 
tion, but rather by using the multiparty communication complexity lower bounds. 

An exact definition of pseudorandom generators for Logspace appears in 
Section 3. In general, the definition ensures that the output of a pseudorandom 
generator for Logspace may always be used instead of truly random sequences in 
any randomized Logspace computation. 

THEOREM 3. There exists an (explicitly given) pseudorandom generator G for 
Logspace which stretches a seed of 2O’fi’ random bits to n bits. Moreover, G can 
be computed in polynomial time (actually, even in Logspace, given multiple access to 
the input bits). 

A particularly interesting class of tests that can be performed in RL are walks 
on graphs. The output of our generator will behave just like a random walk on 
any graph. This allows us to give an explicit construction of universal traversal 
sequences for general graphs. 

THEOREM 4. There exists an (explicitly given) universal traversal sequence 

for general undirected graphs of length 220’JG’. Moreover the sequence can be 
constructed by a Turing machine running in space logarithmic in the length of the 
sequence. 

Remark. Recently Nisan [Ni2] constructed stronger pseudorandom generators 
based on universal families of hash functions. These generators convert a random 
seed of length Slog R into a string of length R that looks random to any 
SPACE(S)-bounded computation. In particular, out of random seeds of length 
O(log2 n) one obtains strings of polynomial length that look random to Logspace 
machines. 

This result and its consequences, including explicit universal traversal sequences 
of length nouOg “), supersede Theorems 3 and 4 and could be matched by the techni- 
ques of this paper only if much stronger (Q(n/k)) lower bounds for the communica- 
tion complexity of some Logspace computable function were available. 

On the other hand, the time-space and related trade-off results to be described 
in Subsection 1.3 are not affected by the results of [Ni2]. 

We should mention another recent application of Theorem 2. Luby et al. [LVW] 
construct pseudorandom sequences that fool depth-2 circuits over GF[2] (explicit 
multivariate polynomials). Like in Theorem 3, their pseudorandom sequence of 
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length n is generated from a random seed of length 2 O(s). But their construction 
is based on a different principle and mimics the idea of [Ni3, NW], The requisite 
hardness result is provided by our lower bound for the k-wise inner product; no 
substitute is known to work. 

1.3. Time-Space Trade-o& 

1.3.1. Turing Machines 

The first time-space trade-off we give is for general Turing machines. The 
machines have a read-only input tape, as well as an arbitrary number of read-write 
work tapes which count as space. For Turing machines that have only one head on 
the input tape, quadratic time-space trade-offs were given in 1966 in Cobham’s 
classic paper [Co], and apply, e.g., to such simple languages as the language of all 
palindromes. However, when the Turing machine is allowed to have two or more 
heads on the read-only tape, the situation is more complicated. 

For multihead Turing machines the known time-space trade-offs are not tight 
and are significantly sub-quadratic. Duris and Galil [DG] and Karchmer [Ka] 
exhibit languages that require a time-space trade-off of T’S 2 12(n3). Gurevich and 
Shelah [GS] give a language that requires a time-space trade-off of T2S>B(n2~‘) 
on deterministic machines, but can be solved in linear time and logarithmic space 
nondeterministically. 

We give a very simple proof, that relies on our multiparty communication 
complexity lower bounds, of a tight, quadratic, time-space trade-off for multihead 
Turing machines. We actually prove a tight separation between the power of k-head 
and (k + 1 )-head Turing machines : 

THEOREM 5. The (k + 1)-wise inner product function over n bit strings requires 
a time-space trade-off of TS = O(n*) on any k-head Turing machine. 

Note that this function can be computed in linear time and constant space on a 
(k + 1)-head Turing machine. Note also that this lower bound, as well as the 
separation proved between k-head and (k + l)-head Turing machines, is tight as 
even a l-head Turing machine can simulate a (k + 1)-head Turing machine with 
only a quadratic penalty in time and no penalty in space. Our bounds apply to the 
nondeterministic, probabilistic, and average complexities as well. 

1.3.2. Branching Programs and Formula Size 

Our next time-space trade-off is for Boolean branching programs. Although the 
improvements we have here over known results are rather modest (an extra log n 
factor), we believe that the techniques are interesting. In particular, significantly 
stronger bounds would follow if one could improve the lower bounds for multiparty 
communication complexity. 

A branching program is a directed acyclic graph with one source and with two 
kinds of vertices: vertices that are labeled by an input variable; in this case they 
must have out-degree two and one of the out-going edges must be labeled with 0 
and the other with 1; the other kind of vertices are sinks and they are labeled with 
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1 or 0. The branching program computes a Boolean function in the natural way. 
The size of the branching program is the number of vertices. A branching program 
is called leveled if the vertices are partitioned into subsets, L,, . . . . L,, called the 
levels, such that all the edges out of Li go to Li+ , . The number of levels is called 
the length of the branching program, and the size of the largest level is called the 
width. A leveled branching program is called oblivious if all the vertices on a single 
level are labeled by the same variable. 

The log of the width of a branching program corresponds to the space, and the 
length corresponds to the time. In [CFL] it was observed that lower bounds for 
multiparty communication complexity imply lower bounds on the length of 
constant width branching programs. Their techniques, however, do not give any 
nontrivial bounds when the width is allowed to be linear. Currently there is no 
known result which would given even a 2n lower bound on the length of general 
polynomial width branching programs. The best result along these lines is due to 
Alon and Maass [AM] which gives an n log n lower bound on the length of 
polynomial width oblivious branching programs. 

We generalize the techniques of [AM] to take advantage of multiparty 
communication complexity lower bounds and achieve stronger bounds. We present 
an explicit function f* (in Logspace) such that: 

THEOREM 6. Any oblivious branching program of length o(n log* n) computing f * 
requires exponential size. 

This time-space trade-off implies some new lower bounds for general branching 
program size and for Boolean formula size. So far there was only one lower bound 
technique known that achieves bounds above n log n, either for the size of formulas 
over an arbitrary basis, or for general branching program size. This is the nearly 
quadratic bound (n*/log n) due to NeEiporuk [Ne]. We give a new technique for 
proving such lower bounds. Although the lower bounds we obtain are weaker than 
Neciporuk’s, they apply to a different class of functions, and the technique we use 
might be of interest. 

COROLLARY 4.4. Any branching program computing f * requires Q(n log* n) size. 

To obtain lower bounds on formula size, we show that formulas over an 
arbitrary basis can be converted to branching programs of polynomial size, and of 
length similar to that of the formula. 

COROLLARY 4.5. Any boolean formula over an arbitrary finite basis that 
computes f * requires Q(n log* n) size. 

2. MULTIPARTY COMMUNICATION COMPLEXITY 

2.1. Definitions 

Chandra, Furst, and Lipton [CFL] introduced the following multiparty com- 
munication game: Let j-(x,, . . . . xk) be a Boolean function that accepts k arguments 
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each n bits long. There are k parties, each having unlimited computational power, 
who wish to collaboratively evaluate J The ith party knows all the input arguments 
except xi. They share a blackboard, viewed by all parties, where they can exchange 
messages. The objective is to minimize the number of bits written on the board. 

The game proceeds in rounds. In each round some party writes one bit on the 
board. The last bit written on the board is considered to be the outcome of the 
game and should be the value of f(xl, . . . . xk). The protocol specifies which party 
does the writing and what is written in each round. It must specify the following 
information for each possible sequence of bits that is written on the board so far: 

(1) Whether the game is over, and in case it is not over, which party writes 
the next bit: this should be completely determined by the information written on 
the board so far. 

(2) What that party writes: this should be a function of the information 
written on the board so far and of the parts of the input that the party knows. 

DEFINITION. The cost of a protocol is the number of bits written on the board 
for the worst case input. The multiparty communication complexity off, C(f ), is the 
minimal cost of a protocol that computes f: 

We shall also be interested in the number of bits needed in order to compute f 
correctly on most inputs. 

DEFINITION. The bias a protocol P achieves on f, B( P, f ), is defined to be 

B(P, f I= lPrCP(x) =fb)l - PrCP(x) Pfb)ll, 

where x = (x1, . . . . xk) is chosen uniformly over all k-tuples of n-bit strings. 

DEFINITION. The .+distributional communication complexity of f, C,(f) is the 

minimal cost of a protocol which achieves a bias of at least E on f: 

Let us mention that it is possible to define natural probabilistic and nondeter- 
ministic versions of the multiparty communication complexity. As we shall see in 
Section 2.6, our techniques are strong enough to give the same lower bounds for all 
these complexity measures (Subsection 2.6). 

These measures of complexity refer to worst case inputs. There are natural 
corresponding concepts of aoerage case complexities, and we shall see that similar 
lower bounds apply to them. 

2.2. Cylinder Intersections 

In this subsection we study the basic structure that a multiparty protocol induces 
on the set of possible inputs, the set of k-tuples. 

Consider a multiparty protocol for evaluating a function. For every possible 
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k-tuple x = (x,, . . . . xk) a certain communication takes place, and some string is 
written on the board. The k-tuples may be partitioned according to the string that 
gets written on the board. 

DEFINITION. Let s be a string and P a multiparty protocol. The s-component, 
x P,SY is defined to be the set of k-tuples x E ((0, 1 }n)k such that on input x the 
protocol P results in exactly s being written on the board. 

The s-components have a special structure, which we will now specify. 

DEFINITION. A subset S of k-tuples is called a cylinder in the ith dimension, if 
membership in S does not depend on the ith coordinate. A subset of k-tuples is 
called a cylinder intersection if it can be represented as an intersection of cylinders. 

LEMMA 2.1. For any protocol P and string s, X,, s is a cylinder intersection. 

Proof Define Si to be the set of k-tuples that is consistent with the communica- 
tion string from the ith party’s point of view. I.e., 

si= {(Xi, . ..) xk) : for some xi, (x,, . . . . xi, . . . . xk) E X,, s}. 

It is clear that for each i, Si is a cylinder in the ith coordinate. We shall show that 
XP,s=ni si- 

It is clear that X,, c ni Si, so it remains to show that ni Sic X,,,. Let 
(x 1, ---3 xk) E ni Si. Then for every i there exists xi such that (x,, . . . . xi, . . . . Q)E 
x . We claim that on input (xi, . . . . xk) the protocol will write s on the board. 
Tl%’ reason is that all through the communication process the ith party cannot 
distinguish between the input of (x,, . . . . xk) and the input of (xi, . . . . x], . . . . xk). Thus, 
the bits written on the board will never deviate from s. 1 

Given a protocol which computes a function f, the value off must be constant 
over any single s-component. Our lower bounds will be based upon the fact that for 
our particular functions f, any cylinder intersection must contain approximately the 
same number of l’s and O’s of the function. 

DEFINITION. Let f: ( { 0, 1 In)’ + { 0, 1 } be a boolean function. The discrepancy of 
f is 

Qf)=m;x IPr[f(x)=l and XES]-Pr[f(x)=O and XES]I, 

where S ranges over all cylinder intersections and x is chosen uniformly over all 
k-tuples. 

LEMMA 2.2. For any function f, 

C(f 12 1% 
1 ( > r(s) 
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C,(f) ~1% f;f) . (4 
ProofI Consider a protocol P achieving a bias of E on 1: We can compute the 

bias of P on f as the sum of the biases achieved on the different s-components, 

Bias(P, f) = IPr[P(x) =f(x)] - Pr[P(x) #f(x)]1 

<c IPr[P(x)=f(x) and XEX~,~I-Pr[P(x)#f(x)andx~X,.]I, 

where s ranges over all the possible strings that may be written on the board by the 
protocol. 

For any XEX,,., P(x) was defined to be the last bit of s, thus 

IPr[P(x)=f(x)andxEX,,.]-Pr[P(x)#f(x)andxEX,,.]I 

=)Pr[f(x)=landx~X~,,]-Pr[f(x)=Oandx~X~,~](. 

Since X, s is a cylinder intersection, we find that the last quantity is bounded from 
above by f(f). Thus, if M is the number of different possible strings that may be 
written on the board by the protocol P, we obtain 

Bias( P, f) < A4 . r(f). 

The statement of the lemma follows, since to produce M different strings requires 
at least log, M bits. 1 

2.3. The Discrepancy of Near Hadamard Matrices 

In this subsection we give some motivation to the proof technique for the 
discrepancy bounds to follow in the subsequent two subsections. Although the 
direct implications of the observations below pertain to the two-party situation 
only, it may be instructive to see the root from which the general idea evolved. 

Our lower bounds for multiparty protocols will be based on discrepancy 
estimates over cylinder intersections (Lemma 2.2; see also Subsection 2.6). The 
situation for two parties is greatly simplified by the fact that a “cylinder intersec- 
tion” in dimension 2 is simply a rectangle, i.e., a submatrix. 

An N x N matrix A with (1, - 1 )-entries is called an Hadamard matrix, if 
A’A = NZ, where Z is the identity matrix and A’ is the transpose of A. 

For N = 2”, an N x N Hadamard matrix can be constructed as follows: let the 
rows and columns be labeled by the n-dimensional vectors over GF(2), the field of 
two elements; and let the entry in position (x, y) be (- l)X.y, where x . y denotes 
the standard inner product C x,y, (over GF(2)). 
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The Chor-Goldreich proof of the 6?(n) lower bound for the (two-party) distribu- 
tional communication complexity of the “inner product mod 2” function is based on 
the observation, attributed to J. H. Lindsey (see [ES, p. 88]), that the sum of the 
entries in any r x s rectangle of an N x N Hadamard matrix is at most &?. The 
matrix corresponding to the “inner product modulo 2” function being Hadamard, 
the result applies directly. Chor and Goldreich also point out that the p x p matrix 
(p an n-digit prime) with (i, j) entry ((i - j)/p) (Legendre symbol) is “nearly 
(Hadamard” and therefore a similar argument proves an Q(n) lower bound on its 
distributional communication complexity. 

The results of the next two subsections will generalize these observations to 
k parties; and the proof of Lindsey’s result for “nearly Hadamard” matrices, 
essentially a Cauchy-Schwarz argument, is at the root of the idea of the proofs. 

We review the generalized Lindsey inequality. We use I(u[( to denote the 
Euclidean norm of the vector U, and llBllol, to denote max Ibiil, where B= (b,) is a 
matrix. The entries of the matrix A in the proposition below are arbitrary complex 
numbers. The asterisk denotes conjugate-transpose; so for a vector u we have 
llull = fi; and if th e entries of A are real then A * = A’. 

PROPOSITION 2.3. Let A = (au) be an N x N matrix and D = IIA*A - NIlI,. Let 
R, SE { 1, . . . . N}, I RI = r, I SI = s. Let T be the sum of entries in the rectangle R x S, 
i.e.. 

T= c 1 au. 
ieR jaS 

Then 

Remarks. In the case of Hadamard matrices D=O, so we obtain the upper 
bound @. “Small perturbations” typically yield near Hadamard matrices with 
D = O(,/$; in this case ( Tl = 0(N7’8). It is this latter bound that will be 
generalized in the next two subsections to the discrepancy of the k-dimensional 
matrices describing the “generalized inner product” and the “quadratic character of 
the sum of coordinates” functions. 

For (1, -1 )-matrices, the quantity D measures the deviation from Hadamardness. 
Since the proposition does not restrict the entries of A to + 1, it is actually more 
natural to consider its deviation from being unitary. Let D,, = I(A *A - III o. denote 
this quantity. Now the proposition is equivalent to the following statement: 

(To see the equivalence, divide A by ,/%.) 

Proof: Let u and w denote the incidence vectors of R and S, respectively, i.e., 
(0, 1 )-vectors of length N indicating the elements of R and S. Then T= o*Aw. It 

571/45/2-S 
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follows by the Cauchy-Schwarz inequality that (TI < ((VII . IIAw/. We note that 
ljvll = ,,/? and estimate the other term, 

IIAwl(*=w*A*Aw<Nw*w+ Iw*(A*A-NZ)w( <Ns+ Ds*. 

The stated inequality now follows. t 

We state a corollary regarding two-party distributional complexity. A Boolean 
function f in 2n variables can be described by a 2” x 2” (0, 1 )-matrix. Replacing’ 
each zero by - 1, we obtain the (1, - 1 )-matrix representing f: 

COROLLARY 2.4. Zf the 2” x 2” (1, -l)-matrix representing the Boolean function f 
is near Hadamard with D = O(N’ -‘) f or some constant c > 0 (N = 2”), then 
C,(f) = Q(n). 

2.4. A Lower Bound for Generalized Inner Product 

In this subsection we prove a lower bound on the multiparty communication 
complexity of the generalized inner product (GIP). The bound will follow via 
Lemma 2.2 from an upper bound on the discrepancy of GIP over cylinder intersec- 
tions (Lemma 2.5). 

DEFINITION. The k-wise generalized inner product function of n-bit strings 
x,, . . . . xk is defined by 

GIP, ,Jxi, . . . . xk) = 1 iff the number of positions in which each xi has 1 is odd. 

We first introduce the f l-version of GIP for easier handling of the discrepancy. 

DEFINITION. f(x,, . . . . xk) is 1 if GIP(x,, ..,, x,J = 0 and - 1 if GIP(x,, . . . . xk) = 1. 

DEFINITION. Let 

&r)=+m,a;l lx, EXk f(x,, . . . . xk) dl(xl, . . . . xk)...&(xIY . . . . +A > 3 

where the maximum is taken over all functions #i: ((0, l}“)” + (0, 1 > s.t. di does 
not depend on xi. 

The E stands for expected value over all the possible 2”k choices of xi, . . . . xk. 
Note that dk(n) is exactly T(GIP,,.), the discrepancy of the k-wise inner product 
function on n-bits. 

LEMMA 2.5. 

where pk is given by the recursion : pl = 0, and & = ,/=2$ 
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Note. It can be shown by induction that j& < 1 - 4iPk < e-4’-k. 

ProoJ We proceed by induction on k. It is clear that d’(n) = 0, except for the 
case n = 0, where we obtain 1 (let us define 0’ = 1 for this paper). 

Let k 2 2. Since 4k does not depend on xk and l$kl G 1, 

Ak(n) < E IE f(x,, . . . . xk) &(x1, . . . . xk) “‘dk- 1(x1, . . . . +)I. 
X,r . . . . Xk-, Xk 

In order to estimate the right-hand side, we shall use the following version of the 
Cauchy-Schwarz inequality : 

Cuuchy-Schwarz Inequality. For any random variable z: E[z]’ < E[z’]. 

Thus our estimate is 

dk(n)< E [Ef(xr, . . . . +)41(x,, . . ..&)..‘&_.(xi, . . . . &]2]1’2 
X,r...rXk-I Xk 

= [: E f(x,,...,x,-,,U)f(X1,...,Xk-l,u)~f;~(;.”~~_1~~-,]1’2, 
U, “, X1, . . . . w-t 

where 4; stands for Qi(x,, . . . . x&i, u), and & for bi(x,, . . . . xk_,, u). 
To estimate this we shall need the following observation: For every particular 

choice of 2.4 and 0, f(xi , . . . . xk _ 1, u) f(xl , . . . . xk _ 1, u) can be expressed in terms of 
the function f on k - 1 strings of a possibly shorter length. Inspection reveals that 
f@ 1, .*., xk-_l, U)f(XI, .**, xk_ , , 0) iS Simply f(Z,, . . . . zk_ ,), where zi iS the 
restriction of xi to the coordinates j such that uj # vi. We shall now view each xi 
as composed of two parts: zi and yi, where zi is the part of the x where uj # uj, and 
yi is the rest (this is done separately for every u, u). 

For every particular ‘choice of u, u and consequently y , , . . . . yk_ i, we define a 
function of the “z-parts”, 

where each xi is obtained by the concatenation of the corresponding yi and zi. We 
can now rewrite the previous estimate as 

dk(n) < [E E S”, 0, Y,. . . ..yk-I 112 1 7 u,u Y,.....Yk-, 

where S”,“*YL~ ..‘*Yk-l is defined by 

S U.".YI.-.Y~-I= E f(z,,...,zk_l)~I;.".Y~.~~~.~k-~(zl,...,zk_-l)... 
=I. . . . . =k - I 

. . . <lt”‘y”““yk-‘(z,, . ..) Zk_ ,). 

Now 9 S”,“*Y1~~~~~Yk-l can be estimated via the induction hypothesis. Indeed note 
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that <y. U.Yl. -..Yk-l does not depend on zi. Thus the previous estimate of k(n) is 
bounded by 

A%)<[ E Ak- ‘(m, ,)]“* 
U,“,Y ,...., .X-l 

where m, v is the length of the strings zi, which is equal to the number of positions 
j such that uj # uj. 

Since u and u are distributed uniformly in { 0, 1 }“, m, u is distributed according 
to the binomial distribution. For any constant m, the probability that m, D = m is 
exactly (i) 2-“. Thus the previous estimate is given by: 

d*(n)+_ (3 ~-“P:-I]I-~ 

= [2-“(1 +&I)n]1’2=&. 

This completes the proof of the lemma. 1 

Combining this bound with Lemma 2.2 we obtain: 

THEOREM 2. 

2.5. A Lower Bound for the Quadratic Character 

In this section we prove a lower bound on the multiparty communication 
complexity of the “quadratic character of the sum of coordinates” function (QCS). 

DEFINITION. Let QCS,, k(xl, . . . . xk) be ((xi + . .. + x,)/p), where p is an n-bit 
prime, x,, . . . . xk are n-bit integers (zeros allowed on the left), and (x/p) denotes the 
Legendre symbol. 

As in the previous subsection, the lower bound on the communication 
complexity of QCS, k will follow via Lemma 2.2 from an upper bound on the 
discrepancy of this function over cylinder intersections. The discrepancy bound in 
turn will be derived by extending character sum estimates of A. Weil. 

Let x be a multiplicative character of order d > 1 over Fp. (In our applications 
d= 2 and x(x) = (x/p) is the Legendre symbol.) Let g(x) be a polynomial over Fp. 
We say that g is a constant times a full dth power if g(x) = c. (h(x))d for some 
CE Fp and h(x) E F,[x]. We shall use the following estimate from the theory of 
character sums (cf. Schmidt [Sch, p. 43, Theorem 2C]). 
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THEOREM (A. Weil). If g E F,[x] has m distinct roots in the algebraic closure of 
Fp and g is not a constant times a full dth power then 

,ZIF x(g(x)) G (m - 1) ~5. (1) 
P 

Our chief tool will be a generalization of this result. We replace x by Cr= 1 Xi and 
extend the summation over a subdomain of Fi only. The subdomain will be an 
intersection of k cylinders. 

LEMMA 2.6. Let p be an odd prime and d, s, k be positive integers. Assume d 2 2 
and s < p. Let x: F, + C be a multiplicative character of degree d and let g E F,[x]. 
If g has at most s distinct roots in the algebraic closure of F, and g is not constant 
times a full dth power, then for arbitrary (0, 1)-valued functions 4,(x1, . . . . xk), . . . . 
4k(X, > --., xk), 4i: Fi -+ (0, I}, such that q5i does not depend on the ith variable, we 
have 

c c ... 1 xMx,+ ... +x/c))h 
x, E I$ x2 E Fr XkEFp 

-+I <c(s, k).pk-2-‘, (2) 

where c(s, k) = 2. ((2k-1s- 1)/2)2-‘k-“. 

Remark. Observe that for s <k, we have c(s, k) < 3. In our applications, s = 1. 
We need the more general result for the sake of the proof by induction. 

Proof We first observe that g must satisfy the following condition: 

Condition (*). For some root a of g in the algebraic closure of F,, not all 
elements a + t, t E Fp, have the same multiplicity modulo d. 

Indeed, this follows from the two assumptions that s < p and g is not a constant 
times a full dth power. For the inductive proof, we shall drop these two assump- 
tions and assume Condition (*) only. (This, of course, still implies that g is not a 
constant times a full dth power, but weakens the s < p condition.) 

Now we proceed by induction on k. The case k = 1 is precisely Weil’s character 
sum estimate (1). 

Assume k > 2. Let S denote the sum to be estimated. Then, clearly 

We use the Cauchy-Schwarz inequality to estimate the right-hand side: 
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We expand the squares on the right-hand side. The following notation will be 
convenient: 

F”,“(x) = g(x + u) g(x + II); 

I)? “(x,, . ..) ~k-l)=~i(~l~~~~~xk-l~u)~i(xl~~~~~xk-l~u)~ 

Observe that ll/> ” does not depend on xi. With this notation the right-hand side of 
inequality (3) expands to 

P (k- I)/2 . 1 S(u, u), (4) 
U,UEFp 

where 

(We have used u and u to denote the two occurrences of xk and moved the summa- 
tion over (x1, . . . . xk_ i) inside.) 

For u # u we observe that S(u, u) is just an instance of the sum S in (2), with 
k - 1 in the place of k and 2s in the place of s. 

In order to justify this claim, we have to see that F”, ’ satisfies Condition (*). 
Let R be the multiset of roots of g in the algebraic closure of FP. Then R has a 

member 01 defined in Condition (*). 
The set of roots of F"* ” is the multiset (R - u) u (R - u). Let pi denote the multi- 

plicity of 01+ i(u - u) in R. Observe that the multiplicity of c( 7 u+ i(u- u) in the 
multiset (R - u) u (R - u) is pip 1 + pi. Therefore if F”* ” does not satisfy Condi- 
tion (*) then for some A, we have pi_ 1 + pi = 1 mod d for every integer i (subscripts 
are taken mod p). Hence pi_ 1 = pi+ 1 mod d. Since p is odd, it follows that all the 
pi are congruent mod d, contrary to the choice of ~1. This observation sets up the 
conditions for an inductive step. 

We infer by induction that for u # u 

IS(u, u)l < ~(2s k - 1) pk-’ -2m(lr-“, . 3 

For the case u = u we use the trivial estimate 

IS(u, u)l <pk-‘. 

Substituting into Eq. (4) we obtain 

ISI <P’k-1)/2(P .pk-’ +p(p_ 1) c(2s, k- 1) pk----2-(k-“)1/2 

+,&(2s, k- l)“* P~-~@=c(s, k) pkP2+. 

This completes the proof of the lemma. 1 
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COROLLARY 2.7. For the discrepancy of the “quadratic character of the sum of 
coordinates” function we have 

Z-(QCS,,) < 2~-~-~. 

ProoJ We just have to substitute the right parameters in Lemma 2.6. Let d= 2, 
s= 1, and let x(x)=(x/p). Let the identity function x play the role of g in 
Lemma 2.6. Now c(s, k) = c( 1, k) < 2; the order of x is d = 2; the polynomial x is 
not a full square and has s = 1 root. Thus all the conditions are met. The conclusion 
is that the sum off over any cylinder intersection is less than 

2pk- 2-‘. 

Dividing by pk, the size of the space, we obtain the desired bound. 1 

Combining this bound with Lemma 2.2, we obtain: 

THEOREM 1. If p is an n-bit prime, then 

C,(QCS, k) = Q(n2 -k + log E). 

2.6. Probabilistic and Nondeterministic Protocols and Average Case Complexity 

Upper bounds for the discrepancy over cylinder intersections yield lower bounds 
for the communication complexity in models far more powerful than the deter- 
ministic protocols considered so far, and they extend to average case complexity. 

Next we consider nondeterministic and probabilistic protocols. In a nondeter- 
ministic protocol each player may act nondeterministically. In this model, at each 
step the protocol may specify a set of possible moves for each player instead of just 
one possible move. A nondeterministic protocol computes a function f if for any 
input x such that f(x) = 1 there exists a nondeterministic choice for which the 
protocol outputs 1, and for each x. such that f(x) = 0 for all nondeterministic 
choices the protocol outputs 0. The cost of a protocol is the worst case number of 
bits written over all inputs and all nondeterministic choices, and the nondeter- 
ministic complexity off, C”(f ), is the minimal cost of a nondeterministic protocol 
that computes f: 

The discrepancy may also be used to give lower bounds on the nondeterministic 
complexity. 

LEMMA 2.7. Let p be the fraction of k-tuples x for which f(x) = 1. Then 

C”(f)2 lOg,(P/r(f)) 

Proof: As in the case of deterministic protocols, for a nondeterministic protocol 
P and each string s that may be written on the board consider the s-component, 
x P,SV which is the set of inputs x for which some nondeterministic choices result in 
s being written on the board. As opposed to the deterministic case now the various 
s-components do not necessarily partition the space of k-tuples. It is still true, 
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however, that each s-component is a cylinder intersection (the proof of Lemma 2.1 
carries over). Finally, all the l’s of f must be covered by some component which 
outputs 1. No such component may contain any zeros of f and thus its size is 
bounded by r( f ). 1 

A probabilistic protocol is a probability distribution over deterministic protocols. 
It computes a function f if for every input it produces the correct answer with 
probability 3 (probability taken over the distribution of deterministic protocols). 
The cost of a randomized protocol is the worst case over all inputs of the expected 
number of bits written on the board. The randomized complexity off, CR(f ), is the 
minimal cost of a randomized algorithm that computes f. (Note. We consider here 
a strong notion of randomized protocols; they are allowed to make a bounded two- 
sided error, and the parties have shared common random coins-the description 
of the deterministic protocol that was chosen randomly.) The distributional 
complexity gives a lower bound to the randomized complexity. 

LEMMA 2.8. 

C”(f) 2 C,,,(f) 2 l%(W~(f ))). 
Proof A straightforward averaging argument shows that one of the deter- 

ministic protocols making up a probabilistic protocol for f must be correct on at 
least 3 of the inputs. The rightmost inequality is a restatement of Lemma 2.2. m 

The deterministic, nondeterministic, and probabilistic models considered so far 
are all worst cuse models. We may be interested in the median cost (over all inputs) 
of a (deterministic, nondeterministic, or probabilistic) protocol. One can in fact 
show that the discrepancy upper bound implies that in each of these models, almost 
every input is hard. 

Let X be one of the letters D, N, P, referring to deterministic, nondeterministic, 
and probabilistic protocols, respectively. The b-threshold of a set S of real numbers 
is the smallest CK such that a 6 fraction of the members of S is <a. The &threshold 
complexity of a protocol of type X is the d-threshold of the costs of the protocol 
over all inputs (all “yes” inputs in the nondeterministic case). The b-threshold com- 
plexity of a function f in model X is the minimum of the b-threshold complexities 
of all protocols of type X, computing the function f: We denote this quantity by 

Cx- 6(f ). If this quantity is large then a 1 - 6 fraction of the inputs is hard for 
protocols of type X. 

LEMMA 2.9. 

CYf) 2 l%,(Wr(f )). 

C”*?f) 3 l%,(~Pl~(f )). 

C”?f)2 ,lo; 6, .lW 
6 

( > Wf) . 

(Here, c is an absolute constant < 20.) 
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Proof The number of homogeneous (all zeros or all ones) cylinder intersections 
required to cover a 6 fraction of the input is at least S/r(f), hence the first 
inequality. 

The argument for the nondeterministic case is the same except we cover the “yes” 
inputs only. 

For the probabilistic case, we repeat the protocol c /log 61 times and take the 
majority vote. This ensures that the probability of error will be (6/3 on every input. 
Now, as before, by the usual averaging argument we see that one of the deter- 
ministic protocols making up the probabilistic protocol must be correct on a 
1 - 6/3 fraction of the inputs. Restricting our attention to the least expensive 6 
fraction, we see that on that set the protocol still achieves a bias > 5 and therefore 
has cost >log,(1/3r(f)). 1 

We thus obtain that the lower bounds given in Theorems 1 and 2 apply also to 
randomized and to nondeterministic protocols, even in the average case. In the 
results below, 6 is an arbitrary positive constant. 

THEOREM 1'. If p is an n-digit prime then 

C N, '(QCS, k) = f2(n/2&) 

CR, ‘(QCS,,, k) = f2(n/2k). 

THEOREM 2'. 

CNsG(GIPk,.) = Q(n/4k) 

CR, ‘(GIP,, .) = f2(n/4k). 

3. PSEUDORANDOM GENERATORS FOR LOGSPACE 

In this section we show how to use our lower bounds for multiparty protocols 
in order to construct pseudorandom generators for Logspace (or generally any 
small-space machines). 

3.1. Randomized Space Bounded Computation 

We first review the definition of randomized space bounded computation. There 
are several subtle points to consider when defining randomized space-bounded 
classes. We shall present here the “correct” definition. For an overview of the 
subtleties involved we refer, e.g., to [BCDRT]. 

DEFINITION. A randomized, space s(n) Turing machine is defined to have the 
following properties: 
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(1) The Turing machine runs in space s(n) on any input of size n. 

(2) The Turing machine may flip a fair unbiased coin at any stage. 
(3) The Turing machine may never get into an infinite loop, for any sequence 

of coin flips. In particular, with probability 1 it terminates in time exp(s(n)) on any 
input of length n. 

A Turing machine accepts a language L with one-sided error if for every x E L the 
machine accepts with probability at least $ and for any x not in L it rejects with 
probability 1. A Turing machine accepts a language L with two-sided error if for 
any x E L, the Turing machine accepts with probability of at least 3, and for any x 
not in L it rejects with probability of at least 3. 

RSPACE(s(n)) is the class of languages accepted with one-sided error by space 
s(n) randomized Turing machines. BPSPACE (s(n)) is the class of languages 
accepted with two-sided error by randomized space s(n) Turing machines. RL is 
RSPACE( O(log n)), and BPL is BPSPACE( O(log n)). (Our notation differs slightly 
from [BCDRT]. They use RLP and BPLP, resp., to denote these classes.) 

We want to focus attention on condition (2), the kind of access the machine has 
to the random bits. As defined, the randomized Turing machine has access to the 
random bits one by one. When it wants a random bit it can flip a coin, but in no 
case can it go “back” and review the result of a previous coin flip. Any bit that it 
wishes to “remember” must be kept in the limited storage. This restriction that the 
machine does not have multiple, two-way, access to the random bits is essential, as, 
for example, random-Logspace machines with two-way access to the random bits 
are not even known to be in deterministic polynomial time (in contrast to RL and 
BPL being in P). 

It is interesting to note that the same apparent difference in power between one- 
way and two-way access holds also for nondeterministic computation. In the 
“correct” definition of NL, the Turing machine has one-way access to the 
nondeterministic bits. If the definition is changed to allow two-way access to 
nondeterministic bits, then the machines turn out to have the full power of NP. 

3.2. Space Bounded Statistical Tests 

We are interested in producing pseudorandom sequences that might be used 
instead of truly random sequences in space bounded computations. Thus the 
statistical tests that must be passed by the generator are the ones that can be per- 
formed by a space bounded Turing machine on its random source. Note that this 
class of tests is a proper subset of the tests that can be performed by space bounded 
machines on their input tape. 

We shall allow non-uniform statistical tests as well. 

DEFINITION. A space-s(n) statistical test is a deterministic space s(n) Turing 
machine M, and an infinite sequence of binary strings a= (a,, . . . . a,,, . ..) called the 
advice strings. We require that the length of a, is at most exp(s(n)). 
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The result of the test on input x, M”(x), is determined as follows: The string a,, 
where n is the length of x, is put on a special read-only tape of M called the advice 
tape. The machine A4 is run on the advice tape, treating it as a normal input tape. 
The machine has the following one-way mechanism to access x: at any point it may 
request the next bit of x (in the same fashion as a randomized Turing machine may 
request the next random bit). 

Note that these tests have considerable power. We next give some examples of 
operations that can be performed and combined by Logspace tests: 

Consider the input as partitioned into consecutive words, each of some fixed 
small length (O(log n)). The following questions can all be answered by a Logspace 
test. 

?? Count the number of times a certain value appears. 

?? Compute the average value of a word. 

?? Compute the standard deviation, or higher moments. 

?? Compute any of the previous measures for an arbitrary subset of the words, 
or of the bits. 

In fact most of the statistical tests described by Knuth [Kn] lie in this class. 

3.3. Pseudorandom Generators for Space Bounded Computation 

A pseudorandom generator for space s(n) must produce strings that look random 
to any space s(n) statistical test. 

DEFINITION. G= (G,: (0, l}‘(“)+ (0, l}“} is called a pseudorandom generator 
for s(n), if for every polynomial p(n), all large enough n, and every space s(n) 
statistical test M”, 

IPr[M”(y) accepts] - Pr[M”(G(x)) accepts]1 6 l/p(n), 

where y is chosen uniformly in (0, 1 }” and x is chosen uniformly in (0, 1 }I@). 

The first observation we should make when trying to construct a pseudorandom 
generator for space-bounded Turing machines is that, without loss of generality, we 
can restrict the class of statistical tests that have to be passed. In a fashion similar 
to Yao’s [Y2] results for general (polytime-hard) pseudorandom generators, one 
can show that any generator that passes all space s(n) prediction tests will be a 
pseudorandom generator for space s(n). 

DEFINITION. The family G = { G,: (0, 1 } en) + { 0, 1 }” > of functions passes all 
space-s(n) prediction tests to within E(n) if for every space s(n) statistical test M”, 
and every 1~ i < n, 

IPr[M”(first(i- 1) bits of G(x)) = ith bit of G(x)] - fl <e(n), 
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where x is chosen uniformly from (0, 1 } 'W G is said to pass all space s(n) predic- . 
tion tests if for any polynomial p(n), G passes all space s(n) prediction tests to 
within l/p(n) for all sufficiently large n. 

LEMMA 3.1. G is a pseudorandom generator for space s(n) iff it passes all space 
s(n) prediction tests. 

Proof. Similar to Yao’s proof [Y2]. I 

3.4. The Generator 

Our generator is based on a function f that takes k arguments, each r bits long, 
and has high multiparty communication complexity. 

THE GENERATOR. 

Input. The input to the generator will consist of t boolean strings, each r bits 
long (all together, rt random bits). 

Output. Each output bit will be of the form f(S), where S is some cardinality 
k subset of the input strings. The order is extremely important, and we shall take 
all the k-subsets in the antilexicographic order. (I.e., f(S,) appears before f(S,) if 
the last string in the symmetric difference of S, and S2 belongs to S,.) All together 
there are (L) output bits. 

LEMMA 3.2. For any E > 0 and s < C,( f )/k, the above generator passes all space 
s prediction tests to within E. 

Proof. Assume not; we shall give a multiparty protocol that predicts f with bias 
E using less than C,(f) bits of communication. Suppose the Ith bit, f(S), can be 
predicted by the Turing machine, where S = {xi,, xi,, . . . . xik}, and i, > i, > ... > i,. 
We shall now show how k parties, the jth knowing the values of each xi in S except 
xi/, can predict f(xi,, xi,, . . . . x,), with low communication. 

By an averaging argument, it is possible to fix the values of all x;s not in S to 
constants in some way, while preserving the prediction bias of the Turing machine. 
Thus we can assume w.1.o.g. that all x;s not in S are fixed and known to all the 
parties beforehand. 

The parties will simulate the Turing machine running on the first I- 1 bits of the 
output of the generator. Since the parties have unlimited power, they have no 
problem simulating the Turing machine as long as they have access to the input bits 
which the Turing machine reads (or can compute them from the information they 
have). In our case, however, no single party can do so, since each party is missing 
the value of xi, for some j, which is needed to compute some of the input bits (i.e., 
bits of the form f(T), where T contains xi,). 

In our simulation each party simulates the Turing machine for as long as it can 
and then sends the current state of the machine to the next party to continue the 
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simulation. The simulation starts with the first party (i.e., the party missing only 
xi,). Note that this player can simulate the Turing machine until the lirst time that 
a bit involving xi, is read by the Turing machine. At this point the first player sends 
the total state of the Turing machine to the second player who continues with the 
simulation. This player can now continue the simulation until the first point where 
a bit involving xiZ is read, at which point he sends the state of the machine to the 
third player, etc. This continues all way to the kth player. 

The important thing to notice is that once the last player starts with the simula- 
tion, he can continue it until the prediction of f(S). This is so because of the 
ordering of the bits of the generator that we chose. Consider the point where the 
first party cannot continue the simulation since a bit involving xi, first appears. 
Because the sets used to compute the bits of the generator were ordered in anti- 
lexicographic order, we observe that all sets from this point on, until S, contain xi,. 
Similarly, once xi2 appears it remains in every set until S, etc. So, when the kth 
party cannot continue the simulation, the next set must contain all of xi,, . . . . x4; i.e., 
it must be S that is the point where the Turing machine makes the prediction. 

Sending the total state of the Turing machine requires s bits, and since this is 
done in our simulation only k - 1 times, we obtain a protocol that requires only 
(k- 1)s bits and predicts f(S) with a bias of E. This contradicts the choice of 
s < C&f )/k. I 

We can now state the main result of this section: 

THEOREM 3. For some constants c, , cz > 0, there exists an explicit pseudorandom 
generator, G= {G,: (0, l}‘@)+ (0, l}“>, for space 2’l*, where I(n)=2C2fi. 
Moreover, G can be computed by a Logspace Turing machine (having multiple access 
to its input bits). 

Proof We use the construction of the generator described in this section, with 
f being the “generalized inner product” function, k = 2 &, t = 2k, and r = 8k. 
Theorem 1 guarantees the high communication complexity of this function, and 
thus Lemma 3.2 shows that the generator passes all prediction tests, and Lemma 3.1 
concludes that it is a pseudorandom generator. 1 

3.5. One- Way vs. Two-way Access to Randomness 

Our generator sheds some light on the difference between one-way and two-way 
access to the random bits given to Logspace machines. We show that two-way 
access is better, at least in the sense that fewer random bits are necessary. 

COROLLARY 3.3. A randomized Logspace Turing machine with one-way access to 
the random bits that uses a polynomial number of random bits can be simulated by 
a randomized Logspace machine with two-way access to the random bits that uses 
only 2 O(6) random bits. 

571145/2-6 
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Proof: Our generator can be implemented by a Logspace machine having two- 
way access to the random bits. The generator can be easily run “on the fly” and can 
generate one bit at a time to supply to the original, simulated machine, whenever 
it flips a coin. 1 

Recently, Nisan [Nil] exhibited another way in which two-way access is better 
than one-way access; any randomized Logspace machine with one-way access to 
the random bits which accepts a language with two-sided error can be simulated by 
a zero-error randomized Logspace machine that has two-way access to the random 
bits. 

3.6. Universal Sequences 

One of the most interesting subclasses of Logspace statistical tests are those 
related to walks on graphs. Given a graph H on the advice tape, a Logspace 
machine can treat the input to the test as directions for a walk on the graph and 
perform the walk. Thus the output of a pseudorandom generator for Logspace will 
behave like a random walk on any graph. We use this fact to construct universal 
traversal sequences. 

DEFINITION. A graph is called (d, n)-labeled if it is a d-regular graph on n ver- 
tices and the edges adjacent to each vertex are labeled by a permutation of 
{ 1, . . . . d} (an edge may be labeled differently at each of its two vertices). A string 
w E { 1, . ..) d} * is said to cover a (d, n)-labeled graph, if w, when treated as directions 
to a walk on the graph, visits all vertices on the graph, whatever the starting vertex 
is. 

DEFINITION. A string w E { 1, . . . . d}* is said to be a (d, n) universal traversal 
sequence if it covers every (d, n)-labeled graph. 

[AKLLR] showed that a random string of length 0(d2n3 log n) is a (d, n)- 
universal sequence with high probability. Results shown in [KLNS] imply that a 
random string of length O(dn3 log n) actually suffices. However, explicit construc- 
tion of short universal sequences is more difficult. Explicit constructions are known 
for two special cases: for d = 2 an explicit construction is known of polynomial 
length universal sequences [Is]; and for d= n - 1 an explicit construction of length 
n logn is known [KPS]. Our pseudorandom sequences allow us to give (d, n)-univer- 

sal sequences of length 22o’fi’ for all values of d. 
We shall be using the output of the generator as a random walk. A technical 

issue that should be mentioned is that we need to convert the binary string which 
is the output of the generator to a string in (1, . . . . d}. One way to do this is to take 
every 5 log n consecutive bits modulo d. This way a uniform distribution on a 
binary string will be converted to an almost uniform distribution on walks. 
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LEMMA 3.4. Let G= {G,: (0, 1)““) + (0, 1 }““} be a pseudorandom generator for 
Logspace. Then for every (d, n)-labeled graph H, G(x) (converted as mentioned) will 
cover H with probability at least 4 (probability taken over a random choice of x). 

Proof. The description of H can be put in the oracle, and then a Logspace 
machine can perform the walk on H given by its input. A truly random string y of 
length n4 converted in this manner will result in a nearly uniformly random walk 
on H and, as such, will visit every vertex, starting from every vertex with proba- 
bility of at least 1 - 1/3n2. A Logspace machine can determine whether vertex i is 
reached in a walk starting from vertex j, and thus for every i, j, the probability that 
G(x) (converted to a walk) will reach vertex i starting from vertex j, should be at 
least 1 - 1/2n2. Thus the probability that there exist i, j such that the walk from i 
does not reach j is at most ), 1 

LEMMA 3.5. Let G= {G,: (0, l}‘@)+ { 0, 1 }“‘} be a pseudorandom generator for 
Logspace. Then the string achieved by the concatenation of G(x) for all possible 2’(“) 
values of x (and converted as mentioned) is a (d, n) universal traversal sequence. 

Proof: For each (d, n)-labeled graph H, half the substrings of the form G(x) will 
cover H. Thus when one of these substrings is reached, whatever vertex the walk 
is in, H will be covered by it. 1 

Applying our generator to this lemma we obtain: 

THEOREM 4. For every d and n, there exists an (explicitly given) (d, n) universal 

traversal sequence of length 220’JG’. Moreover, the sequence can be constructed by 
a Turing machine running in space logarithmic in the length of the sequence. 

4. TIME-SPACE TRADE-OFFS 

4.1. Trade-offs for Turing Machines 

LEMMA 4.1. Let f(x,, . . . . xk) be a boolean function with multiparty communica- 
tion complexity of C( f ). Then any (k - 1 )-head Turing machine that computes f from 
the following input: 

(where # # # # # # # means 1 spaces on the input tape) requires a time-space 
trade-off of TS 2 1. C(f)/k. 

Proof: We shall simulate the machine by a k-party protocol. At any point in 
time the k - 1 heads may lie in at most k - 1 different xls (some heads may lie in 
the same Xi or in the space between adjacent xi’s). At that point in time the TM 
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can be simulated by the party who has these k - 1 x;s (provided that party has the 
total state of the TM). This party can continue to simulate the TM until some head 
moves into the region of the “missing” xi. We call this event a transition. In this 
case the simulation can be continued by a different party, one that now has all the 
current xi)s. Thus the current simulating party will send the total state of the TM 
to the new simulator, who will continue the simulation until the next transition. 

The number of bits communicated at each transition is exactly S, the total space 
of the TM. A TM that runs in time T can have at most kT/I transitions, since for 
any head, the head must travel the I spaces between some two adjacent xi’s between 
any two transitions that are caused by this head. All together at most kTS/f bits 
were communicated in order to compute f thus this number is bounded from below 
by C(f). The statement of the lemma follows. 1 

We thus obtain the following lower bound: 

THEOREM 5. For any fixed k, any (k - I)-head Turing machine computing the 
k-wise generalized inner product function on n bit strings requires a time-space trade- 
off of TS > Q(n’). 

Proof: Theorem 1 assures the high multiparty communication complexity of the 
generalized inner product function. In order to obtain the required spaces between 
any two adjacent xls in the input, we can restrict ourselves to the case where the 
first and last quarter of the bits in each xi are fixed to zeroes (or any constants). 
This leaves the problem of computing the generalized inner product on n/2-bit long 
strings, with n/2 spaces between each two arguments, and the bound follows 
directly from the previous lemma. 1 

The bound given in Theorem 5 applies also to nondeterministic and to 
probabilistic (bounded two-sided error) Turing machines. This follows from 
Theorem 2’ (end of Section 2) and the fact that the simulation given in the proof 
of Lemma 4.1 carries over directly to allow probabilistic multiparty protocols to 
simulate probabilistic Turing machines (that compute f with bounded two-sided 
error) and nondeterministic protocols to simulate nondeterministic Turing 
machines. 

4.2. Trade-offs for Branching Programs and Formulas 

The cornerstone of the argument of Alon and Maass [AM] is a Ramsey-like 
lemma, which allowed them to use communication complexity lower bounds to 
obtain lower bounds for branching programs. The following generalization of that 
lemma will allow us to use multiparty communication complexity lower bounds to 
achieve improved lower bounds for branching programs. 

DEFINITION. Let C,, C,, . . . . C, be disjoint subsets of an alphabet z, and let 
w E z*. We say w has t alternations relative to L,, .,., 2, if it can be broken up into 
w = wi w2. .. w,, where for each i there exists jj such that wi E (z - Xj,)*. 
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LEMMA 4.2. Let C,, C,, . . . . Ck be disjoint subsets of Z such that for each i, 
IZil = n. Let w E C*, where for every i, each letter in pi appears at most li times in 
w, and let I= xi li. Then it is possible to choose 17, c .Z,, . . . . IIlk c C,., such that, for 
every i, 1 nil 2 n/3”lk2 and such that w has at most [41/kJ alternations relative to 
17 Ilk. 1, . . . . 

Proof. The proof will proceed by induction on 1. For 1 <k the lemma is trivial 
since some li=O. We shall assume the lemma is true for all integers smaller than 
1 and prove it for 1. During the proof we shall assume w is “very long,” and thus 
every letter appears in it at some point; this will focus attention on the general case, 
and in the cases that w is “simpler” we can always imagine extending w to have the 
desired properties. 

For a string U, we shall say u uses Zi, if at least 3 of the letters rr E Zi appear in 
U. Let wr be the longest prefix of w that uses exactly k - 1 of the Zls. (Such a prefix 
must exist since the number of Cls used can increase by at most one at every 
letter.) Let i, be the subscript of the “unused” Zi. Let w2 be the longest prefix of 
w - w1 (i.e., w, after the w1 prefix is removed) that uses exactly k - 2 of the k - 1 
Z;s used by wl, and let i2 be the unused index. We continue in this fashion 
obtaining a sequence wl, . . . . wkl2 and i,, . . . . i,,, such that for 1 d j< k/2 we have: 
(1) wj does not use Zi, and (2) for all i different from i,, . . . . ii, wj uses Zi (we do 
not care whether w, uses Gil, . . . . C,_, or not). Let w’ be the suffix of w left after the 
removal of w 1 . . . w~,~. 

For j = 1, . . . . k/2, define c; to be the subset of Zi/ of letters that did not appear 
in wj. Note that l&i,l > n/3, and that relative to these r,‘s, each wj has just one 
alternation. 

For all i different from i,, . . . . ik,, define l-,. to be the subset of Zi of letters that 
appeared in at least k/4 of the strings wl, . . . . wk12. We count the total number pairs 
(0, j) such that CJ E Ci, 1 <j< k/2, and Q appears in wj. Since each letter in & 
appears in at most k/2 of the strings, and each letter in C - fi appears in at most 
k/4 of the strings, we obtain an upper bound of (k/4). (n - ICI) + (k/2). I&l. Since 
each of the strings w,, . . . . w,,, uses Ci we obtain a lower bound of (2n/3). (k/2). 
A comparison of these two bounds implies that IIJ 2 n/3. 

Since for all i different from i 1, . . . . ik,,, each letter of ri appeared at least k/4 times 
in the prefix w, w2 . . . w,@, we obtain that each such letter may appear at most 
li - k/4 times in w’. We are now ready to invoke the induction hypothesis on w’ and 
r 1, . . . . &, with n replaced by n/3 and 1 replaced by I- k2/8 (since for k/2 values of 
i, li decreased by at least k/4). This gives subsets ZT,, . . . . I7,, each of size at most 
(43 )I3 a(1 ~ k218 j/k2 = n,3 W/k=, relative to which w’ has r4(1- k*/8)/kl alternations, to 
which we should add at most one alternation for each of wl, . . . . wk12. This adds up 
to at most r41/kl, as stated. 1 

This allows us to give width-length trade-offs for oblivious branching programs. 
Let f be a boolean function on k-tuples of n-bit binary strings with multiparty com- 
munication complexity C(f) and let m be any integer. Define the function f * as 
follows: 
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INPUT. k ternary strings each of length 2n3” : x1, . . . . xk E (0, 1, * )2n3m. Each 
ternary digit is encoded by two bits. (The total input size is N= 4nk3” bits). 

OUTPUT. f computed on the strings derived after the deletion of the *‘s 
from the input. (If the strings obtained after the deletion of the *‘s are not all of 
length n, then output say, 0.) 

LEMMA 4.3. Any oblivious branching program computing f * with length 
L < NkmJ32 has width W > 2’(/ )lkm. 

Proof We shall restrict the domain of f * such as to achieve few alternations 
and still remain with the function f. First, for each 1 < i< k let li be the median of 
the number of times that each letter of xi appears in the branching program 
(i.e., one of the two bits composing the ternary digit is queried by a level of the 
branching program). From the bound on the length of the branching program, 
an averaging argument shows that xi li< k2m/8. Our first restriction will be to 
substitute * for all the letters in xi that appear more than Ii times in the branching 
program; this leaves n3” letters in each xi. 

We can now look at the string of input letters accessed by the branching 
program; this string is composed of letters belonging to the different x;s. Viewed 
this way we now use the preceding lemma and conclude that there exist subsets of 
letters of each xi, of size n, such that the branching program has at most km alter- 
nations relative to these sets. Let us restrict all the other input bits off * to *‘s and 
look at the restricted branching program on these bits; this program computes f: 

Note that k players in a multiparty communication protocol can simulate the 
branching program, with one player doing the simulation till an alternation occurs, 
and, on alternation, the name of the current vertex is sent to the next player. This 
requires log W bits of communication per each alternation of the branching 
program. The statement of the lemma follows, since the computation of f by 
simulating our restricted branching program will take km log W bits and that 
should be at least C(f ). 1 

Lemma 4.3, together with the lower bounds obtained in Theorem 1 on multiparty 
communication complexity, yields the following bound. 

THEOREM 6. Let f be the generalized inner product function, with k = log n/4, and 
let f * be as described previously for m = log n/4, and let N be the total length of the 
input. Then any obliviuous branching program of length o(N log’ N) requires width of 
exp(NRo’) to compute f *. 

COROLLARY 4.4. Any branching program computing f * requires size 
S-2( N log’ N). 

COROLLARY 4.5. Any boolean formula over an arbitrary finite basis computing f * 
requires size B(N log’ N). 

Proof Immediate from the following lemma. m 
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LEMMA 4.6. A boolean formula of size I over a basis of arity d can be simulated 
by an oblivious branching program of length 1 and width ld. 

Proof. By induction on the structure of the formula. Let the top gate of the for- 
mula be G, of arity k (k < d), and let the subformulas feeding to G be fi , . . . . fk. We 
shall simulate the formula by simulating an oblivious decision tree for G, where 
each access to the value of some fi will be replaced by recursively simulating fi. The 
important thing to take care of is that the width does not grow too fast. This can 
be ensured by accessing the largest subformula first, then the second largest, etc. 
This way the largest subformula need only be simulated once, the second largest 
twice, and in general, the ith largest 2’-’ times. 

The length of the resulting branching program is clearly the sum of the lengths 
of the subformulas. The size of the ith largest subformula is bounded from above 
by l/i, and the ith largest subformula is simulated at most 2’-’ times. Using the 
induction hypothesis we can therefore bound the width of the branching program 
by maxj=,...d2’-‘ld/id=ld. 1 
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