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A B S T R A C T

Epithelial ovarian cancer (EOC) accounts for about 90% of malignant ovarian tumors, and estrogen is often
implicated in disease progression. We therefore compared the potential for gating of estrogen action via
pre-receptor metabolism in normal human ovarian surface epithelium (OSE), EOC and selected EOC cell
lines (SKOV3 and PEO1). Steroid sulphatase (STS), estrogen sulfotransferase (EST), 17b-hydroxysteroid
dehydrogenases 2 (17BHSD2) and 5 (17BHSD5) mRNAs, proteins and enzymatic activities were all
detectable in primary cell cultures of OSE and EOC, whereas aromatase and 17BHSD1 expression was
negligible. qRT-PCR assay on total mRNA revealed significantly higher EST mRNA expression in OSE
compared to EOC (P < 0.05). Radioenzymatic measurements confirmed reduced sulfoconjugation
(neutralization) of free estrogen in EOC relative to OSE. OSE cells were more effective at converting free
[3H]-E1 to [3H]-E1S or [3H]-E2S, while EOC cell lines mainly converted [3H]-E1 to [3H]-E2 with minimal
formation of [3H]-E1S or [3H]-E2S. IL1a treatment suppressed EST (P < 0.01) and 17BHSD2 (P < 0.001)
mRNA levels in OSE and stimulated STS mRNA levels (P < 0.001) in cancer (SKOV3) cells. These results
show that estrogen is differentially metabolized in OSE and EOC cells, with E2 ‘activation’ from
conjugated estrogen predominating in EOC. Inflammatory cytokines may further augment the local
production of E2 by stimulating STS and suppressing EST. We conclude that local estrogen metabolism
may be a target for EOC treatment.
ã 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Estrogen is implicated in the progression of ovarian cancer,
which is the most lethal of all gynecological malignancies.
Epithelial ovarian cancer accounts for about 90% of malignant
ovarian tumors [1]. Epidemiological data are suggestive that
estrogen-only hormone replacement treatment (HRT) users have a
higher risk of ovarian cancer [2,3]. In addition, anti-estrogen
intervention inhibits the growth of ovarian carcinoma in vitro and
in vivo [4,5]. Furthermore, clinical trials proved the aromatase
inhibitor letrozole to benefit a sub-group of ovarian cancer patients
[6,7].

Estrogen action in most cells is transduced by the nuclear
estrogen receptor (ER) isoforms ERa and/or ERb. Most ovarian
cancers are ER positive [8]. ERa predominates in EOC, whereas ERb

expression is higher in normal ovarian surface epithelium (OSE)
[9]. Thus EOC is likely estrogen-responsive. Paradoxically, ovarian
cancer generally occurs in post-menopausal women when the
ovary no longer actively secretes estrogen. This raises the question:
if estrogen is involved, how is it produced?

Many tissues in the body that are incapable of de novo estrogen
biosynthesis can still generate estrogen through the hydrolysis of
sulfoconjugated steroids reaching them from blood. Free E2,
capable of activating ER signaling can be formed from circulating
E1S through the hydrolytic activity of STS and the 17-oxoreductase
activity of 17BHSD5. Conversely, the oxidative function of
17BHSD2 produces the weak estrogen E1 from E2 and EST can
sulfoconjugate E1 to further minimize estrogen action. Intracellu-
lar steroid activation through the STS pathway is involved in
estrogen-dependent epithelial cancers, such as breast and
endometrial carcinomas [10], and single nucleotide polymor-
phisms in SULT1E1 lead to increased risk of breast [11] and
endometrial [12] cancers, together with reduced survival. A study
of Jewish women predisposed to breast and ovarian cancer found a
link to a missense mutation (His224Gln) in the SULT1E1 gene [13].
Together, these observations suggest that if these mutations
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affected enzyme activity, they might be candidates for cancer
promotion. Furthermore, the already substantial levels of E1S that
circulate in postmenopausal women are increased by hormone
replacement therapy (HRT) [14].

We therefore hypothesize that E2, is produced locally from
circulating E1S via the STS pathway in EOC cells. Additionally, since
inflammatory cytokines such as IL1a secreted by OSE [15] are
implicated in oncogenesis [16], they could have a role in activating
estrogen formation within ovarian tumors. Here we demonstrate
that EOC and normal OSE cells do indeed have distinct estrogen

metabolizing signatures compatible with increased local genera-
tion of estrogen in ovarian cancer.

2. Materials and methods

2.1. Ovarian tissues

Non-pathalogical ovarian tissue was donated by pre-meno-
pausal patients undergoing surgery for benign gynecological
conditions (see Supplementary Tables 1 and 2 for

Table 1
Sequences of primer/probe sets for qRT-PCR. Sequences of assay-on-demand primers and probes were unavailable but were pre-validated by ABI. Probe number referred to
the number of the probe in the Universal Probe Library and sequences were unavailable.

Gene Forward primer
(50-30)

Reverse primer
(50-30)

Probe (50FAM-TAMRA/MGB 30) NCBI accession or reference number

Aromatase Assay-on-demand Assay-on-demand Assay-on-demand Hs00240671_m1
STS Assay-on-demand Assay-on-demand Assay-on-demand Hs00165853_m1
EST AAGACTCATTTGCCACCTGAA GCATTCCGGCAAAGATAGAT Roche Probe library number: 4 NM_005420.2
HSD17B1 Assay-on-demand Assay-on-demand Assay-on-demand Hs00166219_m1
HSD17B2 TGTCAGCAGCATGGGAGGA GGTCACAGCCGCCTTTGAT CCCCAATGGAAAGGCTGGCATCTT NM_002153.2
HSD17B5 Assay-on-demand Assay-on-demand Assay-on-demand Hs00366267_m1
ERa TGATTGGTCTCGTCTGGCG CATGCCCTCTACACATTTTCCC TGCTCCTAACTTGCTCTTGGACAGGAACC NM_000125.3
ERb GGTCCATCGCCAGTTATCACAT GATGCGTAATCGCTGCAGACAG TGTGAAGCAAGATCGCTAGAACACACCT NM_001437.2

Fig. 1. Immunolocalization of Aromatase (A, F, K, P), STS (B, G, L, Q), EST (C, H, M, R), 17BHSD2 (D, I, N, S) and 17BHSD5 (E, J, O, T) proteins in pre-menopausal (A–E), post-
menopausal (F–J) ovaries and epithelial ovarian cancer (K–T). Expression was localized using specific antibodies raised against Aromatase, STS, EST,17BHSD2 and 17BHSD5, as
described in Section 2. Examples shown are representative of 3 pre-menopausal, 6 post-menopausal and 7 EOC patient samples. The clinicopathalogical profiles of the
samples are given in Supplementary Tables 1 and 3. (K–O) Aromatase, STS, EST, 17BHSD2 and 17BHSD5 in high grade serous carcinoma, (P) Aromatase in endometrioid
carcinoma grade 3, (Q) STS in a mixed high grade serous and endometrioid carcinoma, (R) EST in endometrioid carcinoma grade 3, (S) 17BHSD2 in endometrioid carcinoma
grade 3, (T) 17BHSD5 in mixed high grade serous and endometrioid carcinoma. Arrow indicates OSE cells (A–J) or epithelial-like cells (K–T). Asterisk marks stromal tissue.
Inserts show positive control-placenta (A) or non-immune serum controls (C, G, S, T). Scale bars 40 mm.
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clinicopathological information). None of the patients had
evidence of endometriosis, nor did the OSE show any evidence
of endometriotic lesions. Samples of ovarian cancer tissue were
donated by 12 patients with confirmed ovarian cancer
(see Supplementary Table 3 for clinicopathalogical details of
ovarian cancer patients). Paraffin-embedded (non-pathalogical
pre-menopausal, post-menopausal and cancerous) tissue from
other patients was kindly arranged by Dr. Alistair A. Williams
(Department of Pathology, University of Edinburgh). Formal
written consent was obtained from all patients and the project
approved by the Local Research Ethics Committee (COREG
reference 04/S1103/36). Previously-characterized ER positive cell
lines were SKOV3 (European Collection of Cell Cultures, Public
Health England, Salisbury, UK) and PEO1 [17].

2.2. Cell collection and culture

OSE cells were collected by gently brushing the ovarian surface
with a Tao brush (Cook Ireland Ltd., Limerick, Ireland) and rinsing
OSE cells into T75 flasks (Corning Inc., Corning, NY) with culture
medium (see below) as previously described [18,19]. Primary EOC
cells were retrieved from ovarian cancer tissues by enzymatic
dispersion [20]. In brief, tissue was minced with scalpel blades and
incubated overnight at 4 �C in 0.25% trypsin (Gibco, Life
Technologies, Paisley, Scotland), 0.004% DNAse1 (Sigma, Poole,
Dorset, UK). Trypsin was inactivated with addition of serum-
containing medium (see below) and the cells pelleted by
centrifugation (500 � g, 5 min) before resuspension in fresh
medium and culture to confluence in T75 flasks. The culture
medium was Medium 199 (Gibco):MCDB 105 (Sigma) (1:1 v/v)
containing 15% (v/v) fetal bovine serum (FBS), 50 mg/ml
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Fig. 3. Expression of ERa (A) and ERb (B) mRNA expression in OSE (n = 17) and EOC
(n = 4) by Taqman qRT-PCR. RNA was extracted from untreated cells and measured
using qRT-PCR. The level of mRNA was standardized to 18S rRNA and presented as
fold-increase relative to standard (placenta). Horizontal bars indicate median value.
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Fig. 2. Expression of STS (A), EST (B), 17BHSD2 (C) and 17BHSD5 (D) mRNAs in OSE (n = 17) and EOC (n = 9–10). RNA was extracted from untreated cells and measured using
qRT-PCR. The level of mRNA was standardized to 18S rRNA and presented as fold-increase relative to standard (placenta for STS and 17BHSD5, endometrium for EST and
17BHSD2). Horizontal bars indicate median value (*P < 0.05, **P < 0.01, Mann–Whitney test).
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streptomycin, 50 IU/ml penicillin and 2 mmol/l L-glutamine (all
from Sigma). OSE cells were used in experiments within two
passages of culture since collection. SKOV3 and PEO1 cell lines
were maintained in T162 flasks (Corning) in the same culture
medium containing 10% (v/v) FBS.

2.3. Experimental treatments

Cells were plated into 6-well culture dishes at densities of
3 � 105 cells per well for mRNA studies or 5 �105 cells per well for
enzyme activity assays. Incubation was at 37 �C in a humidified

atmosphere of air and CO2 (95:5 v/v). Cell monolayers were
established by 24 h whereupon medium was substituted with
serum-free medium containing 0.01% bovine serum albumin
(BSA, Fraction V, Sigma) for a further 24 h. Experiments were
then started by adding 0.5 ml fresh serum-free medium. IL1a
(R & D Systems, Abingdon, UK) was used at a concentration of
0.5 ng/ml unless dose was a variable. Recombinant human
IL1 receptor antagonist (IL1RA, R & D systems) was used at
25 ng/ml. Incubation was for 48 h for mRNA expression studies or
72 h for enzymatic studies, in which case radiolabeled substrate
was also added to the medium (see below).
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2.4. RNA extraction

Total RNA was extracted from washed cell monolayers using
RNeasy Mini kit (Qiagen Ltd., Crawley, W Sussex, UK) as per the
manufacturer’s protocol with on-column DNAse treatment. RNA
concentration was measured using a Nanodrop spectrophotometer
(ND-1000, Nanodrop Technologies Inc., Wilmington, DE, USA). RNA
samples with 260/280 ratio above 2.0 were used for cDNA
synthesis.

2.5. Quantitative Taqman real-time PCR analysis

Total RNA (200 ng) was reverse transcribed to cDNA using the
RT-Reagent Kit (Applied Biosystems, Warrington, UK) according to
the manufacturer’s protocol. Quantitative real-time PCR was
performed in a reaction mixture containing 2 ml of cDNA, Taqman
Universal PCR mastermix (Applied Biosystem) and specific primer/
probe sets. STS and 17BHSD5 primer/probe sets were pre-validated
(Assay-on-demand, Applied Biosystems); EST primer and probes
were designed in-house using ProbeFinder version 2.45 (Roche
Diagnostics Ltd., Burgess Hill, UK) and synthesized by Genosys
Biotechnologies (Cambridge, UK). Primer and probes for
17BHSD2 were designed in-house by Primer Express software
and manufactured by Biosource (Nivelles, Belgium). Sequences of
primer/probe sets for qRT-PCR are listed in Table 1. Probes and

primers were all validated before use. A ribosomal 18S primer/
probe set (Applied Biosystems) was also included and used as an
internal control. Target mRNA was quantified in relation to 18S
rRNA in each sample. The negative controls comprised RT-negative
(RNA reaction with no reverse transcriptase enzyme), RT-H2O
(water in place of RNA) and a Taqman reaction-negative control
(water instead of cDNA). Reactions were carried out in duplicate.
Samples were evaluated in 96-well plates using an ABI Prism
7900 Sequence Detector (Applied Biosystem).

2.6. Enzyme activity assay

Enzyme activities were determined by radioenzymatic activity
assays. The substrate was E1S or E1 (3 nM) including 150,000 cpm
[6,7-3H(N)]-E1S or [2,4,6,7-3H]-E1 (PerkinElmer, USA) in 2 ml
serum-free culture medium. Cells were incubated with or without
IL1a at 0.5 ng/ml for 72 h. The media were collected and mixed
with 10 ml dichloromethane (Fisher Scientific, Loughborough, UK)
to stop the reaction. Samples were centrifuged and the organic
phase removed and evaporated to dryness under nitrogen. The
dried steroid extract was reconstituted in 100 ml dichloromethane
with unlabeled E1 (10 mM), E2 (10 mM) and E1S (10 mM) as carrier.
Samples were applied onto silica-gel pre-coated sheets (PE, SILG;
Whatman, Maidstone, Kent, UK) and thin-layer chromatography
undertaken using chloroform:ethanol (92:8, v/v) as the mobile
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phase. Radio-labeled steroid components were identified and
quantified using a Bioscan 200 imaging detector (Lablogic Systems,
Sheffield, UK).

2.7. Immunohistochemistry

Immunohistochemistry was done on 10 mm thick paraffin-
embedded tissue sections, Standard protocols were used involving
antigen retrieval in 0.01 M citrate buffer (pH 6.0), blockade of
endogenous peroxidase and streptavidin-biotin, and a non-
immune serum blocking step. Slides were incubated overnight
at 4 �C with primary antibody (rabbit anti-human STS polyclonal
antibody (Sigma–Aldrich, HPA002904), 1:75; rabbit anti-mouse
EST polyclonal antibody [21], 1:750; rabbit anti-human
17BHSD2 polyclonal antibody [22], 1:200; mouse anti-human
17BHSD5 monoclonal antibody [23], 1:200; mouse anti-human
aromatase monoclonal antibody [24],1:50) followed by incubation
with secondary antibody (goat anti-rabbit 1:500 for STS, EST and
17BHSD2, goat anti-mouse 1:500 for 17BHSD5 and aromatase,
Dako, Cambridge, UK) at room temperature for 60 min. Strepta-
vidin horseradish peroxidase (Vector, Peterborough, UK) was used
to amplify the signal from the biotinylated secondary antibody and
specific immunostaining was visualized by 3,3-diaminobenzidine
(DAB; Dako, Cambridge, UK). Generic immunoglobulins from the
same species or green fluorescent protein (GFP, Invitrogen, Paisley,
UK) antibody raised in the same species at the same concentration
as the primary antibody were used as negative controls. Positive
controls were tissue sections from placenta for STS and 17BHSD2,

fetal kidney for EST and endometrium for 17BHSD5. Photomicro-
graphs were taken using a Provis AX70 microscope (Olympus) with
�10 and �20 objectives, and an Axiocam (Carl Zeiss) digital camera
with Axiovision image capture software (Carl Zeiss).

2.8. Statistical analysis

Statistical analysis was performed using GraphPad Prism 5
(GraphPad Software Inc., San Diego, USA). qRT-PCR data were
analyzed by the Mann–Whitney test (Fig. 2), one-way analysis of
variance (ANOVA, Fig. 5A and C), two-way ANOVA (Fig. 5B) and
Wilcoxon signed rank test (Fig. 6). Enzyme activity assay data were
analyzed by one-way ANOVA (Fig. 4). Statistical difference was
assigned at P < 0.05. All post-hoc testing subsequent to ANOVA was
by Tukey’s multiple comparisons.

3. Results

3.1. STS, EST, 17BHSD2, 17BHSD5 and aromatase protein expression

STS, EST, 17BHSD2 and 17BHSD5 were readily detected in pre-
menopausal and persists in post-menopausal ovaries and EOC
(Fig. 1). Positive immunostaining was particularly evident in the
OSE layer of normal tissues and the lining of EOC lesions.
Aromatase expression was undetectable in the OSE of normal
pre- or post-menopausal ovaries or EOC, despite strong expression
in positive control (placenta) tissue.
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3.2. STS, EST, 17BHSD1, 17BHSD2, 17BHSD5 and aromatase mRNA
expression

STS mRNA was measurable at similar levels in OSE and EOC
(Fig. 2A). EST mRNA expression was significantly higher in OSE
than EOC (Fig. 2B, P < 0.01). 17BHSD2 mRNA was expressed in all
OSE and most EOC samples. However, the median level in OSE was
slightly higher than that in EOC (Fig. 2C, P < 0.05). 17BHSD5 mRNA
was also higher in OSE than EOC (Fig. 2D, P < 0.05). 17BHSD1 and
aromatase mRNA expression were almost undetectable (less than
10,000-fold compared to placenta standard – results not shown).

3.3. Estrogen receptor (ER) mRNA expression

ERa and ERb mRNA expression were determined in OSE cells
and a subset of EOC (Fig. 3). ERa was expression was not
significantly different between OSE and EOC (Fig. 3A). ERb was
detected in half of the OSE samples and 3 out of 4 EOC samples, and
was not significantly different (Fig. 3B).

3.4. Estrogen metabolism

OSE cells did not measurably convert [3H]-E1S into free estrogen
(Fig. 4A) or convert [3H]-E1 into [3H]-E2 (Fig. 4B). However, they
efficiently conjugated [3H]-E1 to form [3H]-E1S (Fig. 4B).

In contrast two EOC cell lines readily produced free E1 and E2
from [3H]-E1S (Fig. 4C and E) and were effectively unable to
sulfoconjugate [3H]-E1. Instead, when [3H]-E1 was the substrate,
EOC cells mainly produced [3H]-E2.

Quantification of the data confirmed that OSE cells have
significantly higher estrogen sulfoconjugation potential compared
to EOC lines (Fig. 5A) and substantially lower potential to activate
E1 into E2 (Fig. 5B). On the other hand, EOC are significantly more
able than OSE to produce free E1 (Fig. 5C) and E2 (Fig. 5D).

3.5. Regulation of STS mRNA by IL1a

The effect of an inflammatory cytokine on STS mRNA level as a
proxy for steroid sulfatase activity potential was assessed in an EOC
cell line (SKOV3). Treatment with IL1a caused time- (Fig. 6A) and
dose-dependent (Fig. 6B) increases in STS mRNA which were fully
prevented by the presence of IL1 receptor antagonist (IL1RA)
(Fig. 6C, P < 0.01).

3.6. IL1a regulates estrogen-metabolizing enzyme mRNAs in OSE

Treatment of OSE cells with IL1a for 48 h did not affect STS
mRNA expression (Fig. 7A), but significantly decreased EST mRNA
(Fig. 7B, P < 0.01) and 17BHSD2 mRNA (Fig. 7C, P < 0.001).
17BHSD5 mRNA expression was not affected by IL1a treatment
(Fig. 7D).

4. Discussion

These results are suggestive that the key to estrogen generation
in EOC cells may lie in their relative ability to convert conjugated
estrogen substrates into free biologically active estrogens. Ovarian
capacity to produce estrogen through aromatisation of androgens
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Fig. 7. Regulation of STS (A), EST (B), 17BHSD2 (C) and 17BHSD5 (D) mRNAs by IL1a in OSE. Cultured OSE cells were treated with and without 0.5 ng/ml IL1a for 48 h, and total
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subsides after the menopause when folliculogenesis ceases. Here
we show for the first time that increased ratios of STS/EST in EOC
may facilitate local active estrogen synthesis in EOC and that
inflammatory cytokines may trigger this synthesis in OSE.
Circulating E1S in post-menopausal women is around 0.4 nM
and increases to about 7 nM in women who are taking HRT [25],
indicating sufficient substrate in circulation for significant local E2
production in post-menopausal ovarian cancer patients.

Our data complement previous studies showing expression and
activity of STS in ovarian cancer cells [26,27], with evidence for a
negative correlation between sulfatase activity and progression –

free survival in patients with advanced stage epithelial ovarian
cancer [28]. We now add substantially to these observations by
comparing the expression of genes encoding pre-receptor metab-
olism and production of estrogen in normal OSE and EOC.
Importantly we find STS mRNA and protein expression in both
OSE and EOC cells, as well as in SKOV3 and PEO1 cell lines,
confirming the potential for OSE and EOC to generate free estrogen
via hydrolysis of circulating E1S. This complements evidence for
estrogen generation from sulfated forms in breast cancer tissue,
where sulfatase pathway is 50–200 times more active than
aromatase [29]. The additional presence of 17BHSD5 mRNA and
protein in both OSE and EOC cells further indicates the possibility
of E2 production from E1. The persistence of expression of STS, EST
and 17BHSD2/5 in post-menopausal ovarian OSE indicates that
enzymatic potential remains, even after cessation of follicular
activity in the ovary.

Conversely, the presence of EST and 17BHSD2 in OSE and EOC
lends potential to the deactivation free estrogen through reverse
metabolism of E2 to E1 and sulfoconjugation into E1S. Thus among
other things, the estrogen-generating potential would seem to
depend on the balance of STS/17BHSD5 versus EST/17BHSD2. We
find STS mRNA expression to be similar in OSE and EOC cells
whereas EST mRNA expression is substantially increased in OSE.
Furthermore, 17BHSD2 mRNA levels are substantially lower in OSE
compared with EOC while differences in 17BHSD5 mRNA levels are
much less. These results are also in broad agreement with a recent
microarray study on 12 samples of ovarian cancer epithelial cells
and 12 samples of normal OSE [30], in which STS and 17BHSD1 (an
alternative 17-oxoreductase to 17BHSD5) were higher, but
17BHSD2 was lower, in EOC compared with OSE. The mRNA
expression profiles in both studies imply a bias toward active
estrogen formation in EOC relative to OSE.

Whilst expression of aromatase in granulosa cells is universally
recognized, the expression in OSE is less clear. We were unable to
detect immunohistochemical localization of aromatase in single-
layered OSE. This was in contrast to positive immunostaining
reported previously [31], although the multi-layered OSE did not
resemble that observed in the present study. Furthermore,
aromatase mRNA expression in OSE was 10,000-fold lower than
placental tissue, suggesting that presence of aromatase transcripts
in these cells is negligible. Evidence for aromatase expression in
EOC and cancer cell lines is more compelling, although not
universally demonstrated in all cases or in all studies [32–35].
Interestingly, aromatase expression was noted in stromal cells, but
not carcinomatous epithelial cell nests [36]. The lack of aromatase
immunohistochemical or mRNA expression in the present study
may be a consequence of the relatively small number of samples
studied.

The potential for increased estrogen formation in EOC is verified
by our measurements of estrogen (in) activation in vitro. Thus OSE
cells tend to produce more conjugated estrogens from free
estrogen substrates whereas EOC cells more readily mobilise
estrogen from conjugated substrates. These data therefore suggest
that relative protection from biologically active estrogen in OSE is
lost in EOC.

Further mechanistic insight into the role of altered estrogen
metabolism in the etiology of EOC will require the use of suitable
transgenic EOC mouse models. Sult1e1 mRNA was observed in the
OSE of mouse ovaries, and a global sult1e1 knockout mouse had
impaired ovulation [37]. EST protein expression was downregu-
lated in older mice [38], and mouse OSE can undergo transforma-
tion in vitro and form tumors after i.p. injection into syngenic and
athymic recipients [39]. Furthermore, in a mouse model of ovarian
cancer, tumorigenesis was dependent on local estrogen production
within the tumor [40]. A definitive investigation of the protective
role of EST will likely require the use of a conditional sult1e1
knockout mouse, but this limited animal data support our
observations.

Similar ERa and ERb mRNA expression have been described
previously in OSE and EOC [41]. In contrast, Brandenberger et al.
[42] using Northern analysis, and Bardin et al. [43] using qRT-PCR
found lower levels of ERb mRNA in EOC compared with OSE, that
was not mirrored in the present study. Although there remains
debate as to which ER type is more important in estrogen action in
EOC, our data support a role of ER-mediated action of locally
produced estrogen in both normal OSE and EOC.

Our data also indicate that the machinery for producing active
estrogen from inactive conjugated estrogens in OSE is susceptible
to inflammatory stimulation in normal and cancer cells, demon-
strating a potential mechanism of tumor progression in EOC.

In OSE cells, treatment with IL1a had no effect on STS and
17BHSD5 mRNA levels while it decreased in ESTand 17BHSD2 mRNA
expression in response to IL1a. This implies a net stimulatory effect
of IL1a on the potential for active estrogen formation by OSE.
Conversely, IL1a markedly increased STS expression - hence
potential - for production of E1 in SKOV3 cell line. The SKOV3 data
suggests an inflammatory basis for aggravation of EOC via local
hydrolysis of E1S. There is evidence for induction of STS activity by
other inflammatory cytokines (IL6 and TNFa) in breast cancer via a
post-translational modification of the enzyme or by increasing
substrate availability [44]. It remains to be determined whether
TNFa and IL6 increase STS activity in ovarian cancer cells. IL1b
suppressed STSmRNA and activity in endometrial stromal cells [45],
although this may reflect tissue specific different cytokine actions
on epithelial and stromal cells.

The finding that the STS pathway could contribute to the
progression of estrogen-dependent ovarian cancer highlights the
potential importance of STS as a therapeutic target in the
treatment of gynecologic cancer. Recent evidence points to
successful use of an STS inhibitor in other cancers. In a
hormone-dependent endometrial xenograft model using ovariec-
tomized mice, the STS inhibitor STX64 reduced tumor growth by
48% [46]. A phase 1 study of STX64 in breast cancer patients
showed good tolerance, inhibition of STS activity in tumor tissues
and a significant decrease in circulating estrogenic steroid
concentration [25]. STS activity was blocked by STX64 in the
ovarian cancer cell line OVCAR-3 [47]. Collectively, these data
emphasize the therapeutic potential that STS inhibition might hold
for the treatment of ovarian cancer. Conversely, EST might be
augmented to the same end.

In conclusion, we present novel evidence that estrogen
intracrinology differs substantially in OSE and EOC cells. Our
study suggests a mechanism through which E2 formation could be
suppressed in OSE and augmented in EOC through differential
metabolism of free and conjugated estrogen substrates, mediated
by binding to ER. Their metabolic profiles imply reduced
sulfoconjugation and inactivation of estrogen in EOC through
reduced STS and/or enhanced EST activities. Inflammatory
cytokines potentially exacerbate these differences. Further studies
are required to fully understand the mechanisms involved.
Targeted STS inhibition and/or EST augmentation present
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strategies for manipulating steroid-responsive cancer cell growth
in vitro and in vivo, and may ultimately lead to the development of
more effective treatments for ovarian cancer.
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