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Abstract

We show, using the fine structure of K(R), that the theory ZF + AD + 3X C R[X ¢ K(R)}
implies the existence of an inner model of ZF + AD + DC containing a measurable cardinal
above its ©, the supremum of the ordinals which are the surjective image of R. As a corollary,
we show that HOD*® = K(P) for some P C(O7 Y™, where K(P) is the Dodd-Jensen Core
Model relative to P. In conclusion, we show that the theory ZF + AD 4+ -DCg implies that RY
(dagger) exists. (© 1998 Published by Elsevier Science B.V. All rights reserved.
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0. Introduction

Let w be the set of all natural numbers. R=%w is the set of all functions from o
to w. We call R the set of reals and regard R as a topological space by giving it the
product topology using the discrete topology on w. For a set ¥ and each 4 C“Y we
associate a two person infinite game on Y, with payoff 4, denoted by Gy4:

I »0) ¥(2)

I ¥(1) ¥(3)

in which player I wins if y € 4, and player Il wins if y ¢ 4. We call 4 determined if
the corresponding game G, is determined, that is, either player I or I has a winning
quasi-strategy (see [15, p. 287]). Since we will be working in a context without the
Axiom of Choice, we do not require strategies to be single valued.
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The Axiom of Determinacy (AD) is a regularity hypothesis about games on w
that states: Y4 C R (A4 is determined). Similarly, we let ADg represent the analogous
assertion concerning games on R. Given a pointclass I' C 2(R), we say that I —
AD or “I' is determined”, to mean that every two-person game on w with payoff in
I' is determined. Likewise, we let I' — ADg assert that every two-person game on
R with payoff in I' is determined. (We are assuming a canonical homeomorphism
“R 2~ R.)

Finally, the Axiom of Dependent Choices (DC) asserts: For every set X and every
relation R on X,

(VaeX)3bEX)R(a,b) = (Af 1w — X )¥n € w)R(f(n), f(n+1)).

Let DCr be DC restricted to the case of the reals, that is, where X = R.

From the beginning L(R), the smallest inner model of ZF containing the reals R,
was seen as the natural inner model for determinacy and the structure of this model
came to be studied for its own sake. Consequently, a number of theorems have been
established resolving many issues in L(R). For example, questions about

(a) the extent of scales,

(b) the axiom of dependent choices,

(c) strong partition cardinals,

(d) measurable cardinals below &,

(e) the size of O,

(f) the first order theory of HODX® (see [18]), and

(g) various characterizations of determinacy in L(R) (see [8, Sections 30 and 32])
have been answered. A number of the solutions to these problems about L(R) use the
fact that Z([R) has a fine structure theory analogous (in many ways) to the fine structure
theory of L, Godel’s constructible universe. For example, Martin and Steel [13] used
the fine structure of L(R) to determine the extent of scales in L(R). In addition, relying
on Steel’s analysis in [17], Kechris [9] showed that ZF + AD + V' = L(R) = DC. This
success makes it natural to ask the following:

Question 1. How can one extend the range of what constitutes a “constructible” set
of reals beyond L(R) and still be able to resolve the important problems of descriptive
set theory?

The real core model K(R), introduced in [1], contains a “constructible” set of reals
not in L(R). In addition, a number of descriptive set theoretic problems have also
been resolved in K(R). For example, using a mixture of descriptive set theory, fine
structure and the theory of iterated ultrapowers, one can produce definable scales in
K(R) beyond those in L(R) and prove that K(R) = DC (see [1]). We believe that
K(R) is another natural inner model (for determinacy) whose structure will also be
studied for its own sake, and that K(R) provides a “first step” to answering Question 1.
In this paper we pursue the problem of going beyond K(R).
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It seems that for an inner model of AD to be “well behaved,” it requires a fine
structure theory. Coincidentally, fine structure is an important tool in the study of
inner models of large cardinal hypotheses and the Axiom of Choice, the smallest of
which is the Core Model K. Dodd-Jensen [4, 5] carefully develop the fine structure
of the inner model K and use this structure to demonstrate the existence of an inner
model L[x] with a measurable cardinal x under certain hypotheses (e.g., “there is a non-
trivial j: K —»K”) Mitchell and Steel have developed and studied the fine structure

of core models larger than K. In fact, using the fine structure of these core models,
Steel [18] has shown that HODX® satisfies the GCH. These techniques developed by
Steel very likely can be used to show that HODX® also satisfies the GCH.

There are a number of large cardinal hypotheses which imply that L(R) is an inner
model of determinacy, and stronger cardinal hypotheses exist which yield larger inner
models of determinacy (for example, K(R)).

Question 2. What other hypotheses allow one to build larger inner models of ZF +
AD + DC?

The hypothesis
ZF + AD + dX CR[X ¢ L(R)]

is enough to build the real core model K(R) and to show that it is an inner model of
ZF + AD 4+ DC (see the proof of Corollary 5.15 in [1]). In this paper we show that
the hypothesis

ZF + AD + 3X CR[X ¢ K(R)] (1)

is strong enough to build an even larger inner model L[u](R) of ZF + AD + DC
containing a measurable cardinal above its ®. Here, @ is the supremum of the ordinals
which are the surjective image of R. It appears that the hypothesis

ZF + AD + “no fine-structural inner model of ZF + AD + DC contains Z(R)”
(2)

allows one to build larger and larger inner models of determinacy and dependent
choices. In some sense, (2) is a “large cardinal hypothesis”. Here, note that we are
considering only fine-structural inner models of ZF + AD + DC containing the set of
reals R. Another related hypothesis, which implies (2), is

ZF + AD + —DCh. (3)

In this paper we are interested in the consequences of hypotheses (1) and (3) above.
The inner models K and K(R) have a similar fine structure but they are quite
different in other ways. For example, the Axiom of Choice holds in K, but is “false”
in K(R). Also, the methods used to analyze the sets of reals in K(R) are obtained
by merging descriptive set theory with large cardinal theory, and these methods do
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not apply to the inner model K. However, using the fine structure of K(R) under the
above hypothesis (1), we can establish that K(R) is “iterable” and that there exists a
larger inner model, L[u](R), of AD with a measurable cardinal x> @#(®) Here, u
is an R-complete, normal measure on x in L[{#](R) (for the meaning of R-complete in
L[u](R) see Definition 0.7).

Two consequences of this construction of the inner model L[uJ(R) are:
(a) Con(ZF + AD + —-DCg) = Con(ZF 4+ DC + AD + Jx > @[k is measurable])
(b) Con(ZF + AD + —~DCg) = Con(ZF + DC + AD + (w? — II}) — ADg).

Solovay [16] shows that the theory ZF + AD does not prove DC, assuming a strong
hypothesis. Solovay conjectured that ZF + AD does not prove DCg. Kechris—Woodin
[9] were the first to inquire about the strength of the theory ZF + AD + —DCg. In
particular, they asked:

Question 3. Does Con(ZF + AD + -DCg) imply Con(ZF + DC + ADg)?
On the other hand, Woodin has asked (see 30.31 of [8]):
Question 4. Does ZF + AD imply DCg?

The above results (a) and (b) may be a first step in finding a proof of the conjecture
(stated in [1]) that ZF + AD + —-DCg implies the existence of inner models of AD
with Woodin cardinals above @ (see [8] for the definition of a Woodin cardinal).
These inner models will (likely) have the form L[&](R), where & is a sequence of
extenders, each of which is R-complete. The assumption AD+—-DCp appears to provide
a “bootstrapping process” for constructing “larger and larger” inner models of ZF +
AD + DCg. More specifically, one should be able to construct inner models of ZF +
AD+DC containing “more and more” extenders (see Section 26 of [8]) and to construct
an extender sequence &, by recursion (via [14]), where L[&](R) has enough extenders
to witness the existence of at least one Woodin cardinal. This “construction process”
may have the following form:

Having constructed the inner model M of ZF + AD containing R
(i) prove that M |= DCpg (this may involve constructing quasi-scales, as in [1]),
(ii) conclude that 93X C R[X ¢ M],
(iii) prove that there is a non-trivial elementary embedding j: M — M’ with M’ tran-
sitive (see Lemma 4.1),
(iv) use the embedding j to construct a larger inner model N DM of ZF + AD con-
taining R (N may contain a set of reals not in M, see Theorems 4.16 and 4.18).

If the above “process” exhausts all sets of reals (that is, every set of reals is in one

of the inner models of DCg constructed), then one would have a proof of

ZF + AD = DCpg

and thus a positive answer to Question 4. Otherwise (conceivably), after some stage
the models constructed all have the same sets of reals. Are these inner models of
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ZF + DC + ADg? Another possibility is that one eventually constructs an inner model
of ZF + AD + —DCpg and then the process stops. In any case, the completion of this
“process” could lead to some interesting results.

The present paper is organized into four sections. In Section 1 we show that K(R)
satisfies a modified “generalized continuum hypothesis” and then use this, together
with a theorem of Vopénka, to give a computation of HOD*® Another computation
of HOD*® is given in Section 4 (see discussion below). In Section 2 we define
when p is an M-measure on certain inner models M of AD. The usual construction of
iterated ultrapowers of M assumes that M satisfies the Axiom of Choice, as does the
standard proof that the associated ultrapower embeddings are elementary. However, the
Axiom of Choice is false in an inner model M of AD. So in Section 2 we also show
that Lo§” Theorem holds for the ultrapower of these “choiceless” inner models and
that the corresponding embeddings are ¢lementary. Furthermore, the typical argument
proving that an inner model is “iterable” usually requires DC, the Axiom of Dependent
Choices (see Lemma 19.12 of [8]). But in this paper we will not assume DC. So in
Section 3 we develop some tools which will be used, in Section 4, to prove that
(K(R), ) is weakly iterable without DC, whenever g is a countably complete K(R)-
measure on k> @X® Finally in Section 4 we show that there exists an inner model of
ZF + AD + DC containing a measurable cardinal above its @, under the assumption of
ZF + AD + 3X CR[X ¢ K(R)]. As a corollary, we show that HOD*® = K(P) where
K(P) is the Dodd—Jensen Core Model relative to P, a set of ordinals. This generalizes
a result of Woodin which states that HOD“® = L(P) for some set PC @H®) (see
Section | of [18]).

Remark. Steel and Woodin have established many important theorems using the struc-
ture of HOD“® We expect that additional results will arise from the study of the
structure of HOD*™),

0.1. Preliminaries and notation

We work in ZF and state our additional hypotheses as we need them. We do this
to maintain a careful surveillance on the use of determinacy and dependent choice in
the proofs of our main theorems. Variables x, y,z, w... generally range over R, while
o, B,v,0... range over OR, the class of ordinals. If 0<j<® and 1<k <w, then o/ x
(“w)* is recursively homeomorphic to R, and we sometimes tacitly identify the two.

A proper class M is called an inner model if and only if M is a transitive €-model
of ZF containing all the ordinals. For an inner model M with X € M, we shall write
#M(X) to denote the power set of X as computed in M. For an ordinal x € M, we
shall abuse standard notation slightly and write *M ={feM | f:x — M}.

We distinguish between the notations L[4] and L(4). The inner model L(A4) is defined
to be the class of sets constructible above A4, whereas the inner mode! L{4] is defined
to be the class of sets constructible relative to 4 (see [8, p. 34]). Thus, one defines
L[AY(B) to be the class of sets constructible relative to 4 and above B.
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A pointclass is a class of subsets of R closed under recursive substitutions. A bold-
face pointclass is a pointclass closed under continuous substitutions. For a pointclass I,
we write “I"—AD” or “Det(I")” to denote the assertion that all games on @ with payoff
in I' are determined. For any notions from Descriptive Set Theory which we have not
defined, we refer the reader to Moschovakis [15].

Our general set theoretic notation is standard. Given a function f, we write dom(f) =
{x: Ip(f(x)=y)} and ran( f)={y: Ix(f(x)=p)}. We shall write (x,...,x,) to rep-
resent a finite sequence of elements. For any set X, (X)<% is the set of all finite
sequences of elements of X, [X]< is the set of all finite subsets of X, and Z(X) is
the set of all subsets of X. Given two finite sequences s and ¢, the sequence s7¢ is
the concatenation of s to . Generally, u will be a normal measure on #(x), where
x is an ordinal. For an ordinal «, ¥, is the set of all sets of rank less than a. We
let y=T.{x) denote the formula “y is the transitive closure of x”. For any model (or
inner model) .# =(M,€,...), we write "M ={f €M | f:x — M}. In addition, for a
model (or inner model) .# having only one “measurable cardinal”, we shall write k¥
to denote this cardinal in .#. Similarly, when .# has only one “measure”, we shall
write 4% to denote this measure.

Given a model A& =(M,c(,¢2,...,Cm A1, 42,...,4x), where the 4; are predicates and
the ¢; are constants, if X CM then X, (.#,X) is the class of relations on M definable
over # by a X, formula from parameters in X U{ci,c2,...,¢m}. Zo(AM,X)=,c,
2., X). We write “Z (M) for Z,(.#,0) and “Z,(.#)" for the boldface class
Zn(A,M). Similar conventions hold for IT, and A, notations. If .# is a substruc-
ture of .4 and X CM CN, then “.# <X 4™ means that .# = ¢[a] if and only if
A & $la], for all ae(X)<* and for all X, formulae ¢ (the formula ¢ is allowed
constants taken from {ci,cy,...,Cn}). We write “.4 <, N for “ 4 <M 4. In addi-
tion, for any two models .# and A", we write n: .4 - A" to indicate that the map =

is a X,-elementary embedding, that is, .# |= ¢[a] if and only if A" = ¢[n(a)], for all
a={ag,ay,...) €(M)< and for all Z, formulae ¢, where 0<n<w and n(a)= (n(ao),
7!(& 1 ), .. } .

We now give an overview of the fundamental notions presented in [1, 2], which
will be assumed here. The language £y = {€,R,c|,...,cm,A1,..., Ay} consists of the
constant symbols R and ¢y,...,c, together with the membership relation € and the
predicate symbols 4;,...,4y. The theory Ry is the deductive closure of the following
weak set theory above the reals:

(1) WWy(x=y & Vz(zex & z€y)) (extensionality)
(2) Iyvx(x ¢ y) (D exists)
(B) Vx(x#@=Ip(yexAxnNy=0)) (foundation)
(4) VavydeViHtcz & (t=xVi=y)) (pairing)
(5) YxIVitey & Fz(zex AtEz)) {union)
(6) Iw(Bew A ord(w) Alim(w) A Vo € w-lim(x)) {w exists)

(7) Yuvx3dzVs(sez & s€uAY(s,X)) (Zy separation)
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(8) VuvxvywyVz(ze y & Hew(iz={scu: ¢(s,4,X)})) (Zo closure)
9) Ix(xeRe VvexdncozIf(Tr(z)AyCzA fin 22y (R=V,0)

where, in (7) and (8), ¢ and ¥ are any X, formulas. The above predicates ord(w),
lim(w), and Tr(w) abbreviate “w is an ordinal”, “w is limit”, and “w is transitive”,
respectively.

Of course, V,,, can be “constructed” from the set of reals R. It is more convenient,
however, to start constructing new sets from the transitive set V,,.; rather than from R.
Since R is a proper subset of V., and is easily “separated” from V., we shall
consider ¥, as given and we will tacitly identify the two.

The theory R*(=R}) is Ry together with the II, sentence V =L[4,,...,AN](R).
We are interested in transitive models .# :(M,E,B'” ,A1,...,Ay) of R, We shall
write R? =R for .#’s version of the reals. For any « € OR* we let S;/(R) de-
note the unique set in .# satisfying .# = 3f(o(f) A a €dom(f) A S (R)= f(x)),
where ¢ is the X sentence used to define the sequence <S1;.'”(B): 7<OR“#) (see [I,

Definition 1.5]). For A=O0R”, let S:/(R)={J,_,S,”(R). Let OR denote the class
{7: the ordinal wy exists} and let J.I‘,”(B):S('fg(B), for }’Séﬁ‘”. Since .# | RY,
it follows that M =J;#(R) where 2 =OR“. For 1<y<OR¥ let .4’ be the sub-
structure of ./ defined by .#7 = (L/(R),€,R7 . J4(R)NA\,.... /.5 (R)NAy) and let
M7 =J:"(R). We can write .47 :(M"",G,B"{,A,,...,AN ), as this will cause no con-
fusion.lNote that .#7 is amenable, that is, anA; € M7, for all ac M7 where 1 <i<N.

Definition 0.1. Let .# be a transitive model of R*. The projectum p ; is the least
ordinal p<OR*“ such that 2(R¥ x wp)NE(M)L M, and p4 is the <pk-least
pE€[OR 1< such that Z(R* x wp 4) N Z1(M, {p})LM.

The order < g is the Brouwer—Kleene order on finite sets of ordinals and is a X
well-order. We now recall the definition of a master code and the notion of accept-
ability, as stated in [2].

Definition 0.2. The X|-master code, A4, of # is the set

Ay ={(xs)eR x (wp 4)<: M = @uoydn.x(n+ 1,5, py)}

where (@;: i € w) is a fixed recursive listing of all the X, formulae of three variables
in the language ¥n and A.nx(n + i) is the real y such that y(n)=x(n + i) for all
new.

Definition 0.3. Suppose that .# is a transitive model of Ry,. We say that .# is accept-
able (above the reals) provided that whenever (6 x R#*)YN M € M* for v<OR*
and d <OR*', then for each u € M**! there is an f € M**' such that

f={frr: 0<E<OR™ AxeRY)
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and

feei ExX R 28 {£} U (P(E x R*)Nu).

Write (Jé(“”’A‘”)(B): £€OR) for the Jensen hierarchy of sets which are relatively
constructible above R# from the predicates 4, N M,..., Ay "M, A4 N M.

Definition 0.4. Given that .# is acceptable, let M* =J,(,_“f’A"”)(B). The X -code of .#
is the structure #* =(M*,€,R,c1,...,Cm, AINM*,...,Ay "M*, 4 4 N M*) where the
constants have the same interpretation in .#* as in /.

In order to apply fine structural techniques to the structure .#, one must ensure that
the two structures .# and .#* have the same bounded subsets of R# x wp 4. The
acceptability of .# implies that .#* is a substructure of .# containing all the bounded
subsets of R# x wp 4 which are elements in .# (see Lemma 1.15 of [2]). Thus, fine
structural techniques can be applied to .#. In addition, since .#* is an acceptable
model of R, (see Lemma 1.17 of [2]), one can “iterate the projectum”.

Definition 0.5. Suppose that .# is acceptable. Inductively define on n € @ the X,-code

of #, denoted by .#", as follows:

(1) M4 =4, p°% =0R*, p°% =0, and /%, =0.

(2) Assume that .#" has been defined and that p 4 >1. Define 4"+ =(.4")*,
P =pa, P = par, and L7 =4 4.

Remark. The above notation is slightly inconsistent with previous notation. Namely,

for an ordinal y, .#? denotes a structure whose domain consists of the sets constructed

in Jy“” (R), while .#" denotes the X,-code of .#. However, we shall use integer vari-

ables, for example n, exclusively for denoting .#" the X,-code of .#.

There is another way of iterating a “projectum”.

Definition 0.6. Let .# be acceptable. Define 7%, = OR#. For 1 <n<w, define 3", to
be the least ordinal y <OR*# such that Z(R* x wy) N E(M)LM.

For an arbitrary acceptable .# the connection between 7", and p”, is not clear. How-
ever, if .4 is a “mouse”, then 7", =p" whenever p", is defined (see
Definition 0.17 and Theorem 0.19 below).

We shall now review some definitions and results from [1].

Definition 0.7. Let u be a normal measure on x. We say that u is an R-complete
measure on k if the following holds:
If {4 :x € R) is any sequence such that 4, € u for all x € R,

then () A €u.
xER
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We now focus our attention on transitive models .# of R such that .# believes
that one of its predicates is an R'#-complete measure on (k)N M. For this reason
we modify our official language by letting ¥y ={€,R, k, 1, A1,..., Ay}, where u is a
new predicate symbol and k is a new constant symbol.

Definition 0.8. A model .# =(M,€,B””, k% uA,...,Ay) is a premouse (above the
reals) if

(1) .# is a transitive model of R,

(2) . # &= “pis an R-complete measure on k™.

M is a pure premouse if # =(M,R¥ ”, ). Finally, .4 is a real premouse if it is
pure and R¥ =R.

To distinguish our definition of a premouse from the premice of Dodd—Jensen [5],
we may sometimes refer to our version as “premice above the reals”.

Definition 0.9. The theory PM is the theory R' together with the sentence “y is an
R-complete measure on k.

The statement “u is an R-complete measure on x” is a [1; assertion. The theory PM
can be axiomatized by a single II, sentence.

We defined in [1] the ultrapower of a premouse .#, denoted by .4, and showed
that a version of Lo§” Theorem holds for this ultrapower. We shall write x or
for k# when the context is clear. We shall slightly abuse standard notation and write
*"M={feM|f:x— M} For f€*M, we write [ ] for the (usual) equivalence class
of f (see [1, p. 226]).

Theorem 0.10. Let .# be a premouse. Then

My o(Lh) LD & M E{Lex o(fid).. faE} En,
for every Xy formula ¢ and for all fi,..., f, €*M.
Proof. See 2.4 of [1]. I

For a premouse .# define n# :.# — 4, by n*(a)=][c,] for ac M. When the
context is clear we shall drop the superscript and write © for m#.

Corollary 0.11. n:.# 7 M.
0

Lemma 0.12. Let .# be a premouse. Then n: .4 — #y is cofinal and hence, :
/f ? v%].
1

Proof. See 1.18 and 2.6 of [1]. [J
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Lemma 0.13. Let .# be a premouse. Then M4, = PM,
Proof. See 2.7 of [1]. O

The proofs of Definition 0.9, Theorem 0.10 and Corollary 0.11 use the fact that a
premouse .# is transitive. The ultrapower .#; is not necessarily transitive (or even
well-founded). However, .#; inherits from .# all the properties required to form the
ultrapower and to prove that Definition 0.9, Theorem 0.10 and Corollary 0.11 apply to
4. Thus, we can iterate this ultrapower construction through the ordinals.

Definition 0.14. Let .# be a premouse. The premouse iteration of .4
(M x)acors (Tap: My — M )< peor)

is the commutative system satisfying the inductive definition:

(1) Mo= M,

(2) m,, =identity map, and 7, o Ty =7,y for all a<PLY<A,

(3) If A=2"+ 1, then .#; =ultrapower of .#,/, and n,; =% o m,y for all a<< A,
(4) If A is limit, then (#;, (ny;: My — M ;)y<;) is the direct limit of

<<’%1>1<;.’ <n1ﬁ Ty — ﬂﬂ>as/3<).>~

We note that the maps in the above commutative system are cofinal (see
Definition 1.18 of [1]) and are X, embeddings, that is,

cofinal

Tap D My TI» My
for all «<f€OR.

Definition 0.15. A premouse .# is an iterable premouse if .4 ; is well-founded for all
A€O0R.

In the paper [1], with which we shall assume the reader is acquainted, we introduced
the Real Core Model, K(R), and showed that X(R) is an inner model containing the
reals and definable scales beyond those in L(R). We assumed that K(R) satisfies the
Axiom of Determinacy. To establish our results in [1] on the existence of scales, we
defined real 1-mice and showed how the basic fine-structural notions of Dodd-Jensen
[5] generalize to iterable “premice above the reals”. Recall that .# =(M,R,x,p) is a
real 1-mouse if .# is an iterable real premouse and Z(R x k)N X (M) LM, where M
has the form J,[p](R) and « is the “measurable cardinal” in .#. Real 1-mice suffice
to define the real core model and to prove the results in [1] about K(R); however,
they are not sufficient to prove all the results in the present paper. That is, some of
our results require the full fine-structure of K(R) as developed in [2].

In the paper [2] we generalized Dodd—Jensen’s notion of a mouse to that of a real
mouse # containing all the reals and having the form .# = (M, R, k, pt). The definition
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of a real mouse is obtained (roughly) by “advancing” the notion of a real 1-mouse;

that is, by

(i) replacing X, with Z,, where n is the smallest integer such that (R x k) N
2y (M)LM, and

(11) defining a stronger iterability condition.

We shall now (more formally) review the definition of a “mouse” and the definition

of “mouse iteration”.

Definition 0.16. Let .# be an acceptable pure premouse. We say that .# is critical
if p"}! <x# <p",, for some n € w. This integer n is denoted by n(.#) and we write
M= M.

Definition 0.17. Let .# be a critical pure premouse. Since .# is also a premouse, let
— - — final —
(<{w1>a€OR’<naﬁ:%z Co_z‘—’ <%ﬁ>a<B60R> (x)

be the premouse iteration of .#, as in Definition 0.14. We say that .# is a mouse
whenever (i) .# is an iterable premouse and (ii) the system (%) of transitive models
can be extended (by decoding master codes, as in [2]) to a commutative system of
transitive structures

(M 1)ze0R, (Tap: My — ME)y<peor)- (V)

2ol #ir

The system (v/) is called the mouse iteration of .#. If, in addition, the mouse .#
contains all the reals, that is, if R¥ =R, then .# is said to be a real mouse.

Theorem 0.18. Suppose .4 is an acceptable pure premouse and let n € w. If wp", >
M WA on '
k*, then y", =p",.

Proof. This follows from Corollaries 2.13 and 1.33 of [2]. [
Theorem 0.19. Let n€w. If .4 is a mouse, then y", = p", whenever p", is defined.
Proof. This follows from Corollaries 2.13, 1.33 and 2.38 of [2]. O

Remark

(1) An iterable real premouse is acceptable (see Theorem 1.4).

(2) A real 1-mouse .# =(M,R,«, p) is the simplest of real mice, that is, .# is a real
1-mouse if it is an iterable real premouse and 2(R x k)N Z (M) L M.

The following non-standard definition of cardinality in a structure “above the reals”
is given in [2].

Definition 0.20. Let .# be a premouse.



172 D.W. Cunningham! Annals of Pure and Applied Logic 92 (1998} 161-210

(1) For a€ M the .#-cardinality of a, denoted by |a| 4, is the least ordinal A€ OR*
such that f:4 x R¥ 25 4 for some f€M.

(2) An ordinal A<OR™ is an .#-cardinal if 1 =|A| 4 or A=0R¥.

(3) For an ordinal A <OR*, A%, is the least .#-cardinal greater than 4.

Lemma 1.7 of [1] implies that for a set @ in a premouse .#, there is a function
f €. such that f:[a]<? x R¥ 2% g, for some « <OR*. Thus, Lemma 1.4 of [2]

shows that the .#-cardinality of any set in .4 exists.

Remark. In the definition of .#-cardinality, we have decided to use the cross product
AxR#. In the special case where 4 =0, the cross product 0 x R = and hence, does
not involve any reals. So, when applying the above definition, we shall abuse cross
product notation slightly, and define 0 x R# =R¥.

In next section, we shall extend the above notion of “cardinality” to certain inner
models of ZF containing the reals. This completes our overview of the notions and
results presented in [1, 2]. For any terms that are undefined below, we refer the reader
to these two papers.

1. K(R) and the GCH

Dodd—Jensen’s Core Model X satisfies AC+ GCH, that is, the Axiom of Choice and
the Generalized Continuum Hypothesis. We recall that the Real Core Model K(R) is
the union of real 1-mice, that is,

K(R)= {x: 3A(AN is a real 1-mouse Ax€N)}.

K(R) is a natural generalization of the Core Model K. In this section we shall show
that K(R) satisfies a “generalized continuum hypothesis” of the form

(V4 € OR) [the cardinality of P(J x R)=the first cardinal larger than A].

However, K(R) does not satisfy the Axiom of Choice (assuming AD). In particular,
#(4) cannot be well-ordered in K(R) for any ordinal A>w. So, we shall modify the
standard definition of cardinality in K(R).

Definition 1.1. Let M be an inner model containing the reals R.
(1) The M-cardinality of a set a€ M, denoted by |aly, is the least ordinal 1€ OR

such that f:4A x R M9 4 for some f €M.

(2) An ordinal 4 is called an M-cardinal if A=1A|y.
(3) For an ordinal A the least M-cardinal greater than 1 is denoted by 4.

Remark., We have chosen (as remarked earlier) to use the cross product A x R in our
definition of M-cardinality. However, the cross product 0 X R =@ and does not involve
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the reals. When applying the above definition, we shall abuse standard notation (in this
special case only) and define 0 x R =R. Consequently, if /R S, a for some feM,

then {alM =0.

Since K(R) is the union of real l-mice, Lemma 1.7 of [1] and Lemma 1.4 of
[2] imply that the K(R)-cardinality of every set in K(R) exists. However, we must
distinguish between the notion of an ordinal A being a K(R)-cardinal and the notion
of 4 being a standard cardinal in K(R).

Definition 1.2. Let M be an inner model containing the reals R.
(1} Ais a cardinal in M if for no & </ does there exist an f € M such that /. ¢& o8 5.

(2) A% is the least cardinal in M greater than 2.

Remark. In K(R), Of 5, =O" and for all ordinals 1 <@X®
(1) Zg)= O,

(2) |Akm =0,

(3) |2(A) k) =0, assuming K(R) k= AD (see 28.15 of [8]).

Definition 1.3. Let M be an inner model containing the reals R. We shall write M &
“GCH” to denote that

M = (YA€ OR) [|2(h x B[y = A7].
Note that if M = “GCH”, then M k= (VA€ OR) [|2(D)ly < Af].

Remark. For any inner model M of ZFC, we shall write |a|™ to denote the standard
cardinality, in M, of a set a € M. Also, we shall write M &= GCH to mean that the stan-
dard Generalized Continuum Hypothesis holds in M, that is, M }= (V4 € OR)[2* = A*].

We will show that in fact, K(R) = “GCH” and that certain generic extensions of
K(R) satisfy the standard GCH. We now state a generalization of Lemma 5.21 of
Dodd-Jensen [5].

Theorem 1.4. Suppose that # is an iterable pure premouse above the reals. Then
M is acceptable.

Proof (Sketch). A proof of this theorem is actually given in [3]. The proof is a
generalization of Dodd-Jensen’s proof of Lemma 5.21 in [S]. For this reason we only
discuss, here, the main ingredients that are used in the proof of Theorem 1.4. Let .#
be an iterable pure premouse above the reals and let x = x#. One proves by induction
on ys(jﬁ”” that .#" is acceptable (see the first two paragraphs of Chapter 11 of [4]).
To ensure that .#7"! is acceptable, assuming that .#7 is acceptable, one must prove
the following two lemmas (see Definition 0.16).
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Lemma 1.5, Le: y<6§"”. Assume that MH7 is acceptable and critical Ler n=
n( A7) If p) <k, then PIMYO M C (M)

For any pure premouse above the reals, say ./, define H:* ={aeN:|T.(a)|.+<
xV}, where T.(a) denotes the transitive closure of a. Lemma 1.9 of [1] states that
N EVa3dy(y = T.(a)) and, in addition, the comment following Definition 0.20 shows
that .4 |=Va3A(4 =|T.(a)|.+). Thus, the definition of H;* is well-defined.

The next lemma is a direct generalization of Lemma 4.9 of Dodd—Jensen [5].

Lemma 1.6. Let y< OR“. Assume that M is acceptable and critical. Let n=
WAM) I T =k, then H = HA™

Using the above two lemmas, the argument proving Lemma 5.21 of Dodd-Jensen
[5] can now be adapted to prove that .#7*! is acceptable (in addition, see Chapter 11
of [4]). T

Remark. Lemmas 1.5 and 1.6 are used in [3] to solve a problem for constructing scales
in K(R). Let .# be a iterable real premouse and suppose that a set 4 is constructed
in M7'\M7, where k¥ <y<OR*. Since we are using the measure u# to construct
new sets in M?T!, it is possible that 4 € M\ X, (.#7). The above two lemmas are
used to show that this cannot happen when A4 is a set of reals. In particular, when a
new set of reals 4 is constructed in MY*'\M?, then 4 € Z,(.#7). In [3], this fact is
important for our determination of whether or not 4 has a scale of minimal complexity
in K(R).

Our next lemma is simply a restatement of Lemma 1.10 of [2].

Lemma 1.7. Let .# be acceptable. There is a uniformly (M) sequence

(@ w<vAi<yAaj <V AxeRY),
where v<OR™* and v <OR¥, such that

(1) {a i<vhoj<V AxeR#}=2(v x R)NM,
(2) {a): i<vhwj<tAxeR¥}EM for each t<V',
(3) vV<v7,

Proof. See {2]. O

Corollary 1.8. X(R) =“GCH”.

Proof. Theorem 5.5 of [1] implies that K(R) = *“V is the union of real l1-mice”. We
work in K(R). Let 4 be an infinite ordinal. Let .# be a real 1-mouse such that

P2 x RY€. M and |A|%, =|Alg, Since .# is acceptable, Lemma 1.7 implies that
|P(% % B)|.a <|A]%,. Because | ] g, = |4 and (2 x R) € 4, it follows that [2(1 x
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R)|K(R)<|)~|2(R) and thus |2(4 x R)|kwr) = \/1|;(R) (by Cantor’s Theorem). For a finite
ordinal 4, |2(/. x R)|g(m) = |P(w x B)|k@) = olfg = [Axm, O

Before we prove our next theorem, we shall first show that generic extensions “pre-
serve” K(R). Let M be an inner model of ZF and let RM be the set of reals in M.
Definition 2.34 of [1] describes when a structure is a 1-mouse and when it is a real
1-mouse. We shall say that a structure .4” is an RM [-mouse if .4" is a 1-mouse and
R =RM. In other words, . 1" is a I-mouse having R as its set of reals. Let K(R)
be the union of RY 1-mice. Our next result shows that forcing over M does not add
any new RY l-mice and thus preserves K(R)".

Lemma 1.9, Let M be an inner model of ZF, let P& M be a partial order. Suppose
that G is P-generic over M and that M[G] = ZFC. Then K(RYY = K(RM 0],

Proof. We are assuming that AC holds in the generic extension M[G]. However, we
do not assume that AC holds in the ground model M. Recall that K(R)" is the union
of real 1-mice in M, and K(R¥ IS is the union of R 1-mice in M[G]. So, to
prove that K(R)Y = K(RM WIC1 it is sufficient to show that M[G] does not contain
any new R™ l-mice. To do this, suppose that .4" is an R l-mouse in M[G]. We
shall prove that .4" € M. Let 6> max(|.4" M |PMCT) be a regular cardinal in M[G].
Since 0> |P|MCl is a regular cardinal in M[G], it follows that P is a partial order
with the #-chain condition in M[G]. One can now prove that for any C € M[G] if

M[G1E“C is closed and unbounded in 67,
then there exists a C' € M such that C' C C and
M E=“C’ is closed and unbounded in 6”

(see the proof of Lemma 10.14 of [8]). Now, in M[G], let
({A%) xcor, (Taps A < AB)a<peor)

be the premouse iteration of .4#" and let k, =mg,(k' ) ="', for each o € ORMC] The
fth-premouse iterate of .4" is a transitive structure of the form .4, =(Ny, € ,RY ky,
w'"). Lemma 2.37 of [1] asserts that .4} is a 1-mouse and so, let 4 =%(.45) be the
core of .4y (see the bottom of p. 239 of [1]). The core ¥ is a 1-mouse and Lemma 2.32
of [1] shows that €(.A4p)=%(.4"). Theorem 2.39 of [1] implies that there is an ordinal
{ € M[G] such that €: = 4"

Since 0>|.4|M¢l is a regular cardinal in M[G], it follows that k=0 and that
I={xp: f<8} € M[G] is closed and unbounded in 6. Corollary 2.14 of [1] shows that,
for each B <0, the set I\kg is a set of order X\(. 44, {ngs(a): a € Ny }) indiscernibles.
In addition, for all X € 2(kxy) N Ny

Xecu'" if and only if Jx< (X D/1\a).
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Hence, given I and RY, one can construct .45 (see the proof of Theorem 2.43 of [1]).
In particular, one can construct .43 using the filter y; on 6 defined by

A€y if and only if Ja<6(421\).

In fact, given any closed unbounded /' CI, one can construct .#j from I’ and RM.
Moreover, as noted above, there does exist an /' CJ in M such that

M I’ is closed and unbounded in 6.

It now follows that 4/ € M and hence, € =%(Ap) € M. Since ¢ is also an ordinal in
M, we see that € € M and, because A" =%, we conclude that A" c M. Therefore,
K(RWM =K(RM MG O

All the generic extensions discussed in this paper will satisfy the Axiom of Choice
and so, Lemma 1.9 shows that these extensions preserve K(R). However, K(R) is
preserved even when the generic extension is not a model AC.

Corollary 1.10. Ler M be an inner model of ZF, let P € M be a partial order. Suppose
that G is P-generic over M. Then K(R) = K(RM)MIG],

Proof (Sketch). To prove that K(R)Y = K(RM)MIG] it is sufficient to show that M[G]
does not contain any new R 1-mice. Suppose that .4 is an R¥ 1-mouse in M[G].
By refining the proof of Lemma 1.9, we shall show that /"€ M.

Let o € ORM be such that P€ V¥ and let X =¥V, In M[G], let Y =4 x X and
let L(Y) be the smallest inner model of M{G] containing ¥ as a set. Construct a partial
order Q € L(Y) so that any H, which is Q-generic over L(Y), induces a well-ordering
of ¥ in L(Y)[H]. Now, let H be Q-generic over L(Y). So, L(Y)[H]=ZFC. Let
0> max(|4 MO |P|XVIH]) be a regular cardinal in L(Y)[H]. Since 0> |P|HH] jg
a regular cardinal in L(Y)[H], it follows that P is a partial order with the 6-chain
condition in L(Y)[H]. Since Vo{‘frz € L(Y)[H], one can now prove that for any C € M[G]
if

M[G]E*“C is closed and unbounded in 07,
then there exists a C’ € M such that C' C C and
M =C’ is closed and unbounded in 6

(again, see the proof of Lemma 10.14 of [8]). In L(Y)[H], let kg =0 and I C 0 be as
in the proof of Lemma 1.9. It follows that 7 € M[G] and hence, there exists a closed
unbounded I’ CJ in M. Therefore, A €eM. O

For the remainder of this paper we let Q=(Q, <) be the standard partial order
that produces (under DC) a generic enumeration of all the reals in length ;; that is,
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Q={s€’R: ¢} and for s, € Q, s<¢ if and only if dom(s)>dom(¢) and z=5 |
dom(#). Let HOD be the class of hereditarily ordinal definable sets.

Theorem 1.11. Let V =K(R). Suppose that V =ZF + DC and let G be Q-generic
over V. Then
(1) RV =R"0,
@) o =%,
(3) K(R)=K(R)",
(4) 0" =19,
v ovie
(5) (@) =",
(6) V[G]=ZFC + GCH,
(7) HOD" = HOD"°!,

Proof (Sketch). Let ¥V =K(R). Since K{R)=DC, it follows that both R and @, are
preserved under Q-forcing. We now show that K(R){G] = AC. An argument is given
in [11] (on p. 203) which shows that the Axiom of Choice holds in any forcing
extension of a ground model M of ZFC. A simple modification of this argument will
prove that the generic extension K(R)[G] satisfies AC. Let X be any set in K(R)[G].
We will show that X can be well-ordered in K(R)[G]. Let ¢ be a Q-name for X. In
K(R) there is an ordinal « and a function 7:a xR o dom{¢). Using 7, one can now
construct a {J-name 1 for a function f € K(R)[G] such that f:a x R 2% X. Since
there is a bijection in K(R)[G] between R and w,, it follows that there is a function
g € K(R)[G] such that g: 4 2 X for some ordinal /. Thus, X can be well-ordered in
K(R)[G].

Lemma 1.9 implies that the generic extension V[G] does not add any new real 1-
mice. Thus K(R)=K(R)"1%. Now, since Q is weakly homogeneous (see p. 129 of
[8]) and because ¥ is definable in V'[G], it follows that HOD” = HOD"1¢1,

Claim, For all ordinals £2 2> wy,

A eKRIGDIf :4 73 ¢] if and only if (3geK®)g:2x R 75 &),

Proof. Let (2 A2 w.

(=) Assume that f € K(R)[G] is such that /4 =% ¢ Let f be a Q-name for
J e K(R)[G], and let d be a canonical Q-name for « € K(R). Let p & G be such that
plkf i 8 & Define the map h: 4 x Q % ¢ in K(R) by

W g) = {ﬁ, g€Q, fe& and pogl-f(@)=$",
’ 0, otherwise.

Here p~q is the concatenation of ¢ to p. Since h € K(R) and there is a map in K(R)

onto

from R onto Q, it follows that there is a map g € K(R) such that g: A xR — ¢
{<) Assume that g€ K(R) is such that g: A x R o9 &, Since there is a bijection
in K(R)[G] between R and wy, it follows that there is a map f € K(R)[G] such that

a2 0
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Proof of Theorem 1.11 (Completion). For any ordinal £>w; the Claim implies that
¢ is a cardinal in K(R)[G] if and only if ¢ is a K(R)-cardinal. Hence, ©®" and (@*)"
are collapsed to @, and w;, respectively.

Now, since K(R) |=“GCH?”, the argument (see [11, pp. 202-203]) showing that the
Power Set Axiom holds in the forcing extension K(R)[G] can now be used, together
with the above Claim, to establish that K(R)[G] =GCH., O

Remark.

(1) Note that G in Theorem 1.11 can easily be coded as a subset of wf(R).

(2) By Theorem 5.14 of [1], the conclusion of Theorem 1.11 also holds under the
assumption K(R)=ZF + AD.

For a Boolean Algebra %, let
B.={a€ B n(a)=a for every automorphism n of #}.

For 4 € HOD, we shall write 0P to denote the computation of 4, in HOD. Given
an inner model M of ZF, we say that G is #-generic over M when % is a complete
Boolean Algebra in M and G is a generic (over M) ultrafilter.

Our next two lemmas follow directly from a theorem of Vopénka (see Theorem 59
of [6, p. 269]). For the remainder of this section, # will denote a Boolean Algebra.

Lemma 1.12 (ZFC). Suppose V =HOD[G], where G is #-generic over HOD. Then
G N #7°P ¢ HOD.

Lemma 1.13 (ZFC). Suppose V =HOD[G], where G is #-generic over HOD. If M C
HOD is a (transitive) inner model of ZFC such that

(1) BeM,

(2) GNBHP ¢ M,

(3) V=MI[G],

then M =HOD.

Another theorem of Vopénka states that if V' =L[4] for a set of ordinals 4, then
V' is a generic extension of HOD (see Theorem 65 of [6, p. 293]). Our next lemma
generalizes this theorem and gives us a method for “computing” HOD.

Lemma 1.14 (ZFC+GCH). Assume V =L[D]{A} and L{D]CHOD, where ACk €
OR and DCV is a set or a proper class. Then there is a Boolean Algebra # =
(B, €5) where B<xt" is an ordinal, and there is a G which is B-generic over HOD
such that

(i) ¥ =HOD[G],

(i) G N 28°P° ¢ HOD.
In addition, there exists a b:x — B such that
(iiiy HOD = L[D]({#,b,B})=L[D)(P)
where B=G N A0 and PCx* is a canonical coding of {%,b,B).
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Proof. Since the proof of V' =HOD[G] is essentially the same as the proof of
Theorem 65 given in [6], we first give a sketch of the proof of (i). Let C=0DnN
P(P(x)), where OD is the class of ordinal definable sets. Consider the partial order
C =(C, €). There is a complete Boolean Algebra # = (B, <) in HOD, where B is an
ordinal, such that C is isomorphic to # as witnessed by an ordinal definable isomor-
phism 7:C — #. Define G = {n(u): u € C A4 €u}. One can show that G is %-generic
over HOD, and our next Claim shows that V' is the resulting generic extension. This
Claim, together with Lemma 1.12, implies that G 1 #7°P ¢ HOD.

Claim. /' =HODI[G].

Proof. Define b:x — B by b(a) =n({X Cx: x€ X}). Clearly, b€ HOD and for every
LEK

1€4A & ba)eG.

Therefore, 4 € HOD[G]. By assumption, L[D]CHOD. Thus, L[D][4]C HOD{G].
Hence, V' =HOD[G]. [

Proof of Lemma 1.14 (Completion). Since C satisfies the (x*")"-chain condition
(see 6.7 of [11, p. 212]), # has the (x*)"-chain conditéon in HOD. Furthermore,
V= |B|<x*™ since ¥ |=GCH. Thus, HOD [ |B| < (w“*)} (see 6.9 of [11, p. 213]).
Therefore, the complete Boolean Algebra # = (B, < 4) in HOD, where B is an ordinal,
can be taken so that B<wx*t ™.

Finally, to prove (iii), let M =L[D}({4, b,fi}). Clearly, M CHOD. Thus, G is
#-generic over M and V =M[G]. Therefore, M =HOD by Lemma 1.13. Now let
PCxt™" be a canonical coding of {#,b,B}. Hence, HOD =L[D}(P). O

Suppose that .# is a real 1-mouse. Let € =%(.# ) be the core of .#, let (n,3:%, —
%)< pecor be the premouse iteration of € and let x, = mo,(k*) for each ordinal «. De-
fine i(.#) to be the ordinal A such that ¥; =.# (see Definition 2.36 and Theorem 2.39
of {1]) and define 1 5 = {x,: ax<i(.#)}.

Definition 1.15. Define the class D to be
D={(&k): 34 (Mis a real 1-mouse Ak =K Ni(M)=wNEELy)}.

Suppose that .# and A" are real 1-mice such that k¥ =x' and (M) =i(AN)=w.
Then Lemma 5.3 of [1] implies that .4 = 4",

Lemma 1.16. K(R)=L[D](R).

Proof. This is a direct analogue of the fact that K = L[D], where K is the Core Model
of Dodd-Jensen [S] and D is defined as in Definition 1.15 above, but “without the
reals.” See Chapter 14 of Dodd [4] for the details. [
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We are now in a position to give our first computation of HODX®),

Theorem 1.17. Suppose that K(R) = ZF+DC. Then there exists a P C (O YX® such
that HOD*® = [[D](P).

Proof. Let V' =K(R) and let @ € ¥ be the standard partial order that produces (under
DC) a generic enumeration of all the reals in length ;. Let A4 be Q-generic over V.
Theorem 1.1 asserts that ¥'[4] = ZFC + GCH, (@*)" = w!™ and HOD" =HOD"™,
So we write HOD =HOD" =HOD"™ and shall now compute HOD in V[A]. Note
that V[4] = K{R)[4] = L[DYR)[4] = L[D}{4], where 4 can be coded as a subset of w;y.
Clearly, L[D] CHOD. Thus there is a P C ws :(@*')V such that HOD = L[D](P), by
Lemma 1.14. Therefore, P € K(R), P C(O1)Y¥® and HOD*® =[[D|(P). O

Remark. Assuming ZF+AD+3IX CR[X € K(R)], we show in Section 4 that
HOD*® = K(P) where K(P) is the Core Model relative to P C (@ )K®),

2. Weak ultrapowers

Let M be an inner model of ZF. We now define what it means for u to be a
“measure” on P (k)= P(x) N M, and we shall define the ultrapower of (M, ). We
do not assume that y e M.

Definition 2.1. Let M be an inner model of ZF and let k> ® be an ordinal. We say
that p is an M-measure on x if

(1) u is a proper subset of 2" (k) containing no singletons.

QY VX Y(XCY e PMx)AXen)— Yeul

BY VX e P [ X e uv (kK\X) € ul.

4) If A<k, (Xz:E<A)eM and (VE<A)X: €p, then [, Xr €

(5) If (Xe:é<x)eM and (VE<w)X;€p, then {{ex:le ), X} en

Conditions (1) and (2) ensure that u is a filter on ¥ (x). Condition (3) asserts that
u is an ultrafilter on 2 (k). Condition (4) is called x-completeness and, in this case,
u is said to be x-complete. Condition (8) is called normality and, in this case, pu is
said to be normal.

Definition 2.2. Let M be an inner model of ZF and let u be an A -measure on x. We
say that u is RM-complete if the following holds:

If {4;:x¢€ [F@M> is any sequence in M such that 4, € u for all xc R¥,

then ﬂ A, € . (1)
xERM

Remark. Assuming AD, there are unboundedly many measurable cardinals k <@. It
is easy to check that their measures are not R-complete in V. However, any (normal)
measure on k> @ is R-complete in V.,
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Lemma 2.3. Suppose that M is an inner model of ZF+AD+DC and that u is an M-
measure on k> OM. Then for any f: k — P(R) in M, there exists an A € P(R)YNM
such that {Eex: f(&)=A}en

Proof. Define in M the relation <y on Z(R) by

A<B if and only if 4 is Wadge reducible to B

and define 4 < B if and only if 4 <y BAB £ A4 (see p. 424 of [15]). Because M
is an inner model of ZF + AD + DC, it follows that

M =< is well-founded and rank( <, )= ©0".

For 4 € Z(R)NM, let |[A|M be the <,-rank of 4 (in M). Define g:x — @M by
g(&)=|f(&)M. Since OV <k, there is a A<k such that the set U = {{ € x: g(¢) = A}
is in p (by k-completeness). In M, let W CRM be universal for the Wadge degrees
of <-rank less than 2+ 1 and for each ¢ € U define C:={x¢ RM: W, = f(&)}.

Claim 1. (V¢ € UYy(C:NCa #0 = Ce=Cy).

Proof. Let &, ¢ € U and suppose that C: NCz # 0. Let x € C:NCw. Then f(&)=W, =
f(&). Hence, C:=Cy. O

Claim 2. 3C({{ek: C;=C}ep).

Proof. Assume for a contradiction that there is no such C. For each & € k define

Y::{{neU: C, #C:} if el

: K if £¢U.

Clearly, (Y::é<x)&M and by assumption (V&<k)(Y:€p). By normality the set
Y={lex:{€ ), ¥y} isin p Claim 1 implies that C; N Cz = for distinct £, '€ Y.
Thus, we can define in M a map from R onto Y. However, Y € 4 and so, ¥ has
order type k. Hence, k < @ Contradiction. [J

Proof of Lemma 2.3 (Conclusion). Now let C be as in Claim 2, and let 4 be such
that A=W, for all x€ C. So {{€xk: f(&)=A}eu O

Corollary 2.4. Suppose that M is an inner model of ZF + AD + DC. If u is an
M-measure on k> O, then u is RM-complete.

Proof. To prove that u is RM-complete, let (4, :x € RM) be any sequence in M such
that 4, € u for all x € RM. Define the function f:x — Z(R) in M by
FE={xcRM: £c4,}.

By Lemma 2.3 there is an A CRM in M such that U = {£ € k2 f(&)=4} € u. We now
show that 4 =RM. Let x€ R™. Since A, €y, A, N U is non-empty. Let (€4, N U.
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Hence, x € f(£)=A. Thus, A=RM_ It follows that (7, pw 4x = U € p. Therefore, u
is RM-complete. (I

Given an inner model M of ZF and u, an M-measure on k, we define an ultrapower
of (M, p). We will denote this ultrapower by “M/u where "M ={feM: f .k - M}.
For f,g€*M define

S ~gif and only if (M,u)={¢ex: f(O)=9(O)}en

The above set is in M, and ~ is an equivalence relation on “M. For f € “M, we denote
the equivalence class of f by [f] (implicitly using Scott’s Trick). Let My ="M/u=
{[f): f€*M} and define

[f1€"[g] if and only if (M, u)={S€x: f(E)€g(&)} e

The set on the right-hand side is in M and therefore can be measured by u. For
aeM, let ¢, €“M be the constant function defined by c,(¢)=a for all ¢ € k. Define
the natural embedding j: M — M; by j(a)=c,.

We shall write M for (M, €) and write M, for (M;, ). Note that €' may not be
well-founded. Since u is only x-complete for sequences in M, the usual proof that €*
is well-founded (which uses DC) may break down. We do not assume that y € M.

Lemma 2.5. Suppose that M is an inner model of ZFC. Suppose that u is an M-
measure on kK. Let My be the ultrapower of (M, ) and let j: M — M| be the natural
embedding. Then
(1) j:M TMI,

(2) j(&)=¢ for all {<x,
(3) (M, €M)=k <j(k).

Proof. To prove (1), it is enough to check that Eos” Theorem holds for this ultrapower.
Recall that M denotes functions in M.
Claim. For every X, formula ¢ in the language of set theory,

M=o fi),....[fx]) if and only if (M, p)
E{¢ck: o(i(&),.... (&)} ED

for all fi,...,f,€*M.

Proof. This is done by the usual induction on the complexity of formulae. The exis-
tential quantifier step follows because M satisfies the Axiom of Choice. [

Proof of Lemma 2.5 (Conclusion). Assertion (2) of the lemma follows from x-
completeness and (3) follows from the normality of . O

Remark. We could “iterate” the M-measure y on k to an M)-measure g, on j(x) by
the clause

[f1€m if and only if (M,pu)={ScK: f({)euten
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if the above subset of k is a member of M. If u€ M, then this would be the case.
However, we do not assume that p € M.

We now show that Eo§” Theorem holds for certain “choiceless” inner models. Let
OD(X) be the class of sets which are ordinal definable from an element in X. In
particular, OD(R) is the class of sets which are ordinal definable from a real.

Lemma 2.6. Suppose that M is an inner model of ZF + V =OD(R). Suppose that
p is an RM-complete M-measure on x. Let M\ be the ultrapower of (M, p) and let
jiM — My be the natural embedding. Then

(1) j:M < M,

Q) j(&)=¢ for all E<x,
(3) (M, €M) k= ke < j(x),
4) RM = RM:

Proof. To prove (1), it is enough to check that Eos” Theorem holds for this ultrapower.

Claim. For every X, formula ¢ in the language of set theory,

M E (N [fa)) if and only if (M) E{EE€K: @(/i(&)..., f(ED} € 1,
Jor all fi,...,fn€*M.
Proof. The proof is by induction on the complexity of ¢. The existential quantifier
case is the only case which requires checking. The usual proof of this case assumes that
M satisfies the Axiom of Choice, but we can get by with a weaker choice principle.

Suppose that ¢ is the formula Jvy(v,vy,...,0,), where ¥ is in Z,. Let fi,..., f4 €
“M and suppose that

(M, ) = { Eer: 3ol [l ful )} E
We want an f € *M so that
(M. ) = {E € WFE), filEhees fulEN ) E R
Define in M the function A: k — Z(R) by
h(¢&)={x e RM: 3o[v€ OD({x}) A (v, /1., ulENT}

Clearly, (M, p) |= {& € k: h(¢) # 0} € p. Because p is RY -complete, there is an x € R
such that (M, ) |= {& € k: x € (&)} € p. Fix such a real x and let W be a well-ordering,
definable over M, of the class OD({x}). Now define the function f:x — M, in M,
by

the W-least v such that Y(v, f1(&),..., fu(&)) if v exists,
0 otherwise.

o1

Thus, f is as desired. [
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Proof of Lemma 2.6 (Conclusion). Assertion (2) of the lemma, follows from x-
completeness, (3) follows from the normality of u and (4) is implied by RM-
completeness. [

Corollary 2.7. Suppose M is an inner model of ZF+AD+DC+ V =O0D(R). Suppose
that u is an M-measure on x>OM. Let M, be the ultrapower of (M,p) and let
Jj: M — My be the natural embedding. Then

(1) j:M — M,

) JEV=¢ for all E<x,
(3) My, eMYEK<j(k),
4) RM — pM

Proof. Since p is an M-measure on x>O™, Lemma 2.4 implies that pu is RM-
complete. Lemma 2.6 now implies the desired result. O

We will want to be able to iterate the above ultrapower operation on M. To do this
we shall need (as remarked above) to ensure that certain subsets of x are in M.

Definition 2.8. Let ;¢ be an M-measure on k. If every sequence (A:: £€k) in M N
*P(x) satisfies {£€k: As € u} € M, then we say that (M, u) is good on k.

If (M, 1) is good on k, then (M, u) is also said to be “weakly amenable” (see p. 244
of [8]).

Definition 2.9. Let u be an RM-complete, M-measure on k. If every sequence (A(sy):
(&x)€x x RM) in M N <R"P(ic) satisfies {(£,x) €k X RM: Az, € u} € M, then we
say that (M, i) is really good on x.

Clearly, if (M, 1) is really good on k, then (M, ) is good on k.

Let M be an inner model of ZF+ ¥ = OD(R) and suppose that (M, u) is really good
on k. Let jj, :M — M, be natural embedding of M into the ultrapower M ="M/p.
Let k1 =jh (k) and let

m={[f1eM: {¢cx: f(&)eu}cu}.

We shall call puy the first iterate of i One can show that the structure (Mj,u;) is
“really good on x;”. We put this in quotes because M; may not be well-founded.
To illustrate how one can show that (Mj, ;) is “really good on x;”, we prove the
following proposition.

Proposition 2.10. Let (M, u) and (My, 1) be as above. Then
(i) w1 is Ki-complete, that is, (M), u,) satisfies (4) of Definition 2.1.
(ii) w is RM -complete, that is, (M1, u,) satisfies (1) of Definition 2.2.
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Proof. First we prove (i). Suppose that A <j(x), (X;:y<4) €M and (Vy <)X, € .
We need to show that ﬂ ;X €. Let f) gEM, where g:k —xand f:x — M, be
such that [g] =4 and [f] ( p<[gl). S

{Cer: fO=(4ey v<g(E)}en

and we can assume that 4., Cx for all ¢,y € k. The sequence (A ;) : (&, 7) €K X k)
is in M and so, it can be coded as a k-sequence in M. Since (M, u) is good on k, it
follows that C = {(&,7): Ac, € u} € M. Now, define the function G:xk x k — #(k) in
M by

w A"av if (é,)’)EC,
G ,7) = (%)
S { otherwise.

Note that G(&,y) € u for all &,y € k and, since p is k-complete, it follows that
G(&,7)€ep for all £<k. We now show that

{Eexr: (Wy<gODIG(E, y)=4c,] e

Suppose, for a contradiction, that {& € x: (Iy<g(E)NG(E,y) # Ae,] } € p. Define the
function J:x — k + 1 by

(&)= {? if 7 is the least y <g(&) such that G(&,7)# 4.,
Kk otherwise.

y<g($)

It follows that {&: y(f)<g(é)} € wand so, [7] < A. Define X(E) As (o) 1f y(€)<r< and
X(é) (0 otherwise. So, X(é)ezy for all £ €k and hence, [X] ¢ u;. So [X] X & 1
and [7]<[g] =4, which contradicts our assumption that (Vy <)X, € y;.

Letting /#:x — M be the function in M defined by

M= [ G&»),

y<g(&)

it follows that [A] € y;. In addition, since A(&)= ), s <gc) A, for “almost every” ¢, we
see that [h]= (), ., X;. Thus, (M, u1) satisfies (4) of Deﬁnmon 2.1.

The proof of (ii) is very much like the proof of (i), except we use the R¥-
completeness of p and the fact that M is really good on x. Recall that RM = RM
and so, we shall assume (for notational simplicity) that R = RY = RM!, Now suppose
that (X,;:a€R)eM, and (Vac R)X, € u;. We need to show that (| _p X, € u;. Let
S EM, where f:k — M, be such that [f]=(X,:a€R). So,

{Cer: f(&)=(deaiacR)} e

a€R

and we can assume that 4: , C k for all ({,a)€x x R. Because (M, u) is really good
on k, it follows that C={({,a): A;,€u}€M. Now, define the function G:x x R —
P(k) in M by

6(.a) A, if (& a)eC,
,a)=
K otherwise.
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Note that G(&,a)ep for all ({,a)ex xR and, since p is R-complete, it follows that
Nacr G(& a)€p for all {<x. We now show that

{¢ex: (VaeR)[G(&a)=A;,] }Ep.

Suppose, for a contradiction, that {f€wx: (FaeR)[G(&a)#A4:,]}€n. By R-
completeness, there exists a b€ R such that {{€x: G(&,b) #Ape)} €.

Define X (&)= Ap.z. So, X(g)é,u for all £€x and hence, [X]gzm So [X] Xp &t 1,
which contradicts our assumption that (VacR) X, € ;.

Letting /#: x — M be the function in M defined by

we)= ) G a)
acR
it follows that [A]€ iy, In addition, since A(¢)=(,cpA4zq for “almost every” ¢, we
see that [#]=[,cg Xa- Thus, (M, u1) satisfies (1) of Definition 2.2. [J

So, if (M, i) is really good on «, then the structure (M, ity ) inherits all the properties
from the structure (M, i) necessary to construct an ultrapower M, of (M), ) and to
define a natural embedding j},: M; — M,. This procedure can be iterated through the
ordinals and thus, one obtains the commutative system

(M) yeom <jfﬁ 1M, 5 Mg)z<peor)

such that (M,,u,) is “really good on «,” for each a€OR, where k,=j§ (k).
We write y, for the ath iterate of u and write M, for (M,, €"). We say that (M, i)
is weakly iterable if M, is well-founded for all ordinals «. In this case we always
identify M, with its transitive collapse.

Similarly, let M be an inner model of ZFC and suppose that (M, u} is good on x.
We get a commutative system

<<M1>1@_0R’ <ng:/x M, ?Mli>d<\i/fEOR> (D

such that for each x€ OR, (M,, u,) is “good on k,” where k, = j(‘,‘a(;c). Again, we write
py for the ath iterate of u and write M, for (M,, €*:). We say that (M, u) is weakly
iterable if M, is well-founded for all ordinals «. In this case we always identify M,
with its transitive collapse.

Remark. Kunen was the first to define the system (1) starting with an inner model M
of ZFC and a weakly amenable M-measure on k (see Section 19 of [8]).

We now present a condition (see Definition 12.15 of [4]) on an inner model M
which will ensure that a given M-measure is good (really good) on .

Definition 2.11. Let x be an ordinal and suppose that M is an inner model of ZF.
We say that M is k-maximal provided that, whenever n:M ?M , M’ is transitive

and (&) =¢ for all {¢xk, then M =M.
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Lemma 14.19 of [4] asserts that X, the Core Model, is 0-maximal. Our next result
generalizes this result to K(R).

Lemma 2.12. K(R) is 0-maximal

Proof. Suppose n:K(R)?M, where M is a (transitive) inner model. Note that

ReM and since K(R) =V = K(R) (see Theorem 5.5 of [1]), it follows that M =V =
K(R). Let A €M be such that M =“A4" is a real 1-mouse”. By absoluteness, .4 is a
real 1-mouse. Thus, M C K(R). To see that K(R)C M, let acK(R) and let .# € K(R)
be a real 1-mouse. Let A" =n{.#) and, since n is an elementary embedding of K(R)
to M, it follows that M E=*.4" is a real 1-mouse”. Lemma 2.25 of [1] implies that
there is a #€ OR such that the premouse iterates .#; and .4 are comparable. Because
7 is an elementary embedding, it follows that ¢: .4 ?t, where o == [ .#. Thus,

g:F¥% s F' is <-extendible (see Definition 2.30 of [1]). By the proof of Theorem
2.31 of [1], there exists an €-order preserving map oy : OR* — OR""* and hence, .#,
must be an initial segment of _47. Thus, .#,&M because A eM. Therefore, the core
(. H)eM (see Definition 2.36 and Lemma 2.37 of [1]). Because .# is an iterate of
its core (by Theorem 2.39 of [1]), it follows that .## € M. Hence, a€ M. Therefore,
K(RYycm. 1

Given an inner model M with an RM-complete M-measure u on x, the next lemma
gives a condition which implies that (3, u) is really good on x. This will allow us to
generate the iterated ultrapower of (M, u).

Lemma 2.13. Suppose that M is an inner model of ZF + V =0D(R) which is k-
maximal. Let y be an RM-complete M-measure on x. If the ultrapower “M/u is
well-founded, then (M, 1) is really good on x.

Proof. Let My ="M/u, where “M ={ feM: f:x—M }. Since M, is well-founded,
we identify M, with its transitive collapse. Let j: M ——>M| be the natural embedding.

Because M is k-maximal, Lemma 2.6 implies that M = M, Let A={d(cy): (&x)ERX
RM) be a sequence in M N**®"2(x). Note that

Aizn€n if and only if xej(4A)E x)
for all (¢,x)€x x RM. Therefore,

{(&xyer x RM: 4 neu)={(&x) e x RM: ke j(4)(¢E x)}.
Since j(4)eM, it follows that {(&,x)€x x RM: 4(;  Ep} M. Thus, (M, ) is really
good on k. [J

Corollary 2.14. Suppose thar K(RYE=ZF + AD and that p is a K(R)-measure on
k>OK® If the ultrapower *K(R)/ut is well-founded, then (K(R), p) is really good
on K
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Proof. Assume that K(R)}=ZF + AD and let x4 be a K(R)-measure on k>@X®),
Theorem 5.14 of [1] implies that K(R) = ZF + AD + DC. Corollary 2.4 implies that p
is RX(®_complete. In addition, Lemma 1.16 asserts that K(R) = ¥ = OD(R). Now, be-
cause K(R) is 0-maximal, Lemma 2.13 implies that (K(R),ux) is really good
on k. [

3. Generic extensions of weak iterated ultrapowers

A typical argument proving that an inner model is “iterable” usually requires DC,
the Axiom of Dependent Choices (see pp. 254-257 of [8]). However, we are not
assuming DC. So the goal of this section is to develop some tools which will be used
in Section 4 to prove that (K(R), u) is weakly iterable without DC, whenever p is an
countably complete, K(R)-measure on x> @*®),

Let M be an inner model of ZFC and suppose that p is an M-measure on k.
Let HY = {xeM: M |=|T.(x)| <x}. Let P=(P, <) be a partial order in H¥. When-
ever G is P-generic over M, we shall call M[G] a small generic extension of M and
define u[G] 2 u by

uGl={X Ck: XEM[GIANTFYeM(YeuNY CX)}. (*)

We call y[G] the generic expansion of u. We will show that u[G] is a good M[G]-
measure on k, whenever u is a good M-measure on k. We will also show that small
generic extensions can be used to expand a system of iterated ultrapowers to a larger
system of iterated ultrapowers. For the remainder of this section M, P and G will
be as above, and we will not distinguish between P and its domain P. Let X be a
P-name for X e M[G], and let 4 be a canonical P-name for ac M.

Lemma 3.1. If (M, u) is good on x, then (M[G], u[G]) is also good on k.

Proof. To prove the lemma it is sufficient to prove that u[G] is (1) an ultrafilter,
(2) normal and (3) weakly amenable. We do this by means of three claims. The first
claim implies that u[G] is an ultrafilter.

Claim 1. (VX e MG (k))(FY epunM)[Y CX VY Ck\ X1

Proof. Let X € #M(G)(x) and let X be a P-name for X. Let PEG be such that
plk X C&. For each g€P, let 4 —-{éex gllée X} where q]|éeX is an abbrevi-
ation for the statement “g dec:des e X, that is, “q FéeX or qll—égEX ”. Con-
sider the set D={q€P: g<pAA;cpu}. Because (M,u) is good on «k, it follows
that DEM. By k-completeness, D is dense below p. Therefore, let g€ G N D. Let
B={¢cA, qrécX}eM and let C={¢c4,: qlri¢ X}eM. Since 4,=BUC and
Ay €, either Bep or CEp. If Bepy,let Y=B. Thus, YeM and Y C X. If Cey, let
Y =C. Therefore, Y €M and Y C k\X. This completes the proof of Claim 1. O
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We now show that u[{G] is normal.

Claim 2. Let (X:: &{<x)eM[G] be such that (VE<rk)(X:€p[G]). Then {{cx: ¢e
Ny<: Xy} € LG

Proof. Suppose (X;: ¢ <k)eM[G] is such that X; € u[G] for all { <k. Let X ={¢ex:
£€(, <z Xy} We must show that X € u[G). Let f:x — P(x) be such that f€M[G]

and (V& <k) f(&)= X: Let f be a P-name for f and let p€ G be such that p I+ f K —
P(R). Define in M,

Ao =1rex: g de f(&)}

for each g< p and {€«k. Since X:€pu[G] for each &€k, it follows that for all {ek
there exists 2 ¢ < p with g€ G such that 4, €1
Now let

B={(¢q,8)eP x«k: qu/\A(q‘g)Eﬂ}.

Because (M,p) is good on k, it follows that B€M. For each ¢k, define ¥:=
MNigeyepAtg,e)- Note that (Ye: {<x)€M and for each {€k, Y:C X; and Ye€p by
k-completeness. Let ¥ ={¢ex: €[, . ¥,}. Since u is normal, Y€ p. So Y C X and
Y € . Therefore, X e p[G]. [

Finally, we show that (M[G], ¢[G]) is good on k.

Claim 3. Ler (X;:: E<k) be a sequence in M[G]N*P(x). Then {{c€x: X:ep[Gl}e
M[G].

Proof. Suppose (X:: £ <x)eM[G] is such that X: Cx for all {<k. Let X = {é€x:
X:€pu[G]}. We must show that X e M[G]. Let f:x— Z(x) be such that fcM[G]
and (V¢ <k) f(&)=X: Let f be a P-name for f and let p€ G be such that p I+ f DR
P(K). Define in M,

Ay ={iex: girie f(é)

for each ¢ < p and € x. For each {€x, note that X: € u[G] if and only if there exists
a g< p such that g€ G and 455 €.
Now let

B={(g,$)eP xx: g< pAAysEu}
Because (M, 1) is good on x, it follows that B€ M. For each {€k,
X:eu{G] if and only if (39€G)[(q,E)EB].

Therefore, X eM[G]. U
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Proof of Lemma 3.1 (Completion). This completes the proof of the lemma., [J

Recall that M is an inner model of ZFC, p is an M -measure on x, P is a partial order
in H¥ and G is P-generic over M. Now, let j*: M ?MH be the natural embedding

of M into the ultrapower M, =*M/u. In addition, let u; be the first iterate of p.
If (M,u) is good on k, then by Lemma 3.1 (M[G], u[G]) is also good on x and
we can form the ultrapower of (M[G], u[G]). In this case, let j4¢): M[G] ?M [G]

be the natural embedding of M[G] into the ultrapower M[G]; =*M[G]/u[G], where
“M[Gl=1{fEM[G]: f: Kk — M[G]}.

Lemma 3.2. Assume (M, ) is good on k. If My is transitive, then

(1) PeM,.

(2) G is also P-generic over M,.

(3) There is an embedding j° D j* such that j°:M[G] -—Z—+Ml [G]

(4) The ultrapower M[G), is well-founded. ’

(5) M[G]; =M[G], u[Gli =mI[G], and j*% = jC

where u[GYy is the first iterate of u{Gl and [G] is the generic expansion of u;.

Proof. Since PcHY, it follows that j#(P)=P and j*(p)=p for all peP. Also,
because (M, 1) is good on x, PY(P)= 2" (P) (see Lemma 19.1 of [8]). Thus, P M,
and G is P-generic over M.

Since G is P-generic over both M and M, let iél and ig ' be the G-interpretations
of the P-names in M and M,, respectively. Since j* is an elementary embedding,
jH(x) i1s a P-name in M, for all P-names ¥ in M. We now define an embedding
j¢:M[G] — M|[G]. For xé M[G], let £€ M be any P-name for x (so i’g(i):x) and
define

JOx) =ig' ().
Claim 1. jO is well-defined and j° M (61 Mi[G]
Proof. To show that j¢ is well-defined, let £, p€M be P-names such that i¥())=

iM(%). Let peG be such that plk 2= J. Since j*(p)= p, j4P)=P and j* is ele-
mentary, we conclude that

M =“pF @) =)
Therefore,
i GHE) =i GHO))-

To see that j¢: M[G]— M;[G] is elementary, let xq,...,x, EM[G] and let ¢ be a
formula such that

M[G] = o(xo, ..., x»).
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Let x; be a P-name such that i’g (X;)=x; for each i<n. Let peG be such that

ME“plFo(xqg,....%,)" . By applying j*, we see that M, =“pl o(j*(Xo)..... J* (X))
Therefore,

MGl oG (0., j ). O
Claim 2. (VX € N 2MIG (k) [X € u[G] & k€O (X))

Proof. Let X e M[G] N 2(x). We show that X € u[G] & r€j%(X).
{=) Suppose that X € u[G]. By the definition of u[G], there is a Y €M such that
Yeu and ¥ C X. Because j*: M TM' is the natural embedding, k€ j#(Y). Since

j%:M[G]— Mi[G] and M[G] =Y C X, we have that M\[G] = j°(Y) € j9(X). But

JO(Y)Y=j*(Y); therefore, k€ jC(X).

(<) Suppose that k€9(X ). We show that X € u[G]. Suppose that X € u[G]. Then
Y =(x\X)€u[G]. Thus, by the proof of (=) above, it follows that x€;%(Y). But
FUX)YN%Y)=j%X)Nj%xK\X)=0. Contradiction. [

We now show that (M[G);, €€l is isomorphic to (M;[G], €™1C]) and hence,
the ultrapower of (M[G], u[G]) is well-founded. Define a map
o (M[G)y, €My — (M, [G], €19y

as follows: for a€ M[G];, let f: kx — M[G] be any function in M[G] such that M[G], =
JUC Y (K)=a (see 5.13 of [8]) and define

o(ay=j(f ).

Claim 3. ¢ is well-defined and o :(M[G];, €M) — (M [G], €M) is an onto iso-
morphism,

Proof. To sce that o is well-defined, let /:x— M[G] and g¢:x — M[G] be any two
functions in M[G]. Then

(M[G]y, €™My = 719 (i) = j*1N g)(x)
& {fex: MIGIE f(&)=g(&)} € ulG]
(M [G], eIy = 9 ) (1) = j%(g)(x). (®)

The last equivalence follows from Claim 2. One can also show, arguing as in (¢ ),
that M[G)i =a€b < M[G]=o(a)€a(b), for all a,be M[G];. Now, to see that ¢ is
onto, let be M,[G] and let I;EMI be a P-name for b. There is a function g€ M such
that g:x — M and j*“(g)(fc):-:!;. Since {{&k: g(&) is a P-name} €y, we can assume
that g(£) is a P-name for all {€«. Let f € M[G] be the function f:x — M[G] defined
by f(&)=iM(g(&)). One can check that j( f)(x)=~5. Hence, ¢ an onto isomorphism.

O
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Proof of Lemma 3.2 (Completion). The relationships between the maps defined above
are outlined in the commutative diagram

j}dﬁ]

M[G] ——— MI[G],

id a
I
i i

M(P’ ——y, M}P
J*

where id is the identity map and M B M{p are the classes of P-names in M and M,
respectively. [J

Lemma 3.3. Assume (M, ) is good on . If (M,p) is weakly iterable, then (M[G],
u[G1) is also weakly iterable.

Proof. Assume that (M, u) is weakly iterable and let

<<Md)xe()Ra<j:5:Ma "“"'"Z_’MﬁhéﬂeOR) (*)

be the weak iteration of (M, u). So, M, is transitive for all € OR and since PEH,’E” ,
it follows that jh (P)=P, ji (p)=p for all peP, and 2 (P)=P"(P). Hence,
PcM, and G is P-generic over M, for all ordinals «.

Lemma 3.1 implies that (M[G], u[G]) is good on k. Therefore, let

((MIGL)seon: Uz - MIGl ——— MIGlp)=<peor)

be the weak iteration of (M[G], u[G]). We must show that M[G], is well-founded
(transitive) for all € OR.

Since G is P-generic over M, for all ordinals o, it follows (see (3) of Lemma
3.2) that the above commutative system (%) can be extended to the commutative
system

(MG seons {F5p: Mal Gl ——— MplG)a<peor)

where jaf 5= jﬁ: ] and M,[G] is transitive for all ordinals a<f. By generalizing the
commutative diagram (D) in the proof of Lemma 3.2, one obtains the commutative
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diagram
1.,4(:] ima} g .
Ot 12 Taht
M[G] —— MGy —— MG —— - —— MGy — MGl
id a1 e “ LPEe
MGl —— M[G] — MIG] —— - —— M;[(G] — MGl
o i iy
i i:f‘ f‘;‘ff? }::’I i_’m i
¥ LN MIP —_— sz ey e ey MP —_— MP

" " i P il

To1 Ji2 Tivie

One can now prove by induction on f that

(1) the iterate M[G]p is well-founded,

(2) M[Gls=M(G),

(3) ulGlp= sG],

) =48,

for all ordinals «< 8, where u[GJs is the fth iterate of u[G] and ug[G] is the generic
expansion of pg. When =242 is a limit ordinal the proof of (1)-(4) is clear, and
when =27 + 1 is a successor ordinal one can establish (1)~(4) as in the proof of
Lemma 3.2. Therefore, (M[G], u[G]) is weakly iterable. [

4. AD and a set of reals not in K(R)

We emphasize again that we do not assume DC, the Axiom of Dependent Choices.

Lemma 4.1. Assume ZF + AD+ 33X CR[X ¢ K(R)). Then there exists an ordinal
and a [i such that

(1) i1 is a K{R)-measure on

@) (04" <k <o,

(3) (K(R), @) is really good on x,

(4) (K(R), i) is weakly iterable.

Proof. We are assuming V' =ZF + AD + 3X CR[X ¢ K(R)] where V is the universe
of sets. Let ¢ be the conclusion of the lemma we want to prove. We will take generic
extensions of transitive inner models of ¥ to show that ¥V |=¢. This is comparable
to showing that ¢ is true in every countable transitive model of a sufficiently large
fragment of ZF + AD+ 3X C R[X ¢ K(R)]. Thus, ZF + AD + 3X CR[X ¢K(R)] - ¢.

By Theorem 5.14 of 1], K(R)|=ZF + AD + DC. By assumption, let X CR be
such that X ¢ K(R). Using AD, Wadge’s Lemma (see 7D.3 of [15]) implies that
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every B€ 2(R)NK(R) is a continuous pre-image of X. Thus, @X® <@, By standard
results of AD, it follows that (@ )YX® <(@¥®)y* <@ (see 7D.19 of [15]). In addi-
tion, under AD, it follows from work of Kechris [10] that there exists a measurable
cardinal k with measure v such that (@1)X® <x <. We shall use v to construct a
K(R)-measure ji which is really good on x and then prove that (K(R), i) is weakly
iterable.

Remark. The above consequences of AD, cited in [10, 15], do not require the Axiom
of Dependent Choices for their proofs.

Now, let 4 be Q-generic over K(R), where Q is the standard partial order that
produces (under DC) a generic enumeration of all the reals in length w,. Again,
we note that 4 is essentially a subset of w,. Let ¥ =K{(R)[4]. Since K(R)EDC,
Theorem 1.11 implies that
(1) RE® =7,

@) of®=of,
(3) K(R)=K(RY,
(4) OK® =,
(5) (@)™ =af,
(6) VEZFC + GCH,
(7) HOD*® =HoD". _
By Lemma 1.16, K(R)=L[D}(R) where D is as in Definition 1.15. Let A =HOD'.
Note that ¥ =K (R)[4]=L[D}R)[A]=L[D}(4), ACw!, and L[D]C #. Thus, by
Lemma 1.14, ¥ is a generic extension of # and one can compute HODX®); that
is, there is a Boolean Algebra % = (B, <4) where B<®! is an ordinal, and there is
a G which is #-generic over J# such that

(i) ¥V =#I[G],

(i) GNBX =Be H.
In addition, there exists a :w; — B such that
(iii) # =L[D]({%.b,B})=L[D)(P)
where P C w;v is a canonical coding of {4, b,§}. Therefore,

# =HOD" =HODX® = L[D)({4,b,B}) = L[D}(P).

For the remainder of this section we will not distinguish between the Boolean Alge-
bra # and its domain B.

Let N = L[D,v](P). Note that N |= ZFC and that 5 = L[D](P) is an inner model of
N. Since N k=“v is a measure on k”, one can define in N a normal measure u&N
on k and, by absoluteness, one can show that N is iterable by p. We first establish
that (A, ) is a good on k, and then we shall show that (#,u) is weakly iterable.

Let Ny ="N/u be the ultrapower of (N, u) and let # =*#"/u be the ultrapower of
(o, ). Since #, can be embedded into Ny, it follows that #; is well-founded and,
as usual, we identify # with its transitive collapse. Let j*: # — 5 be the natural



D.W. Cunningham ! Annals of Pure and Applied Logic 92 (1998} 161-210 195

embedding. Since # =ZFC, Lemma 2.5 implies
(1) 4 — H,

(2) j#(&)=¢ for all &<k,

(3) #4 k< jH(x).

Our first goal is to show that # = #), from which we shall conclude that (#,pu) is
good on k. The proofs of these two assertions will be accomplished in a series of
claims (see Claims 5 and 6 below).

Claim 1. j4(P)=P and P*(P)=jH(P"(P)) =" (P).
Proof. Let o =(O7)X® and note that P C x <. Since
N E=*u is a normal measure on k7,

standard arguments about measurable cardinals show that 2% (a)= jH(2*(a))=
P*(x). O

Claim 1, together with its proof, implies that
(1) jX(#B)= A,
Q) 27 (B)=j* (P"(B)) = P"(B),
(3) BY =B,
(4) G is H-generic over H#.
Lemma 3.2 implies that there is an embedding j¢ D j* such that j¢ : #[G] n;»» H1[G]

Claim 2. #, CHOD”'¢],

Proof. As noted above, # =HOD" and #[G]=7. Let xc #,. We shall show that
x€HOD™ ) Let fe*# be such that jA(f)}x)=x. Since f€#, it follows that
H[G] = f €HOD. Thus, #,[G] = j9(f)€HOD. But j*(f)=,5(f) and so, #)[G} =
J#(f)€HOD. Therefore, #,[G] = /#(f)(k)€HOD, that is, #[G]Ex€HOD. O

Claim 3. #, = HOD"'9,
Proof. Since ;¢ : #[G] - H[G], j°(G)=G and
H{G) =G is #-generic over HOD and ¥V =HOD[GT”,
it follows that
H[G] =G is B-generic over HOD and ¥V =HOD[G]”.
Since %,B< #,, Lemma 1.13 Claim 2 imply that #, = HOD"''61. [
Chaim 4. K(R)=K(R)*"[],

Proof. (C). Let .# cK(R) be a real 1-mouse. We shall show that .# € K(R)*1¢],
Theorem 5.5 (iii) of [1] will then imply that K(R)C K(R)*'6). To see that .# €
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K(RY"(6) let €=%(#)cK(R) be the core of .# (see Definition 2.36 of [1]),
let

<<(got>aeo]{a <naﬁ i~ _Z_——) (gb’>a<[1€OR>

be the premouse iteration of % and let i, = mg,(x®) for each ordinal «. We shall show
that €., € K(R)*°] and thus, € € K(R)"¢] (see 2.35, 2.37 and 2.38 of [1]). Since
every l-mouse is an iterate of its core (by Theorem 2.39 of [1]), it will then follow
that .# € K(R)*'1¢, So we shall assume without loss of generality that .# =%.,,.
Note that K(R) = K(R)*!] and thus, #[G] =“.# is a real 1-mouse”. Because j° :
%[G]?WI[G], it follows that #)[G]E=“jC(.#) is a real 1-mouse”. Let A4 =

JjO(#) and ¢=jC | #. Note that o:,//lz—n/V. Keep in mind that ¥V, #, #, and

H1[G] all have the same ordinals. In addiiion, A and | are inner models of V
while #,[G] is not an inner model of V. Also note that .# €V and A" € #,[G]. Our
plan is to show that .# and .#" have comparable premouse iterates. A theorem of ZF
(see Lemma 2.25 of [1]) states that any two iterable real premice have comparable
iterates. However, before we can apply this theorem we must ensure that both .# and
A" are elements in the same transitive model of ZF.

Subclaim. The structures #, N and the map o: . H# —Z—wV are all elements in V.

Proof. That .# €V is clear. Let d = ((k,, K, ):n€w). Note that .# can be completely
constructed from 4 and R; that is, define y; by

A€y, if and only if ACk,AInew Vh>n(k; €A)

and observe that .# can be constructed (literally) relative to p; and above R.
Lemma 5.3 of [1] implies that d ¢ HOD = #. Since j* C jC, it follows that j9(d)=
j*(d). Hence, j%(d)€ #). Also note that j¢(d) and R completely determine the con-
struction of .4~ in #,[G]. Because jO(d)€V, we see that .#"€ V. In addition, d and
j¢(d) together with R completely determine the construction of the map o : .# 5 N

and thus, g V. [0

Proof of Claim 4 (Completion). Because .# and 4" are both in V', Lemma 2.25 of [1]
implies that there is a < OR such that the premouse iterates .#y and ./} are compa-
rable in V. Also, since ¢ : .# 5 A is in V, it follows (see the proof of Lemma 2.12)

that .#p must be an initial seéﬁlent of Ay. Thus, #y€ #1[G] because A< #[G].
Therefore, the core €(.# )e #,[G] (see Lemma 2.37 of [1]). Since .# is an iterate of
its core, .# € #,[G). Hence, .# €K(R)*[C]. Therefore, K(R)C K(R)*'],

(2) Let 4 cK(RY"C1 that is, #[G]l="“.4# is a real 1-mouse”. We shall show
that .# € K(R). Let € =%(.# )€ #)[G] be the core of .# and let

((Gx) yeor> (Tap : € — p)a<peor)

be the premouse iteration of % and let x, =g (k%) for each ordinal . As above,
we shall assume without loss of generality that .# =%, Let d € #[G] be defined as
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in the proof of the above Subclaim. We note that d € HOD™'I! which follows from
Lemma 5.3 of [1]. By Claim 3, HOD""'%l = # Therefore, d€ V. Since .# can be
constructed completely from 4 and R, we conclude that .# € V. Hence, .# € K(R).
Thus, K(RY"CICK(R). O

Claim §. # = #.

Proof. Since #[G]=“HOD= HODX®®~ and jS %’[G]———» H1[G], it follows that

A1 [G]=“HOD = HOD*®”  Now, because # = HOD” and #, =HOD"1,
Claim 4 implies that # =.#,. O

Claim 6. (#. ) is good on k.

Proof. Recall that #) =*#/u, where " # ={ f€ #: f: k — # }. Since # = #, an
argument analogous to the proof of Lemma 2.13 (using Lemma 2.5) shows that (#, )
is good on k. [J

Claim 6 implies that we can form the commutative system

<<e#x>a€oRa <j§/3:t#1 %stﬁeOR)

(see Section 2). Recall that (N, u) is iterable and, since each weak iterate of (&, i)
can be embedded into an iterate of (N, u), we have that (#,u) is weakly iterable.
Therefore, (#{G], u{G]) is good on k and is weakly iterable by Lemmas 3.1 and 3.3,
respectively. Let

(A#1Gy) yeor> (Jf/[;Gj H[G], — H[Glp)a<peor)
be the weak iteration of (#°[G], p[G]). Recall [see (3.0) in Section 3] that
pGl={XCr: XeH[GIAIYeH (YeurnY CX)}.
Let
A={XCx: XeK(R)AFY e # (YeunYCX)}
that is, ji=u[G]N K(R). Note that u N # C i C pu[G] and that ge V.
Claim 7. (K(R), i) is really good on k.
Proof. By Claim 4, K(R)=K(R)”'¢). Since u[G] is an #[G]-measure on k, we see
that i is a K(R)-measure on k. Let K(R); ="K(R)/ji be the ultrapower of (K(R), fi).
Because K(R); can be embedded into the well-founded ultrapower * #[G]/u = #[G];,

it follows that K(R), is well-founded. Corollary 2.14 implies that (K(R), i) is really
good on k. UJ
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Claim 8. (K(R), ) is weakly iterable.

Proof. By Claim 7, (K(R), i) is really good on k. Thus, let

((K(R),) com g  K(R), ——— K(R)p)xspeor)

be the weak iteration of (K(R),fi). Since (#[G],u[G]) is weakly iterable, we have
that #°[G], is transitive for all ordinals «. Because K(R)C #[G] and /i C u[G], one
can define (by induction on o) embeddings

Ty K(R)q — H[Gly

satisfying
(1) 7o is the identity map,
(2) 0 (K(R)y, f2y) —; (HA[Glas u[Gle ),

(3) 150 jfﬁ: jg}ﬂ o1, for all ordinals a<p.
Therefore, (K(R), i) is weakly iterable. [J

Proof of Lemma 4.1 (Conclusion). This completes the proof of the lemma. [J

Definition 13.8 of [4] states that if g is a normal measure in L[u], then L[u] is called
a p-model. We now extend this terminology to the analogous inner model above the
reals.

Definition 4.2. If yx is an R-complete L[u](R)-measure on x, then L[u}(R) is said to
be a p-model with critical point x.

Let v=pu N L[u](R). Note that ve L[¢](R) and that

L{p)(R) =<y is an R-complete measure on x”.

Lemma 4.3. Suppose that (K(R),u) is really good on x. If (K(R),u) is weakly
iterable, then there is a p-model L[v(R) with critical point 2>k such that
(1) LIVI(R) is iterable,
(2) 2(Ax R)NLV(R) CK(R).
Proof. Let ¢ be the sentence we want to prove, that is,
Yuvk (“(K(R), ) is really good on x and is weakly iterable” = y(x))
where () is the assertion
IvIAL[V](R) is a p-model with critical point 1>k
A L[VI(R) is iterable
ANP(Ax RYNLIVI(R) C K(R)].

We now show that ¥V |= ¢ for any countable transitive model ¥ of (a sufficiently large
fragment of) ZF. Thus, ZF I ¢.
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Let ¥ be a countable transitive model of ZF. Suppose «,u € V' are such that
V E“(K(R),u) is really good on k and weakly iterable”.
In V, let M =L[D, ul(R) where D is as in Definition 1.15. By absoluteness,
M E=“(K(R),u) is really good on x and weakly iterable”.

If we can show that M =y(«x), then ¥ =(k) by absoluteness and thus V = ¢, com-
pleting the proof. Hence, our task is to prove that M = y(x).

In M, let P be the partial order P=(R~<“, <) where p<gq if and only if g is
an initial segment of p, for all p,g € R<”. Let G be P-generic over M. Clearly,
M[G]=L[D,u}(G) and M[G] = ZFC.

Definition 2.34 of [1] describes when a structure is a I-mouse and when it is a
real 1-mouse. Definition 2.18 of [2] generalizes these concepts and defines when a
structure is a mouse and when it is a real mouse. We shall say that a structure .4
is an RM mouse if 4" is a mouse and R' =RM. In other words, .4 is a mouse
having RY as its set of reals. Let K(RM) be the union of RY 1-mice. We note that
the forcing extension M[G] does not contain any new RY l-mice (see Lemma 1.9).
Therefore, .4" is an RM 1-mouse in M[G] if and only if .4 is a real 1-mouse in V.
Thus, K(R)" = K(R)¥ = K(RM)MIC] By absoluteness, we conclude that

M[G] = “(K(RM), 1) is really good on k and weakly iterable™.

Until further notice we shall work in M[G], a transitive model of ZFC. Let 4>k be
a regular cardinal. Let (K(R");, ;) and k; be the ith iterates of (K(RM), 1) and «x,
respectively. Note that K(RY); = K(R¥) (see Lemma 2.12), k, = 4, and u; C F; where
F; is the closed unbounded filter on A. It follows that y; is countably complete. Let
v=yu; and note that ve M.

Let AT :/lz[v](w,) be as computed in L[v](RY) (see Definition 1.1).

Claim 1.
(1) 2(Ax RMYNLV(RM) C J;- [v)(RM),
(2) (Va<A"Y@Bza)(B<it AP(Lx RM)mJ/j+][V](RM)\Jﬁ[V](RM)?—ém).

Proof. Godel’s argument for proving that the GCH holds in L can be used to show that
P x RMYNLIVI(RM )Y C U5 [vI(RM). We work in L[v](RY) and so, we shall assume
that L[v}(R) is the universe.

To prove (1), let Y € Z2(/x R). Let € OR be such that Y,veJ,[v](R). Corol-
lary 1.8 of [1] and Lemma 1.4 of [2] implies that there exists a function f:wn
x R 2% Jy[VI(R). Therefore, we can form a X; Skolem Hull of {Y}URU A in the
structure (J,[v](R),v). Thus there exists a X -elementary substructure # = (H,v’) of
(Jy[VI(R), v) containing {Y} URU 4 such that |H|;w) = |4]1vr) (because ¥ C 4 x R).
Since # = R™ (see Lemma 1.17 of [1]), the transitive collapse of (H, v’ ) has the form
J5[VI(R). 1t follows that ¥ € J5[v)(R) and 5 </i*.
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To prove (2), note that 2(4 x RYCJ;-[vI(R). Let 2« <A* be an ordinal. Since there
exists a function f o x R &5 J,[v)(R), it follows that there is a function g: 4 x R o
JVI(R). Cantor’s Theorem applies and shows that 2(A x RYZL J,[vi{R). Thus, an

ordinal f2a witnessing (2) must exist. [l

Claim 2. (VB3 4) [P0 x R )N Jp VIR WIDVI(RM ) £ 0 = 2(4 x RM) N E,(Jy[v]
(RM),v) € Jp[VI(RM)).

Proof (Sketch). Let f> 2 be an ordinal. Let A = (Js[v](RM),v)=(N,v) and 4" =
(o1 [VI(RM),v) = (N7, v). Assume that there exists a set 4 CAx RM in N*\N. Sup-
pose, for a contradiction, that y}.> 1 for all n € @ (see Definition 0.6). Let =vNN,
One can now show that the structure (Jg.1[7](RM),v) is amenable in v (see the proof
of Lemma 11.22 of [4]). Therefore, Jp [¥](RM) =Jp 1 [VI(RM). Thus, A€ Z(A").
Since y%.> 4 for all n € w, it follows that 4 € N. Contradiction. []

Remark. Let A" = (Jg[v](RM),v)=(N,v) and A"F z(JﬁH[v](RM ),v)=(NT,v) be as
in the proof of Claim 2. If any set A C 4 x RM is constructed in N*\N, then Claim 2
states there must exist a set BC A x RY in X, (A")\N. Claim 2 does not assert that
A€ X (AN).

Claim 3. VB < i [Js[VI(RM) CK(RM)].

Proof. Suppose for a contradiction that IB<A* (JE[VJ(R¥)Z K(RM)). Hence,
P x BMNLVIRY YL K(RM). Let a<Ait be the largest ordinal such that J,[v]
(RMYC K(RM). Now let § be the smallest ordinal such that a<f<A™ and 2(1 x
RN Jps 1 [VIRM WJ4[VI(RM) # 0. Such a B exists, as noted in (2) of Claim 1. Let
N = (p[VI(RY),v) = (N, v) and let A+ = (Jgs1 [VI(RM),v) = (N, v). Since 2(4x RY)
NJE[V)(RM) CK(RM), it follows that A" |=*v is R-complete” and that R* =R,
DC and the countable completeness of v, implies that 4" is iterable. Therefore, A4~
is acceptable above the reals (see Theorem 1.4). Since there exists an 4 C A x RY
in NT\N, it follows 4" is critical, that is, p. <A for some n€w. [To see this,
suppose for a contradiction, that p”, >/ for all n€w. Theorem 0.18 implies that
.= p"->4 for all n€w. Claim 2 implies that 4 € N. Contradiction. Therefore, .4
is critical.] Again, by DC and the countable completeness of v, the mouse iterates of
A" are well-founded. Thus, .4 is an R mouse. Theorem 2.49 of [2] implies that
A e K(RM). Since (K(RM),v) is really good on 4 (see Definition 2.9), it follows that
Jp1[V)(RM)CK(RM). But a<f + 1, and this contradicts our choice of a. [J

Remark. Dodd-Jensen, in their analysis of the Core Model K, originated the argument
used in the proof of the above Claim 3 (see Lemma 16.11 of [4]).

Proof of Lemma 4.3 (Conclusion). Claim 3 implies that

PO x RN LR Y CK(RY).
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Hence,
LIVI(RM) v is an R-complete measure on /.

By DC and the countable completeness of v, it follows that L[v](RM) is iterable.
We note, stepping out of M[G], that the construction of L[v](R ) is absolute between
M and M[G]. Therefore,

M = (L[v}(R) is a p-model with critical point A>x
A L[V](R) is iterable
A PO x R)NLIVI(R) C K (R)),

that is, M =(x). This completes the proof of the lemma. O

Theorem 4.4. Assume ZF+AD+3X CRX ¢ K(R)]. Then there is a p-model L[v](R)
of ZF + DC + AD with critical point > @"®)

Proof. Assume ZF + AD + 3X CR[X ¢ K(R)]. Lemma 4.1 implies that there ex-
ists an ordinal x and a K(R)-measure fi on x such that (K(R), /) is weakly iter-
able and (O1)X® <x<©®. Lemma 4.3 now implies that there is p-model L[v](R)
with critical point A> x such that Z2(R)N L[v}(R) C K(R). Hence, @L®) = gk(®) 7.
Since K(R) =DCg (by Theorem 5.14 of [1]), it follows that L[v](R) = DCg. Hence,
LIvI(R) =DC (see the proof of Theorem 5.5(iv) and the subsequent remark in [1]).
Consequently, L[u](R)=ZF + AD+DC. O

Remark. In the proof of Theorem 4.4, one obtains a measurable cardinal x, where
(OTX® < <@, and first shows that a weakly iterable K(R)-measure exists on k.
Then one constructs a p-model with critical point A>k. The method used to obtain
this p-model does not produce an immediate bound on A; for example, it may be the
case that 1> 6. A little refining of the proof, yields a p-model with critical point A
where k < 1< @. However, since k is a measurable cardinal greater than (@ )X®), one
suspects that there should be a p-model with critical point k. Corollary 4.17 (below)
asserts that this is, in fact, the case.

Corollary 4.5. Assume ZF + AD + 3X CR[X ¢ K(R)]. Then there is an inner model
of ZF + AD + DC + 3k > O [« is measurable].

Corollary 4.6. Con(ZF + AD + AX CR[X ¢ K(R)]) = Con(ZF + AD + DC + (H{ —
®*) — ADg).

Proof. Assume ZF+AD+3X C R[X ¢ K(R)]. By Theorem 4.4, there exists a measure
v such that

LIVI(R) =ZF + AD + DC + “v is an R-complete measure on x”.
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The techniques of Martin [12] generalize and prove that

LVI(R)[=ZF + AD + DC + (I} — »?*) — ADg. O

Assuming AD, Theorem 4.4 implies that if there is a set of reals not in K(R), then
there exists an iterable p-model L[v](R). Our next theorem shows that the converse
does not hold.

Theorem 4.7. Suppose that L[p)(R) is an iterable p-model with critical point k. Then
(1) K(R)C L[uR),
(2) P(k x R)YNLUNR) = P(k x R)NK(R).

Proof (Sketch). We first prove (1), that is, we prove that K{R) C L[u](R). Let .# €
K(R) be a real 1-mouse. We shall show that .# € L[u](R). Theorem 5.5(iii) of [1]
will then imply that K(R) C L[u](R). Let

<<=/%a>aeow <7toc/f3 My ?" w%ﬁhs/feoﬂ

be the premouse iteration of .#. Since (L[u](R), 1) is iterable, let

({LR),)yeoms (Jap: LILI(R), ?L[ﬂ](R)ﬁhsﬁeouz) (%)

be the iterated ultrapower of (L[u](R), u). Note that L[u](R), = L{p.J(R) where u, is
the ath iterate of u. Let 6 be an ordinal such that .#y and L[uy](R) are comparable
(the proof of Lemma 2.25 in [1] can be modified to prove, in ZF, that such a ordinal
0 exists). It follows that .#, must be an initial segment of L[yy](R). Hence, .#) €
L[pp](R). Since .# is a real 1-mouse, it now follows that .# € L[up](R). But L{ug](R)
is an inner model of L[u](R). Thus, .# € L[u}(R).

We now prove (2), that is, we prove that Z(x x R)NL[u](R) =2(x x R)NK(R).
Let ™ ZKZL“[](RM} be as computed in L[u](R) (see Definition 1.1). The arguments
used to prove Claims 1-3 of Lemma 4.3 can be used to prove (2). In particular,
the argument proving Claim 1 shows that 2(x x R)NL[u](R) CJ.+[u](R) and that
(Va<kT)(FfZa)(f<k® AP(k x RYNJp 1 [ RN\Ip[u}(R) # D). Now, the proof of
Claim 3 (of Lemma 4.3) can be adapted to prove our next result.

Claim. V<« [J3[v](R) C K(R)].

Proof. Suppose for a contradiction that 38 <x™t (Jp[ul(R) € K(R)). Hence, #(x x R)
NL[ER) L K(R). Let a <x™ be the largest ordinal such that J,[u](R) C K(R). Now
let B be the smallest ordinal such that o <f<x* and 2(k x R) NJpi [ul(R\Jp[H)(R)
#0. Let M =(Jp[ud(R), ) =(M, 1) and let .A* = (Jp[pl(R), p)= (M7, p). Since
L[p)(R) is a p-model, it follows that .# |=“u is R-complete” and that R# = R. Since
L[u](R) is iterable, it follows that .# is premouse iterable; because, the premouse
iterates of .# can be embedded into the iterates of L[u](R). Therefore, .# is acceptable
above the reals (see Theorem 1.4). Since there exists an 4 Cx x R in MT\M, it
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follows that .# is critical, that is, p”, <x for some n € w {see the proof of Claim 3
of Lemma 4.3). We now show that the mouse iterates of .# can also be embedded
into the iterates of L{u](R) and thus, .# is a real mouse. Let .# be as defined in
Definition 0.16. Let

<<“i/1>erR’ <7I1[;I</%1 c__)ozna ./ﬂﬁ>x$ljeok>
I

be the premouse iteration of ./#. Note that.# € L[u](R) and that
LIu}(R) =4 is a well-founded structure”.

Thus,
LIp(R), f=“jh (#) is a well-founded structure”

(see (¥) above). Now, since each .#, can be embedded into jj,(#), it follows that
My is well-founded for each ordinal «. In addition, let E* be as in Definition 2.15
of [2] (recall that the relation E¥ codes the “c-order” on the ordinals in .#). Since
E# ¢ L[u)(R) and

LILAR) = “EY is a well-founded”,
it follows that
LIpHR), = (E 7y is a well-founded”.

Since each E“ can be embedded into j{)‘a(E"i), it follows that £ is well-founded
for each ordinal o. Therefore, .# is a real mouse. Theorem 2.49 of [2] implies that
A € K(R). Because K(R)CL[ul(R), it also follows that the ultrapower *K(R)/u
1s well-founded. Thus, (K(R),u) is really good on x by Corollary 2.14. Therefore,
Jp [pRY CK(R). But a<f + 1, and this contradicts our choice of «. [J

Proof of Theorem 4.7 (Conclusion). Since K(R)CL[ul(R), the above Claim
implies (2).

Theorem 1.17 gives one computation of HODX® Our next theorem presents another
computation of HODX® under the assumption of ZF + AD + X CR[X ¢ K(R)]. In
this case we show that HOD*® = K(P) where K(P) is the Core Model relative to P,
a set of ordinals. Before we prove this, we shall give an overview of how K(P) is
defined together with some of its propetties.

Until further notice we shall let P Cn for some fixed ordinal n. We shall write
J:{v}[P] to denote the ath level of constructibility relative to both v and P. We shall
write 4" to denote a structure of the form A" =(J,[V][P].x,P,v)=(N,x, P,v), where
<k <q are ordinals.
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Definition 4.8. The projectum p 4 is the least ordinal p <o such that 2(wp)N X (A)
C N, and p is the <pg-least p € [wa] <“ such that P(wp )N Z((A,{p})L N.

Definition 4.9. We say that A" = (J,[v][P],x,P,v) is a P 1-mouse if
(1) A is a premouse, that is, 4" |=“v is a normal measure on x”,
(2) A is premouse iterable,

(3) pr<k.

Definition 4.10. The P Core Model is the class
KP)={x: A (A is a P 1-mouse AxeN)}.

The arguments given by Dodd—Jensen about the Core Model K can be used to give
proofs of the next three lemmas.

Lemma 4.11. There exists a P 1-mouse if and only if P* exists.

Therefore, in the case where there are no P 1-mice, one assumes the convention that
K(P)=L(P).

Lemma 4.12. K(P)}=ZFC.
Recall that P C# where 7 is a fixed ordinal.

Definition 4.13. An inner model L[u](P) of ZFC is called a P-model with critical
point «, if L[u](P)=“p is a normal measure on x>#".

Lemma 4.14. If L[ul(P) is a P-model with critical point k, then (L[p)(P),u) is
iterable, K(P) C L[i)(P) and P(x)N L[vI(P)C K(P).

We now present another computation of HODX®),

Theorem 4.15. Assume ZF + AD + IX CR[X ¢ K(R)]. Then there exists a PC
(OT)®) guch that HODX® = K (P).

Proof. Lemmas 4.1 and 4.3 imply that there is an iterable p-model L[¢](R) with critical
point x> (@) ®) Theorem 4.7 implies that K(R)C L[u](R). By Theorem 5.14 of
[1], it follows that K(R)E=ZF + AD + DC. Let 4 be Q-generic over K(R), where
Q is the standard partial order that produces (under DC) a generic enumeration of
all the reals in length w;. Again, we note that 4 is essentially a subset of w;. Let
V =K(R)[4]. Since K(R)|=DC, Theorem 1.11 implies that

(1) RK(R):RV,

2) o K® =gf,

(3) K(R)=K(RY,

4) K® =],
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(5) @)V =0l

(6) V =ZFC + GCH,

(7) HOD*® =Hop". )
By Lemma 1.16, K(R) = L[D}(R) where D is as in Definition 1.15. Let # = HOD""

Note that 7 =K(R)[4]=L[D}R)[A]=L[D](A), ACw{, and L[D]C #. Thus, by

Lemma 1.14, V is a generic extension of #’; that is, there is a Boolean Algebra

B =(B, <y) where B<®;” is an ordinal, and there is a G which is %-generic over

A such that

(i) V=G,

(i) GNB* =Bec #.

In addition, letting &:w; — B be as in the proof of Lemma 1.14,

(iit) # = L[D)({#,b,B})=L[D)(P)

where P C (©+)¥® =7 is a canonical coding of {7,b, B}.

Claim 1. K(P)CK(R).

Proof. Let .4" be a P 1-mouse in K(P). We show that .4 € K(R). Let
(N2} yeors (Tap: A = Ap}a<feor)

be the premouse iteration of 4", Also, since (L{u}{(R), 4) is iterable, let
((LIRKR),) s ors gy LIBUR), —= LIKIR)g)a<peor)

be the iterated ultrapower of (L[u](R), 1). Note that L{u](R), = L, J(R) where u, is
the ath iterate of u. Let 4 be an ordinal such that x'"% = k&I® = 3 For each a <4,
let K, =mp,(k'") and let C = {k,: x<1}. We note that .#; is completely determined
from P and C. Since K(P)C L[i;}(R), it follows that .4" € L[iu;}(R) and therefore,
C e L, J(R). Because 2(A x RYNL[k; }(R)C K(R), we have that P,C € K(R). Thus,
A, €K(R) and so, & €K(R). O

Claim 2. K(P)C HODX®,

Proof. Let 4" be a P l-mouse in K(P). By Claim [, &/ ¢K(R). We show that
A € HOD¥®) | Let @ be the “P-core” of 4" and let

((cgat)aeona <”u/i5 € ? (gli>zsﬁeOR>

be the premouse iteration of €. Let k,=mos(x*) for each ordinal x, and define
d = {(Kn, K, ): n € w). Tt follows that %, can be completely constructed (defined) from
d and P. In addition, d is definable from P and x, (see Lemma 5.3 of [1]). Since
PcHOD*® it follows that d € HODX®, Therefore, %,,€ HOD*® and so, ¥ €
HODX™ Because .4 is an iterate of its P-core €, we conclude that 4" ¢ HODX® O
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Recall that G is #-generic over # =HOD*® and 7 = K(R)[4] = #[G]. Claim 2
implies that G is also #-generic over K(P). Our final claim will be used to conclude
that K(P)=HODX®),

Claim 3. V =K(P)[G].

Proof. We know that V = K(R)[4] and we want to prove that ¥ = K(P)[G]. Because
b:w; — B is encoded by P, it follows that 4 is definable from P and G (see the proof
of the Claim presented as part of the proof of Lemma 1.14). Hence, 4 € K(P)[G]. To
show that ¥ = K(P)[G], it is sufficient to prove that K(R) C K(P)[G]. Let .# € K(R)
be a real 1-mouse. We show that .# € K(P)[G]. Let

<<f///a>aeoR, <7rrx[1': My T}’ ﬂﬂ>a<ﬂ€OR>

be the premouse iteration of .#. Also let k, = mg,(x#) for each ordinal «. We prove
that .#, € K(P)[G] for some ordinal 4 and thus, .# € K(P)[G].
L[u)(P) is a P-model with critical point x>(@%)X®) Let

({LIK(P) ) yeors (Jup: LIHIP), 5 Llup )p)a<peor)

be the iterated ultrapower of (L[u](P),u). Note that L{u](P), = L[u,J(P) where u,
is the ath iterate of u. Since #=(B, <), BC«x and Z(B)1H1P) = 2(BYXP) for all
ordinals o, it follows that G is Z-generic over L[u,](P) for all ordinals «. Thus,
K(R) C L1t J(R) € L[y J(P)[G] for each ordinal «. In particular, .# € L[u}(P)[G]. In
L[u](P)[G] let A> max(k, |.#|) be a regular cardinal, where |.#| is the standard cardi-
nality of .#. Because .#, € K(R), we have that .#; € L[, ](P)[G]. Let C = {x,: a <1},
Thus, C € L[p;]J(P)[G] and

L[p;1(P)G]=“C is closed and unbounded in A”.
Recall that, for all X € Z(k;)N .#;
X cp® if and only if Ju<i(X 2 C\a).

Hence, given C and R, one can construct .#;. In fact, given a closed unbounded C’,
where C’ C C, one can build .#, from C’ and R (see the proof of Lemma 1.9).

By a standard forcing argument (see Lemma 10.14 of [8]), there is a C' C C such
that C" € L[;](P) and

L{u;)(P)E“C’ is closed and unbounded in 4.

Since P(A)HWIPY = 2()KP) and A =k;, we have that C’ € K(P). Because C',R€
K(P)[G], it follows that .#; € K(P)G]. Thus, # € K(P)[G]. O

Proof of Theorem 4.5 (Conclusion). Since V=#[G) and #B,B€K(P)CH#
=HOD"”, Lemma 1.13 and Claim 3 imply that K(P)= # = HODX® [
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Remark. Given that HODX® =K (P) for some P C(O*)*® one cannot find such
a PCy<@f®), Otherwise, P! (dagger) is in HOD*® =K (P) (assuming ADX(®),
However, as noted in the introduction, Woodin has proven that HOD*® = (W) for
some W C @H®) The ideas used in Woodin's proof are (probably) flexible enough to
allow one to show that HOD*®) = K(P) for some P C O@X®) Note that @4®) < @F(R)
(when R”* exists) and so, one cannot take P = W.

Theorem 4.16. Assume ZF + AD + X CR[X ¢ K(R)]. Then there is a p-model
LIu)(RY with critical point w such that (ONHHI® <@ and LIu(R) =
ZF + AD + DC.

Proof. By Theorem 4.15, there exists a P C(O")X® guch that HODX® =k (P).
We now review how P was obtained in the proof of Theorem 4.15. We have that
K{R)E=ZF + AD + DC and 4 is Q-generic over K(R), where Q € K(R) is the stan-
dard partial order that produces (under DC) a generic enumeration of all the reals in
length ;. Recall that P € HOD*® is a subset of (@ )X®) and gives a canonical cod-
ing of a Boolean Algebra # = (B, <)e HODX®™_ In addition, there exists a G which is
#A-generic over HOD*® and K(R)[4] = HOD*®[G]. Also, recall that B C (@ )K(®)

Let x be a measurable cardinal, where (@1 )Y¥® < <@, and let v be a measure on
x (see the proof of Lemma 4.1). Consider the inner model L[v]}(P). We now assume
that v=L[v}(P)Nv. Since L[v}(P)=ZFC, we can assume without loss of generality
that

LIvi(P)E="v is a normal measure on k.

Hence, 2(B)NL[V(P)C K(P) and, since G is #-generic over K(P)=HOD® it
follows that G is also #-generic over L[v](P). Let

VIG1={X Cr: X e LVI(PGIATY e LIV(P)(Y evAY CX)}

be the generic expansion of v. The proof of Lemma 3.1, implies that
LIvI(P)[G] ="v[(] is a normal measure on x”.

Let p=v[GINL[v[G]J(R). One can check that u€ V. Note that
LIVI(PYG] E=“L[u)(R) is an iterable p-model with critical point k™.

By absoluteness then, L[uJ(R) is an iterable p-model with critical point k. Theorem 4.7
implies that

Pk x RYNL{P)(R) = 2(x x R)NK(R).

Therefore, (@1 Y- = (@ K®) and so, (@YW <k <@. Since K(R)}=DCg, it
follows that L{u](R)E=DCg. Hence, L{uJ(R)E=DC. Consequently, LIu}(R)=ZF +
AD+DC. O



208 D.W. Cunningham/ Annals of Pure and Applied Logic 92 (1998) 161-210

Assuming AD, there are unboundedly many measurable cardinals k <@. It is easy
to check that their measures are not R-complete in V. However, our next result shows
that most of these measures are R-complete in certain inner models of V',

Corollary 4.17 (ZF + AD). Assume (0 )K® < <@ where k is a measurable car-
dinal. Then there is a p-model L[u)(R) of ZF + AD + DC with critical point k.

Proof. This follows as in the proof of Theorem 4.16. O
Theorem 4.18. Assume ZF + AD + 3X CR[X ¢ K(R)]. Then R (dagger) exists.

Proof. Assume ZF + AD + dX CR[X ¢ K(R)]. By Theorem 4.16, there exists a p-

model L[u](R) with critical point x such that (@ )"H® <, <@ and L[u]}(R) = ZF +

AD + DC. As in the proof of Lemma 4.1, it follows from work of Kechris [10] that

there exists a measurable cardinal A with measure v such that (@ )Y-M®) <y <1< @.
Let A be Q@-generic over L[u](R), where Q is the standard partial order that produces

(under DC) a generic enumeration of all the reals in length w,. Again, we note that 4

is essentially a subset of w;. Let ¥ = L{u](R)[4]. Since L[x](R)=DC, the proof of

Theorem 1.11 applies and shows that

(1) REHIR) — RV,

) wlL["](R) :w{/’

(3) LIu(R) = LIL(R)’,

“) @LENR) — sz’

(5) (OH P =],

(6) V EZFC + GCH,

(7) HOD!HI® —HoDY

Let # =HOD". Note that ¥ = L[u]J(R)[4] = L[u][4], 4 Cw1’7 and that L[u] CHOD".

Thus, by Lemma 1.14, Visa generic extension of #” and one can compute HODL[“](R);

that is, there is a Boolean Algebra % = (B, <) where B< w3’ is an ordinal, and there

is a G which is #-generic over  such that

(i) V=#[G], _

(ii) # =L[u](P) for some P C(O+)HR =}

Let N = L[p, v](P). Note that N |=ZFC and that s = L[u)(P) is an inner model of N.

Since v€N and N ="v is a measure on A”, one can assume that v is a normal measure

on 4 in N and, by absoluteness, one can show that N is iterable by v. Since L[u](P)

is A-maximal (see Definition 2.11), it follows that (J#,v) is good on A by an argument

analogous to the proof of Lemma 2.13 (using Lemma 2.5). Therefore, one can form

the weak iteration of (##,v). Each weak iterate of (#,v) can be embedded into an

iterate of (N,v). Thus, (A, v) is weakly iterable. Let

V[G]={X C A: X € L[u)(P)[GIA3Y € L[ul(P)(Y €vA Y CX)}

be the generic expansion of v. Lemmas 3.1 and 3.3 imply that
(L[p(P)[G], v[G]) is weakly iterable. (%)
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Let V=v[G]NL[u}(R). Note that vN# CVCv[G] and that v€ V. Since (k) im-
plies that (L[u](R),?) is weakly iterable, it follows that R' exists (see Lemma 13.19
of [4]). O

Corollary 4.19 (ZF + AD). Assume OK® <@. Then R (dagger) exists.
Proof. If ©X(®) <@, then IX CR[X ¢ K(R)]. Theorem 4.18 implies that R' exists. [

Corollary 4.20. Suppose that L[uJ(R) is a p-model of ZF + DC. Then there exists a
P C(@NHHH®) sych thar HODMH® = L[u](P).

Proof. This follows as in the proof of Theorem 4.18. [

The theory ZF+ AD + 34X C R[X ¢ K(R)] implies many of the results in this paper.
Thus, our next theorem shows that all of these results are also implied by the theory
ZF + AD + -DCp.

Theorem 4.21. Assume ZF + AD + —-DCg. Then X CR[X ¢ K(R)].

Proof. Theorem 5.14 of [1] shows that ZF + AD = K(R)E=DC. So the assumption
ZF 4+ AD + —-DCpr implies that there is a set of reals X not in K(R). O

In particular, Theorems 4.4, 4.18 and 4.21 imply our final two results.

Theorem 4.22. Assume ZF+AD+-DCg. Then there is an inner model of ZF +DC +
AD + 3k >0 [« is measurable).

Theorem 4.23. Assume ZF + AD + -~DCg. Then RT exists.

Just as R* gives rise to iterable real premice (see Lemma 5.2 of [1]), Rf gives
rise to iterable “double” real premice, that is, a real premouse with two measures. The
theory of double real mice will not be developed here, but the theory is similar to
that of single real mice and can be used to show that R has a quasi-scale, assuming
that L[p](R)}=AD (compare this with the remark following Corollary 4.9 of [1]).
Assuming ZF + AD + —DCp, it follows that L(RT) £=ZF + AD + DC. Thus, L(RT) is
another fine-structural inner model of determinacy. Hence, the “bootstrapping process”,
identified in the introduction, continues.

Acknowledgement

1 want to thank the referee of this paper for his constructive and thoughtful
suggestions.



210 D.W. Cunningham [ Annals of Pure and Applied Logic 92 (1998) 161-210

References

[1] D.W. Cunningham, The real core model and its scales, Ann. Pure and Appl. Logic 72 (1995) 213-289.

[2] D.W. Cunningham, The fine structure of real mice, J. Symbolic Logic, to appear.

[3] D.W. Cunningham, Scales and the fine structure of K(R), to be submitted for publication.

[41 AJ. Dodd, The Core Model, London Mathematical Lecture Note Series, Cambridge University Press,
Cambridge, 1982.

[5] AJ. Dodd, R.B. Jensen, The core model, Ann. Math. Logic 20 (1981) 43-75.

[6] T. Jech, Set Theory, Academic Press, New York, 1980.

[71 R.B. Jensen, The fine structure of the constructible universe, Ann. Math. Logic 4 (1972) 229-308.

[8] A. Kanamori, The Higher I[nfinite, Springer, Heidelberg, 1994.

[9] A.S. Kechris, The Axiom of Determinacy implies dependent choices in L(RR), J. Symbolic Logic 49
(1984) 161-173.

[10] A.S. Kechris, AD and projective ordinals, Cabal Seminar 76-77, Lecture Notes in Mathematics,
vol. 689, Springer, Berlin, 1978, pp. 91-132.

[11] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.

[12] D.A. Martin, An extension of Borel determinacy, Ann. Pure Appl. Logic 49 (1990) 279-293.

[13] D.A. Martin, J.R. Steel, The extent of scales in L(R), Cabal Seminar 79-81, Lecture Notes in
Mathematics, vol. 1019, Springer, Berlin, 1983, pp. 86-96.

[14] W.). Mitchell, J.R. Steel, Fine Structure and Iteration Trees, Springer, Berlin, 1994.

[15] Y.N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.

[16] R M. Solovay, The independence of DC from AD, Cabal Seminar 76—77, Lecture Notes in Mathematics,
vol. 689, Springer, Berlin, 1978.

[17] J.R. Steel, Scales in L(R), Cabal Seminar 79—81, Lecture Notes in Mathematics, vol. 1019, Springer,
Berlin, 1983.

[18] J.R. Steel, HODX® is a core model below @, Bull. Symbolic Logic (1995) 75-84.



