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Executable Temporal Logic Systems

[A brief outline of a few important systems]

In this section, we present a brief introduction to five temporal logic-based programming
languages: Chronolog, F-Limette, Concurrent MetateM, Tempura and Tokio. While
a variety of verification systems based upon temporal logics have been produced, par-
ticularly involving model-checking techniques, the development of executable temporal
logics is becoming increasingly important. It may turn out that the effective utilization of
the full power of temporal logics in a wide range of areas will depend crucially upon the
development of such languages. Since a number of researchers have tried to implement
various programming languages based on temporal logic, the systems described here pro-
vide only limited coverage of the research area. However, they represent systems that are
currently under active development and, as such, provide an indication of the breadth of
ongoing research in this field.

Each of the sections that follow covers one of the five languages. Within each section, an
introduction to the language and its applications is given, and the significant references
and pointers to FTP and WWW sites are provided.

We can classify these languages in several ways. Chronolog and Concurrent MetateM

use linear-time temporal logic, while Tempura and Tokio use interval temporal logic
and F-Limette uses metric temporal logic. Concurrent MetateM and Tempura use
deterministic execution schemes suitable for practical programming languages, while the
others are extensions of Prolog (or at least SLD-resolution) and feature backtracking
mechanisms. Concurrent MetateM is naturally applicable to concurrent object-based
(and agent-based) systems, while the others are primarily intended for single object
implementation. Thus, together, these languages cover much of the range of elements
being actively explored throughout the field of executable temporal logics.
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1. The Chronolog Family of Languages

Mehmet A. Orgun
Department of Computing,
Macquarie University, Australia

Anthony A. Faustini
Department of Computer Science & Engineering,
Arizona State University, USA

1.1. introduction

Chronolog is a programming language based on an extension of logic programming with
temporal logic (Wadge, 1988; Orgun and Wadge, 1992). Its declarative semantics is based
on an extension of the standard least Herbrand models while its operational seman-
tics is based on a temporal SLD-resolution, which is called TiSLD-resolution (Orgun,
1995). TiSLD-resolution naturally forms the basis for implementations of the language.
Chronolog offers all forms of parallelism found in logic programming languages, as well
as “context parallelism” by which queries at different moments in time can be executed
simultaneously (Liu et al., 1995).

The Chronolog family includes some extensions to the original language to improve its
expressive power so that it is suitable for specifying time-dependent properties of certain
problems in a natural way.

1.2. the language family

The Chronolog family originated with the simple language proposed by Wadge (1988).
It is based on a linear-time temporal logic in which the collection of moments in time is
modeled by the set of natural numbers N . The logic has two temporal operators, first
and next. The intuitive meanings of these operators are as follows:

- first A: A is true at the initial moment in time,
- next A: A is true at the next moment in time.

Chronolog programs look like ordinary Prolog programs with the exception that they may
contain (a sequence of) temporal operators applied to atomic formulae. The following
simple Chronolog program defines the predicate fib which at each time t is true of
(t+ 1)th Fibonacci number, and no other.

first fib(0).
first next fib(1).
next next fib(N) <- next fib(X), fib(Y), N is X+Y.

Read all program clauses as assertions true at all moments in time. The first two clauses
define the first two Fibonacci numbers as 0 and 1; the last clause defines the current
Fibonacci number as the sum of the previous two.

In order to address certain applications such as temporal databases and knowledge-
based simulation, Chronolog has been extended with an unbounded past as well as an
unbounded future (Liu and Orgun, 1995; Orgun et al., 1993; Orgun, 1995), in which the
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collection of moments in time is modeled by the set of integers Z. The resulting language,
called Chronolog(Z), has an additional operator, prev, to look into the past. Another
extension of the language with choice predicates is suitable for modeling non-deterministic
dataflow computations (Orgun and Wadge, 1992). Choice predicates in principle act like
a dataflow node with multiple input lines which arbitrarily selects one of its inputs as
output. Owing to non-determinism in the language, its declarative semantics is developed
in terms of minimal Herbrand models (Orgun and Wadge, 1994).

The latest member of the family, Chronolog(MC), is based on a temporal logic with
multiple granularity of time, in which each predicate symbol, and hence each formula, is
associated with a local clock (Liu and Orgun, 1996). A local clock is a strictly increasing
sequence of natural numbers, and a formula has values only at those moments in time
on its clock. Local clocks are assigned to predicate symbols through programmable clock
definitions and assignments.

Another language, called InTense, which includes the original Chronolog as a subset
is described in Mitchell (1988) and Mitchell and Faustini (1989). InTense can, in theory,
accommodate a possibly infinite number of temporal and spatial dimensions; thus each
predicate varies in a time-space hyperfield, namely Zω. When restricted to a single time
dimension the language is just like Chronolog(Z).

1.3. progress on implementation

Early implementations of Chronolog were based on meta-interpretation on top of
Prolog or translation into Prolog. The current implementation is an implementation
of InTense (Mitchell, 1988) supporting up to four time and four spatial dimensions. It
is a full blown interpreter written in C and runs under UNIXTM. The interpreter also
accepts Chronolog(Z) programs, but it does not yet support extensions such as choice
predicates and multiple granularity of time.

A parallel execution model for Chronolog has been described in Liu et al. (1995). The
model is based on dataflow computation. It is supported by a virtual machine, which is
granulated at clause argument level to exploit argument parallelism through temporal
unification. Also, the use of a warehouse facility as an associative memory to store the
results of previous computations is an important feature of this model. This feature is
similar to caching (or “memoization”), and it is essential when context-parallelism is
exploited.

1.4. details

The source code of the InTense interpreter can be found at

http://www.csl.sri.com/lucid/intense

or by emailing either mehmet@mpce.mq.edu.au or tony.faustini@asu.edu.
The speed of the interpreter is acceptable, and it is comparable to that of other ad-

vanced Prolog interpreters when running straight Prolog programs.
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2. “ F - L i m e t t e ” Fuzzy Logic Programming Integrating Metric Temporal
Extensions

Karl Schäfer
Institut für Algorithmen und Kognitive Systeme,
Universität Karlsruhe (TH), Germany

Christoph Brzoska
Institut für Logik, Komplexität und Deduktionssysteme,
Universität Karlsruhe (TH), Germany

2.1. introduction

F-Limette is a declarative programming language that combines fuzzy logic program-
ming and point-based metric temporal logic programming over linear, discrete, and un-
bounded time. The semantics of the underlying logic FMTL are defined by interpreting
ground atoms as fuzzy sets over the time domain. The FMTL is restricted to a Horn
fragment that supports a variety of fuzzy and temporal operators while maintaining
smallest Herbrand models, and feasible time sets are currently restricted to divisions
(finite unions of intervals) with respect to the required implicit representation of time
sets closed to arithmetics. The execution of queries is performed using a correct and
complete state-based tableau calculus that transforms modular states consisting of sub-
stitutions, timesets, and truthvalues. Its methodology is in a similar fashion to the Hoare
calculus known from program verification. Our F-Limette system further supports con-
structive negation, basic temporal term narrowing, concurrent execution of operationally
combined and alternative goals, heuristic search strategies up to incomplete pruning ca-
pabilities, and completeness-maintaining program updates during query execution. Thus
it combines declarative and imperative methodologies by relating the assertional time
structure referenced by formulae with the proof time structure defined by the linear
sequence of inference steps.

2.2. language

The syntax of F-Limette is an upward-compatible extension of Prolog and is formal-
ized by the following tree grammar for rules ∀̃R (the elements of F-Limette packages)
and queries ∃̃B:

R ::= A | R←ν B | ↓κ R | ↑λ R | 2S R,
B ::= A | B1 ∧ν B2 | B1 ∨ν B2 | ↓κ B | ↑λ B | 3S B | 2F B

(S, F ⊆ T , |F | <∞)
κ ∈ [0, 1], λ ∈ (0, 1]

where A is an atom, S, F are feasible subsets of the time set T , κ, λ ∈ [0, 1] ⊂ R are fuzzy
truth values, and ν ∈ {w,m, s} is a fuzzy operator semantic (weak, medium, strong). This
Horn fragment in conjunction with the operator semantics allows to state all program
rules in a normal form

↑λi1↓κi1 2Si1

(
. . . ↑λini ↓κini 2Sini

(↑λi(ni+1)↓κi(ni+1) 2Si(ni+1)Hi ←νini
Bini)

←νi(ni−1) . . . ←νi1 Bi1

)
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of nested rules, where 2S denotes universal temporal qualification over the time set S,
and ↓κ, ↑λ denote fuzzy reduction and fuzzy intensification, respectively. The common
temporal operators next ◦n and previous •n are both equivalent to either 2{±n} or 3{±n}.

The full set of F-Limette temporal operators includes universal 2S and existen-
tial 3S qualification, bounded since SS and until US , and fixation init to the initial time
point 0 ∈ T . A temporal abundance 2θ

F operator (θ ∈ [0, 1], true for at least dθ · |F |e
time points within subset F ⊂ T ) smoothly interpolates between universal 2F ≡ 21

F

and existential 3F ≡ 2ε
F (ε ≤ |F |−1) temporal qualification.

Predicate logic operators like negation as failure not and implicit set representa-
tion findall need special consideration when extended to the temporal and fuzzy tempo-
ral case. Thus negation as failure is constructive with respect to existentially quantified
variables and points of time, i.e. not relies on the “closed world assumption”, but does
not requantify any unbound variable.

The primary fuzzy operators are reduction ↓κ, I[[↓κ F ]] = min(1, κ−1 · I[[F ]]), and
intensification ↑λ. They allow us to assert or request κ-reduced truth of temporal knowl-
edge, and to intensify truth of a consequent with respect to a precondition. F-Limette

distinguishes exactly three kinds of subsumption ←ν , compiled into respective inference
rules. It supports user-defined modifiers (very, some, . . . ), and defuzzifiers (select maxi-
mum, compute weighted sum, . . . ).

Concurrent execution in F-Limette is controlled by attributed operators that specify
the temporal precedence or simultaneity of subordinate execution paths. For instance, the
conjunction F1∧SF2 selects serialized processing (F1 and then F2), while

∧
P,i Fi selects

concurrent processing of the Fi. Synchronization is formalized by their combination, e.g.
(F1 ∧P F2) ∧S F3 (F3 after both, F1 and F2). The cut ! operator terminates alternative
paths upon its execution.

Search strategies (depth search, breadth search, heuristic search) are selected by strat-
egy operators that choose a predefined strategy within the execution of the subordinate
goal. Different strategies may interact at the same time inside the entire system, each one
assigned to a bunch of execution paths. Heuristic search is controlled by a parametric
quality function of the state space that measures potential success of a single partial
derivation, namely execution time progress (position in proof tree, prefers short proofs),
rigidity of the time constraint (cardinality of an input time set, prefers large sets), gener-
ality of the partially instantiated goal (referenced part of substitution, prefers unbound
variables), and required truth value (prefers small lower bounds).

2.3. implementation

The prototype implementation of the non-fuzzy kernel language generates Prolog

source code which efficiently emulates the tableau calculus by SLD resolution and data-
base manipulations. The full implementation is an interpreter written in C that directly
implements the calculus. This migration step had been considered due to the lack of
support for constructive negation (systems of term inequalities), runtime skolemization,
breadth search strategies, and parallel execution in standard Prolog.

The system is available as a standalone program operating in either batch or interactive
shell mode, or as an object code link library with procedural interface as a subordinate
to existing application programs.

Concurrent execution is controlled by an integrated scheduler, operating at the gran-
ularity level of single inference steps. Derivation paths are represented equivalent to
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processes of an operating system. Shell commands and logic operators that come along
with optional attributes for flow control may create, suspend, synchronize and terminate
such paths.

F-Limette has been successfully compiled for the SunOS 4.x and Solaris† operating
systems. Solaris offers multi-threaded application processes, and concurrent inference
is achieved really in parallel by a farm of inference threads synchronized by a single
scheduler thread. The Solaris environment further supports the dynamic integration of
downcoded packages (predicates implemented in C code).

2.4. application

The system can be applied as a rule-based database manager for definite temporal
knowledge. It integrates an extended answer generation scheme that explains the deriv-
ability of queries by analysing resulting proof trees. Modular databases with update
facility, efficient lookup procedures and a compact mass storage format support large-
scaled databases. Quick-hit incomplete query processing can be realized using pruned
breadth search and the memorizing of recent proofs.

The combination of temporal and fuzzy logic formalism recommends F-Limette for
prototyping, specifying, and implementing applications in AI, where uncertain temporal
information has to be represented and to be processed. We apply the system for the eval-
uation of process descriptions from natural image sequences by traversing situation graph
trees, i.e. a hierarchy of transition diagrams, where states and actions are represented
as fuzzy conceptual graphs, while the expansion of state and intermission intervals is
constrained temporally. Those process descriptions, written in a language called Sit

++,
and uncertain definite temporal assertions acquired from image evaluation are translated
into F-Limette source code, such that proof strategies correspond to traversal strategies
directly.
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3. The Concurrent METATEM System

Michael Fisher & Adam Kellett†
Department of Computing,
Manchester Metropolitan University, United Kingdom

3.1. Introduction

Concurrent MetateM is a programming language based upon the direct execution
of temporal logic formulae .(Fisher, 1993). It consists of three distinct aspects: a ba-
sic execution mechanism for temporal formulae based upon the Imperative Future ap-
proach .(Barringer et al., 1996); an operational model that treats single executable tempo-
ral logic programs as asynchronously executing objects (agents) in a concurrent object-
based system; and a flexible and powerful communication mechanism, based upon broad-
cast message-passing. Together, these features provide a coherent and consistent pro-
gramming model. While the development of the language is ongoing, with both the syn-
tax and implementation currently being refined, a variety of reactive systems have been
represented and prototyped .(Fisher, 1994). In particular, the language has significant
potential applications in the area of multi-agent systems .(Fisher, 1995).

3.2. language

The syntax for Concurrent MetateM programs is straightforward. For example, the
following represents a partial definition of an agent, called ‘phil’ that will recognize ‘give’
and ‘hungry’ messages and can broadcast ‘give’, ‘hungry’, and ‘eat’ messages.

phil(give,hungry)[give,hungry,eat]:

start ⇒ has(left) ∧ ¬has(right);bbcdeeef(¬has(left) ∨ ¬has(right)) ⇒ ¬eat(phil);
start ⇒ ♦eat(phil);bbcdeeefhungry(Other) ⇒ ♦give(phil,Other).

The above agent consists of a several temporal rules, which together provide its behaviour.
For example, the last rule states that if a message of the form ‘hungry(phil2)’ was received
in the last moment in time (‘ bcddefff’ is the last-time operator), then the agent will attempt
to satisfy ‘♦give(phil,phil2)’, where ‘♦’ is the “sometime in the future” operator.

The logic used as a basis for Concurrent MetateM is a discrete, linear temporal
logic. This presents a simple view of time and, in doing so, provides the systems designer
with a direct analogy between the models for the logic and the discrete, linear execution
sequences with which he or she is familiar. Thus, the temporal operators that can be used
in Concurrent MetateM programs relate to the logical operators used in this model of
time, e.g. ‘♦’ (sometime in the future), ‘ ’ (always in the past), ‘U ’ (until), ‘ ’ (always
in the future) and ‘start’ (at the beginning of time).

Examples of applications include transport simulation .(Finger et al., 1993), concurrent
theorem-proving .(Fisher, 1996), Distributed AI .(Fisher and Wooldridge, 1993), and the
modelling of simple artificial societies .(Fisher and Wooldridge, 1995).

† E-mail: {M.Fisher,A.Kellett}@doc.mmu.ac.uk
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3.3. implementation

The current implementation is an interpreter written in C++. It simply reads the
program text (consisting of agent definitions of the above form) from stdin and writes
output (i.e. messages broadcast by agents) to stdout. The interpreter is implemented on
stand-alone workstations (so far both Sun SPARCs and PCs). The concurrent activity is
simulated through the scheduling policy involved in the execution of each agent. Com-
mand line arguments currently allow the user to specify the number of time steps to be
executed, the debugging level, an output file for debugging information, and whether the
execution is to be synchronous or asynchronous.

3.4. details

Details of the implementation (current version 2.1) can be found by emailing the au-
thors, or via http://www.doc.mmu.ac.uk/STAFF/michael/cmet.html. The current ver-
sion implements the basic Concurrent MetateM system, incorporating asynchronous
and synchronous execution, first-order temporal rules, and broadcast message-passing.
The features that it does not yet implement are: creation and manipulation of groups;
dynamic agent creation; user-defined primitives; synchronisation mechanisms. These fea-
tures, together with an improved user interface, are being developed for version 3. While
the current interpreter has acceptable performance on small examples, producing about
20 temporal states per second on a SPARCStation-2, it is inappropriate for large-scale
experiments. Consequently, we are currently developing a compiler for the language that
will not only improve performance, but also will allow the utilization of parallel archi-
tectures.
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4. The Programming Language Tempura

Ben Moszkowski†
Department of Electrical and Electronic Engineering,
University of Newcastle upon Tyne, United Kingdom

4.1. introduction

Tempura .(Moszkowski, 1986) is an experimental programming language based on
executable subsets of Interval Temporal Logic (ITL) .(Moszkowski, 1983; Halpern et
al., 1983; Moszkowski, 1985). We developed it in order to narrow the gap between tempo-
ral logics and the imperative programs they typically describe. Tempura contains destruc-
tive assignment constructs, “;” (sequential composition) and while-loops. It consequently
looks much more like a conventional imperative programming language than most other
executable temporal logic systems. Unlike most logic-based languages, it is very determin-
istic and offers no facilities for backtracking. This approach has been adapted primarily
for execution efficiency. A number of temporal constructs have been included in Tem-
pura and can be used for hardware simulation and other applications. These include 2

(always), © (next) and a form of projection between different granularities of time. Al-
most all of Tempura’s constructs can be formally defined using conventional first-order
logic and the ITL operators skip, “;” (chop) and “*” (chop-star). These three operators
respectively provide ways to measure interval length, sequentially combine formulae and
iterate a formula. The basic semantics of a Tempura program is readily obtained by con-
sidering it to be an ITL formula. Consequently, logical implication can be used to relate
an ITL specification with a Tempura program that implements it.

4.2. language

Tempura programs typically consist of a logical conjunction of various ITL formulae
and are executed in a simulated time consisting of a sequence of one or more discrete
states. Here is an example:

M = 4 ∧ N = 1 ∧ halt (M = 0) ∧M gets M + 1 ∧ N gets 2N. (4.1)

This executes over 4 units of discrete time (i.e., 5 states). In the initial state, M equals
4 and N equals 1. Over adjacent states, M increases by 1 and N doubles until the com-
putation terminates when M equals 0. The behavior of M and N can also be expressed
by the following logically equivalent ITL formula:

M = 4 ∧ N = 1 ∧ ©(M = 3 ∧ N = 2) ∧ ©©(M = 2 ∧ N = 4)
∧ ©©©(M = 1 ∧ N = 8) ∧ ©©©©(M = 0 ∧ N = 16). (4.2)

A slight variation of this can be directly executed by the Tempura interpreter.
The following ITL fragment, which operates over 1 unit of time (2 states), decreases

M by 1 and doubles N :
skip ∧M ←M − 1 ∧ N ← 2N. (4.3)

The skip construct specifies that the interval has length 1. The two temporal assignments
modify in parallel the values of M and N . Unlike conventional imperative assignment,

† E-mail: Ben.Moszkowski@ncl.ac.uk
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temporal assignment lacks framing and does not ensure the all nonassigned variables
remain unchanged. Instead, this must be explicitly stated by using multiple temporal as-
signments in parallel or by using the stable construct (e.g., stable A). The fragment (4.3)
can be included in a while-loop and combined with initialization to obtain the program
now shown:

M = 4 ∧ N = 1 ∧ whileM 6= 0 do (skip ∧M ←M − 1 ∧ N ← 2N). (4.4)

This is logically equivalent in ITL to formulae (4.1) and (4.2). Note that the conjunction of
two temporal assignments performs them in parallel. Therefore, the following exchanges
the values of the variables A and B in one unit of time:

skip ∧ A← B ∧ B ← A.

Universal quantification (∀) provides a way to perform a large number of activities in
parallel. Local scoping of variables is typically achieved by enclosing them in existential
quantifiers (∃). There are also some constructs for input and output as well as projection
between different time granularities.

Timing constraints can be specified. The len construct illustrated in the next program
offers one way to do this:

M = 4 ∧ N = 1 ∧ len(M) ∧M gets M + 1 ∧ N gets 2N. (4.5)

This is logically equivalent in ITL to formulae (4.1), (4.2) and (4.4). The len construct
can also be used in nested constructs. For example, here is a program which describes a
digital signal X ranging over 0 and 1 with stable periods of equal widths over an overall
interval of 18 units of time (19 states):

X = 0 ∧ for 3 times do
(
(len(5) ∧ stable X); (skip ∧ X ← ¬X)

)
.

This can be combined with other Tempura fragments to model a circuit containing gates
which respond to X’s changes.

As with any realistic logic-based programming language, there are major restrictions
on permitted Tempura constructs. The language’s lack of nondeterminism limits the
logical operator ∨ (or) to being used only in Boolean tests (as in most programming
languages). The temporal operator 3 (sometimes) is completely absent from Tempura.

4.3. implementation

.Moszkowski (1986) presents the design of a Tempura interpreter which executes a
program by successively examining one state at a time. The interpreter determines the
program’s effect on variables in the current state and also extracts from the program those
parts which should be postponed until later on. During the processing of a program in a
given state, an immediate assignment of the form v = e sets the variable v’s current value
to be that of the expression e. Sometimes this requires multiple passes over a formula as
the following illustrates:

J = I + 1 ∧ I = 2.

Of course, circular assignments such are I = I + 1 are not valid. Some assignments are
postponed until the next state. For example, the following equality increases ©I (I’s
next value) by 1:

(©I) = I + 1.
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As each program piece is analysed, those parts which do not affect the current state
are pushed off until later. For example, the fragment 2(K = 1), which sets K to 1 in all
states, is reduced to the equivalent formula shown below:

K = 1 ∧ ©w 2(K = 1).

Here ©w (weak-next) is a weak form of the © operator and is trivially true on any interval
with only one state. The net effect of the reduction is to assign K the value 1 in the
current state and to save the formula 2(K = 1) for evaluation in the successor state if
there is one. A sequential formula of the form S;S′ is evaluated by first interpreting the
left subformula S until its associated subinterval terminates and then interpreting the
right subformula S′ from then on until the completion of the overall interval. While-loops
and other interactive constructs are processed in an analogous way.

We originally implemented an interpreter for Tempura in Lisp. A port to C done by
R. Hale and sample programs are available from the author by email.

4.4. discussion

Tempura provides a framework for investigating the relationship between conventional
imperative programming and temporal logics. Although Tempura has never been widely
used, it has helped to generate interest in executable temporal logic systems. For example,
the Tokio .(Fujita et al., 1986) and MetateM .(Barringer et al., 1989) systems have both
been influenced by it. In addition, various researchers have applied Tempura to hardware
simulation and other areas where timing is important .(Dowsing and Elliot, 1991; Dowsing
et al., 1994; Hale, 1987; Kilis et al., 1989; Lichota, 1988). .Ruddle (1992) favorably rated
ITL and Tempura as the basis of a formal method for fast prototyping of real-time C
programs.

Some deficiencies in Tempura such as the lack of any kind of framed assignment
have stimulated research on extending Interval Temporal Logic .(Hale, 1988; Moszkowski,
1995). The continued vitality of conventional programming languages suggests that fur-
ther development on executable imperative subsets of temporal logics is a worthwhile
endeavor.
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5.1. introduction

Tokio is a logic programming language based on Interval Temporal Logic. It was de-
signed in 1984 intended for use as a Hardware Description Language. Since then several
tools for Tokio have been developed. Tokio system consists of three parts;

Prolog like programming language: Tokio
RTL level hardware description language: RTL-Tokio
Automatic verifier on Propositional Interval Temporal Logic: Lite

Programming language Tokio is an extension of Prolog and can be considered as another
implementation of Tempura. RTL-Tokio is a restricted version of Tokio for Register
Transfer Level description of a computer architecture. Using RTL-Tokio, automatic ver-
ification of pipelined CPU is demonstrated. Lite is an automatic verifier for ITL and can
be used as a logic synthesis tool or model checking tool as well. It is also possible to
combine the output of Lite with Tokio.

5.2. language

The syntax of Tokio is an extension of Prolog. It includes all the Prolog Language and
temporal logic operators, such as @ (next), &(chop), <> (3, sometime) or # (2, always)
can be used in the body part of a clause. Like Prolog, negation is not allowed in the body
part. For example,

receive_data(Call,Hear,Data) :-
halt(Hear=1)
& write(accept(Data)),halt(Hear=0)
& @receive_data(Call,Hear,Data).

receive(Call,Hear,Data) :-
#receive_sync(Call,Hear),receive_data(Call,Hear,Data).

This is a part of a send/receive protocol specification. RTL-Tokio allows only one chop
operator in a body and the former part of the chop operator contains only a fixed length
specification. Because of backtracking mechanisms, it is possible to execute a slightly
wider range of programs in Tokio than in Tempura.

In the case of the automatic verifier, Lite, we have no restrictions on ITL formulae.
It accepts a local ITL formula and outputs a finite state machine which accepts all
satisfiable states of the formula. For example,

exists(Q,(Q,
’[]’((Q ->

(((((a,skip) & (b,skip)), @ keep(~Q)) & Q);empty))
)))

<-> *(((a,skip) & (b,skip) ; empty))
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will generate a state machine accepting everything. That is, the left- and right-hand side
formulae are equivalent.

The executable range of the Tokio programming language is limited because of clausal
form and restriction of negation. However, with an appropriate use of Lite (which can
handle arbitrary ITL formulae), one can use Tokio/Lite for almost all aspects of hardware
designs.

5.3. implementation

Prolog is used to implement all three systems. Tokio is implemented as a translator
from Tokio programs to Prolog. It is 7 times slower than original Prolog if we execute
the same program.

The Lite verifier is also implemented in Prolog. It has a finite state machine format to
interface with logic synthesis tools. It also has a GUI based tool.

5.4. details

You can find Tokio system in

ftp://ftp/csl.sony.co.jp/CSL/soft

This includes incomplete manuals and several large examples such as mc6502 micro
processor. It is possible to simulate practical and large hardware designs. However, in
the case of the automatic verification tool, Lite, the size of specification that can be
processed is limited because it requires huge computational resources.
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