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Abstract 

We show, using the fine structure of K(R), that the theory ZF + AD + 3X S: R[X 4 K(R)] 
implies the existence of an inner model of ZF + AD + DC containing a measurable cardinal 
above its 0, the supremum of the ordinals which are the surjective image of R’. As a corollary, 

we show that HOD IC@) = K(P) for some P C (O’)“(“‘, where K(P) is the Dodd-Jensen Core 
Model relative to P. In conclusion, we show that the theory ZF + AD + lDC@ implies that IWt 
(dagger) exists. @ 1998 Published by Elsevier Science B.V. All rights reserved. 
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0. Introduction 

Let ~1) be the set of all natural numbers. lR=wo is the set of all Iimctions from o 
to CU. We call IR the set of reals and regard R as a topological space by giving it the 
product topology using the discrete topology on CO. For a set Y and each A 2 wY we 
associate a two person infinite game on Y, with payoff A, denoted by GA: 

I Y(O) Y(2) 
. . * 

II Y(l) Y(3) 

in which player I wins if y E A, and player II wins if y 6 A. We call A determined if 
the corresponding game GA is determined, that is, either player I or II has a winning 
quasi-strategy (see 115, p. 2871). Since we will be working in a context ~thout the 
Axiom of Choice, we do not require strategies to be single valued. 
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The Axiom of Determinacy (AD) is a regularity hypothesis about games on w 

that states: VA 2 [w (A is determined). Similarly, we let ADR represent the analogous 

assertion concerning games on R. Given a pointclass r C P(R), we say that r - 

AD or “r is determined”, to mean that every two-person game on o with payoff in 

r is determined. Likewise, we let r - ADR assert that every two-person game on 

R with payoff in r is determined. (We are assuming a canonical homeomorphism 

“R X R.) 

Finally, the Axiom of Dependent Choices (DC) asserts: For every set X and every 

relation R on X, 

(VaEX)(ZbEX)R(a,b) =+ (3f:w dX)(b’n l w)R(f(n),f‘(n + 1)). 

Let DCn be DC restricted to the case of the reals, that is, where X = R. 

From the beginning L(R), the smallest inner model of ZF containing the reals R, 

was seen as the natural inner model for determinacy and the structure of this model 

came to be studied for its own sake. Consequently, a number of theorems have been 

established resolving many issues in L([w). For example, questions about 

(a) the extent of scales, 

(b) the axiom of dependent choices, 

(c) strong partition cardinals, 

(d) measurable cardinals below 0, 

(e) the size of 0, 

(f) the first order theory of HODL’“’ (see [ 1 S]), and 

(g) various characterizations of determinacy in L(R) (see [8, Sections 30 and 321) 

have been answered. A number of the solutions to these problems about L(R) use the 

fact that L(R) has a fine structure theory analogous (in many ways) to the fine structure 

theory of L, Giidel’s constructible universe. For example, Martin and Steel [13] used 

the fine structure of L( R) to determine the extent of scales in L(R). In addition, relying 

on Steel’s analysis in [ 171, Kechris [9] showed that ZF + AD + V = L( R) 3 DC. This 

success makes it natural to ask the following: 

Question 1. How can one extend the range of what constitutes a “constructible” set 

of reals beyond L(R) and still be able to resolve the important problems of descriptive 

set theory? 

The real core model K(R), introduced in [l], contains a “constructible” set of reals 

not in L(R). In addition, a number of descriptive set theoretic problems have also 

been resolved in K(R). For example, using a mixture of descriptive set theory, fine 

structure and the theory of iterated ultrapowers, one can produce definable scales in 

K(R) beyond those in L(R) and prove that K(R) b DC (see [ 11). We believe that 

K(R) is another natural inner model (for determinacy) whose structure will also be 

studied for its own sake, and that K(R) provides a “first step” to answering Question 1. 

In this paper we pursue the problem of going beyond K(R). 



D. W. CunninghamlAnnals of Pure and Applied Logic 92 (1998) 161-210 163 

It seems that for an inner model of AD to be “well behaved,” it requires a fine 

structure theory. Coincidentally, fine structure is an important tool in the study of 

inner models of large cardinal hypotheses and the Axiom of Choice, the smallest of 

which is the Core Model K. Dodd-Jensen [4, 51 carefully develop the fine structure 

of the inner model K and use this structure to demonstrate the existence of an inner 

model L[p] with a measurable cardinal K under certain hypotheses (e.g., “there is a non- 

trivial j : K T ZC’). Mitchell and Steel have developed and studied the fine structure 
,/ 

of core models larger than K. In fact, using the fine structure of these core models, 

Steel [18] has shown that HODL’“’ satisfies the GCH. These techniques developed by 

Steel very likely can be used to show that HODK’n’ also satisfies the GCH. 

There are a number of large cardinal hypotheses which imply that L(R) is an inner 

model of determinacy, and stronger cardinal hypotheses exist which yield larger inner 

models of determinacy (for example, K(R)). 

Question 2. What other hypotheses allow one to build larger inner models of ZF + 

AD + DC? 

The hypothesis 

ZF + AD + 3X C R [X $ L( R)] 

is enough to build the real core model K(R) and to show that it is an inner model of 

ZF + AD + DC (see the proof of Corollary 5.15 in [ 11). In this paper we show that 

the hypothesis 

ZF + AD + 3X 2 lQ[X 6 K(R)] (1) 

is strong enough to build an even larger inner model L[,u](R) of ZF + AD + DC 

containing a measurable cardinal above its 0. Here, 0 is the supremum of the ordinals 

which are the surjective image of R. It appears that the hypothesis 

ZF + AD -t “no fine-structural inner model of ZF + AD + DC contains P(R),’ 

(2) 

allows one to build larger and larger inner models of determinacy and dependent 

choices. In some sense, (2) is a “large cardinal hypothesis”. Here, note that we are 

considering only fine-structural inner models of ZF + AD + DC containing the set of 

reals R. Another related hypothesis, which implies (2), is 

ZF + AD + 1DCn. (3) 

In this paper we are interested in the consequences of hypotheses ( 1) and (3) above. 

The inner models K and K(R) have a similar fine structure but they are quite 

different in other ways. For example, the Axiom of Choice holds in K, but is “false” 

in K(R). Also, the methods used to analyze the sets of reals in K(R) are obtained 

by merging descriptive set theory with large cardinal theory, and these methods do 
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not apply to the inner model K. However, using the fine structure of K(R) under the 

above hypothesis (I), we can establish that K(R) is “iterable” and that there exists a 

larger inner model, L[p]( R), of AD with a measurable cardinal K > @‘l(n). Here, p 

is an R-complete, normal measure on K in L[p](R) (for the meaning of R-complete in 

L[p](R) see Definition 0.7). 

Two consequences of this construction of the inner model ,5[p](W) are: 

(a) Con(ZF + AD + 7DCn) + Con(ZF + DC + AD + 3~ > O[K is measurable]) 

(b) Con(ZF f AD + -DCn) + Con(ZF + DC + AD + (w* - IZ;) - ADn). 

Solovay [ 161 shows that the theory ZF + AD does not prove DC, assuming a strong 

hypothesis. Solovay conjectured that ZF + AD does not prove DCn. Kechris-Woodin 

[9] were the first to inquire about the strength of the theory ZF + AD + 7DCn. In 

particular, they asked: 

Question 3. Does Con(ZF + AD + 7DCw) imply Con(ZF + DC + ADRY 

On the other hand, Woodin has asked (see 30.31 of [S]): 

Question 4. Does ZF + AD imply DCn? 

The above results (a) and (b) may be a first step in finding a proof of the conjecture 

(stated in [l]) that ZF + AD + 1DCn implies the existence of inner models of AD 

with Woodin cardinals above 0 (see [8] for the definition of a Woodin cardinal). 

These inner models will (likely) have the form L[&](R), where d is a sequence of 

extenders, each of which is R-complete. The assumption AD+lDCn appears to provide 

a “bootstrapping process” for constructing “larger and larger” inner models of ZF + 

AD + DCn. More specifically, one should be able to construct inner models of ZF + 

AD+DC containing “more and more” extenders (see Section 26 of [8]) and to construct 

an extender sequence B, by recursion (via [14]), where L[S](R) has enough extenders 

to witness the existence of at least one Woodin cardinal. This “construction process” 

may have the following form: 

Having constructed the inner model A4 of ZF + AD containing R 

(i) prove that M b DCn (this may involve constructing quasi-scales, as in [l]), 

(ii) conclude that 3X C R[X GM], 

(iii) prove that there is a non-trivial elementary embedding j : A4 -+ M’ with M’ tran- 

sitive (see Lemma 4.1), 

(iv) use the embedding j to construct a larger inner model N > A4 of ZF + AD con- 

taining IF! (N may contain a set of reals not in M, see Theorems 4.16 and 4.18). 

If the above “process” exhausts all sets of reals (that is, every set of reals is in one 

of the inner models of DCn constructed), then one would have a proof of 

ZF+AD=+DCR 

and thus a positive answer to Question 4. Otherwise (conceivably), after some stage 

the models constructed all have the same sets of reals. Are these inner models of 
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ZF + DC -t ADn? Ano~er possibili~ is that one eventually constructs an inner model 
of ZF + AD + YDCR and then the process stops. In any case, the completion of this 

“process” could lead to some interesting results. 
The present paper is organized into four sections. In Section 1 we show that K(R) 

satisfies a modified “generalized continuum hypothesis” and then use this, together 
with a theorem of Vopenka, to give a computation of HODK’“‘. Another computation 
of HODK’nB’ is given in Section 4 (see discussion below). In Section 2 we define 
when ,u is an M-measure on certain inner models M of AD. The usual construction of 

iterated ultrapowers of M assumes that h4 satisfies the Axiom of Choice, as does the 
standard proof that the associated ultrapower embeddings are elementary. However, the 
Axiom of Choice is false in an inner model A4 of AD. So in Section 2 we also show 
that Los’ Theorem holds for the ultrapower of these “choiceless” inner models and 
that the corresponding embeddings are elementary. Furthermore, the typical argument 
proving that an inner model is “iterable” usually requires DC, the Axiom of Dependent 
Choices (see Lemma 19.12 of [S]). But in this paper we will not assume DC. So in 
Section 3 we develop some tools which will be used, in Section 4, to prove that 
(K(R),@) is weakly iterable without DC, whenever p is a countably complete K([W)- 
measure on lc > OK(n). Finally in Section 4 we show that there exists an inner model of 
ZF + AD + DC containing a measurable cardinal above its 0, under the assumption of 
ZF + AD + 3X C_ l&Y $ K(R)]. As a corollary, we show that HODK’R) = K(P) where 
K(P) is the Dodd-Jensen Core Model relative to P, a set of ordinals. This generalizes 
a result of Woodin which states that HODL(‘) =L(P) for some set PC @(n) (see 
Section 1 of [IS]). 

Remark. Steel and Woodin have established many important theorems using the struc- 
ture of HODL’“’ We expect that additional results will arise from the study of the 
structure of HO&‘). 

0.1. Preliminaries and notation 

We work in ZF and state our additional hypotheses as we need them. We do this 
to maintain a careful su~eillan~e on the use of dete~inacy and dependent choice in 
the proofs of our main theorems. Variables x, y,z, w . . . generally range over R, while 
LX, & y, 6.. . range over OR, the class of ordinals. If Odj<or and 1 <ic Gti, then e$ x 
(‘“tu)” is recursively homeomorphic to [FB, and we sometimes tacitly identify the two. 

A proper class A4 is called an inner model if and only if M is a transitive E-model 
of ZF containing all the ordinals. For an inner model M with X EM, we shall write 
PM(X) to denote the power set of X as computed in M. For an ordinal K EM, we 
shall abuse standard notation slightly and write “M = {f E M 1 f : K --+ M}. 

We distinguish between the notations L[A] and L(A). The inner model L(A) is defined 
to be the class of sets constructible above A, whereas the inner model L[A] is defined 
to be the class of sets constructible relative to A (see 18, p. 341). Thus, one defines 
L[A](B) to be the class of sets constmctible ~e~u~~~e to A and above B. 



A pointclass is a class of subsets of [w closed under recursive substitutions. A bold- 
face pointclass is a pointclass closed under continuous substitutions. For a pointclass r, 
we write “r-AD” or “Det(T)” to denote the assertion that all games on w with payoff 
in r are determined. For any notions from Descriptive Set Theory which we have not 
defined, we refer the reader to Moschovakis [ 151. 

Our general set theoretic notation is standard. Given a function f, we write dam(f) = 
{x: 3y(f(x) = y)} and ran(f) = {y: 3x( f (x) = y)}. We shall write (xi,. . . ,x,,> to rep- 
resent a finite sequence of elements. For any set X, (X)“w is the set of all finite 
sequences of elements of X, [X] cc* is the set of all finite subsets of X, and 9(X) is 

the set of all subsets of X. Given two finite sequences s and t, the sequence s-t is 
the concatenation of s to t. Generally, 1 will be a normal measure on P(K), where 
K is an ordinal. For an ordinal a, V, is the set of all sets of rank less than CC We 
let y = T,(x) denote the formula “y is the transitive closure of x”. For any model (or 
inner model) J# = (M, E, . . .), we write KM = {f EM 1 f : K --+ M}. In addition, for a 
model (or inner model) ~2‘ having only one “measurable cardinal”, we shall write IC.~ 
to denote this cardinal in 4. Similarly, when ~2’ has only one “measure”, we shall 

write p”/k to denote this measure. 
Given amodel &=(M,ci,c~ ,..., c,,,,Ai,& ,..., AN), where the Ai are predicates and 

the ci are constants, if X CM then C,(&‘,X) is the class of relations on M definable 
over J# by a C, formula from parameters in X U {cl, ~2,. . . , c,}. C,(A,X) = !JnEc,, 
C,(A’,X). We write “Zn(&?‘)” for X,(&‘,0) and “Zln(,,#Y)” for the boldface class 
C,(&,M). Similar conventions hold for 17, and A,, notations. If ~2’ is a substruc- 
ture of .,V and X CM 2 N, then “JZ’ 4: JV”” means that ,& b $[a] if and only if 

JV” k #[a], for all a E (X)<“’ and for all C, formulae (p (the formula (It is allowed 

constants taken from (cl, CZ, . . . , c,}), We write “&? -x~ J”” for “+&,‘<y N”. In addi- 

tion, for any two models ~82’ and JV”, we write 7c : A T .N to indicate that the map rt 

is a C,-elementary embedding, that is, & b &a] if and only if JV + #[n(a)], for all 

a= (a&a*,...) E(M)CW and for all C, formulae 4, where 0 <n < o and ~(a) = ( IC(Q), 

x(a1),...). 
We now give an overview of the ~ndamental notions presented in [l, 21, which 

will be assumed here. The language 9,~ = {E, ll2, cl,. . . , c,,,, Al,. . . , AN} consists of the 
constant symbols rW and cl,. . . , c, together with the membership relation E and the 

predicate symbols Al,. . . , AN. The theory RN is the deductive closure of the following 

weak set theory above the reals: 

(1) vxvy(X=y~vz(zExe.z~y)) (extensionality) 

(2) $JV% 6 y) (0 exists) 

(3) Vx(x#0* 3y(yExAxny=0)) (foundation) 
(4) ~x~y~v~(~ E 2 * (t =x v t = y)) (pairing) 
(5) VxE!ytQ(tEy +j Elz(z~xAtEz)) (union) 
(6) 3w(0 E w A ord(w) A lim(w) A ‘v’a E wllim(a)) (8 exists) 
(7) VUK?3ZV.s(S E z (3 s E U A l&Z)) (Co separation) 
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(8) WWw3yVz(z E y w 3 E w(z = {.s E u: cp(s, t,?)} )) (CO closure) 

(9) VX(X E Jj ti V_V E x3n E w3z3f(Tr(z) A y (I z ,1 f’ : n 2 z)) (FJ = K+, ) 

where, in (7) and (8) cp and $ are any Ca formulas. The above predicates ord(w), 

lim(w), and Tr(w) abbreviate “w is an ordinal”, “w is limit”, and “w is transitive”, 

respectively. 

Of course, l&+i can be “constructed” from the set of reals [w. It is more convenient, 

however, to start constructing new sets from the transitive set l$+r rather than from iw. 

Since [w is a proper subset of c,,+r and is easily “separated” from K,,+i, we shall 

consider V,+ 1 as given and we will tacitly identify the two. 

The theory R+( = RN+) is RN together with the n2 sentence V = L[A I,. . ,AN]@). 

We are interested in transitive models .A! = (M, E, Iw.“, A 1,. . , AN) of Ri. We shall 

write IJP’ =@” for _.&“s version of the reals. For any c( E OR.’ we let S;&(B) de- 

note the unique set in .A& satisfying A’ k 3f(cp(f) A c( E dom(J’) A S;‘(E4) = f(x)), 

where CJ is the Ca sentence used to define the sequence (S,;.‘(lQ): y <OR.“) (see [ 1, 

Definition 1.51). For A = OR.‘, let S,“@) = IJ a<>, S;‘(& Let o^R denote the class 

{;1: the ordinal oy exists} and let J;‘(E) =S$(&), for y <o^R.“. Since .A’ b Rf, 

it follows that M =J;“(B) where E = o^R.“. For 1 <j~do^R.’ let ~42’~ be the sub- 

structure of A defined by -~~;‘=(J,;“(~),E,IW.~~,J~~‘(IW)~A, ,..., .J;,‘(LQ)nA,) and let 

M; =J.;“(Iw). We can write JP=(M~,E,FJJ’,A 1,. . , AN), as this will cause no con- 

fusion. ‘No; that .A!‘~ is umenuhle, that is, a n Ai E MT, for all a E MT where 1 <i < N. 

Definition 0.1. Let 4’ be a transitive model of R+. The prujectum p.ti is the least 

ordinal p d o^R, ’ such that Y([w.” x cup) n Ci(A)~M, and p.~ is the <&east 

p E [OR.‘] <“’ such that P([w-4’ x o>pw) n Ci(.M, {p}) EM. 

The order <BK is the Brouwer-Kleene order on finite sets of ordinals and is a Ca 

well-order. We now recall the definition of a master code and the notion of accept- 

ability, as stated in [2]. 

Definition 0.2. The Cl-master code, A.I, of ~42’ is the set 

A/J={(x,s)E RN x (op.t/)<“‘: .A’ t== cpx~o~(hz..r(n + l),s,p#)} 

where (vi: i E o) is a fixed recursive listing of all the Ci formulae of three variables 

in the language YN and A .nx(n + i) is the real y such that y(n) =x(n + i) for all 

12 E (0. 

Definition 0.3. Suppose that .A? is a transitive model of R,$. We say that ~‘4 is accept- 
able (above the reals) provided that whenever S(S x KY’) f’ MVt’ g M” for v <o^R.” 

and 6 <OR.“‘, then for each u E IV\‘+’ there is an f” E MY+’ such that 
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and 

f,$: ( x UP 3 (5) u (.L?(( x Le) n 24). 

Write (J< ‘A3A.“‘(@): r E OR) for the Jensen hierarchy of sets which are relatively 

constructible above [WA from the predicates A 1 n 44,. . . , AN n M, AM n M. 

Definition 0.4. Given that A is acceptable, let M* =Jj$‘A.“)(K!). The Ci-code of _k’ 

is the structure A*=(M*,E,K?,c~ ,..., c,,A~fIM* , . . . , AN n M*, A,A n M* ) where the 

constants have the same interpretation in A* as in A. 

In order to apply fine structural techniques to the structure M, one must ensure that 

the two structures A and 4?* have the same bounded subsets of K@ x op,~. The 

acceptability of k! implies that &* is a substructure of M containing all the bounded 

subsets of [WA x wp,~ which are elements in d (see Lemma 1.15 of [2]). Thus, fine 

structural techniques can be applied to M. In addition, since &?* is an acceptable 

model of RNf+, (see Lemma 1.17 of [2]), one can “iterate the projectum”. 

Definition 0.5. Suppose that _k’ is acceptable. Inductively define on n E w the &code 

of 4, denoted by A”, as follows: 

(1) &O=&?, p$=ORA, p>=0, and dpK=O. 
(2) Assume that ,k’” has been defined and that p.~(” > 1. Define &“+’ = (A”)*, 

p:’ = pJAt”, , p?’ = p.xn, and &“i’ = A.1”. 

Remark. The above notation is slightly inconsistent with previous notation. Namely, 

for an ordinal y, _&P’ denotes a structure whose domain consists of the sets constructed 

in J;“@!), while &‘” denotes the C,-code of A. However, we shall use integer vari- 

ables, for example n, exclusively for denoting k!” the X,-code of A. 

There is another way of iterating a “projectum”. 

Definition 0.6. Let A be acceptable. Define y> = OR&. For 1 <n <w, define & to 

be the least ordinal y <6k.k such that P([w.” x oy) n Z,(M) gA4. 

For an arbitrary acceptable 4 the connection between y$ and p”’ is not clear. How- 

ever, if M is a “mouse”, then ynM = p!’ 

Definition 0.17 and Theorem 0.19 below). 

whenever pyA is defined (see 

We shall now review some definitions and results from [I]. 

Definition 0.7. Let p be a normal measure on K. We say that ,u is an R-complete 
measure on K if the following holds: 

If (A, :x E W) is any sequence such that A, E p for all x E [w, 

then n A, ep. 
XER 



D. W. Cunningham1 Annals of Pure and Applied Logic 92 (1998) 161-210 169 

We now focus our attention on transitive models .IZY of Ri such that 4? believes 

that one of its predicates is an IW~“-complete measure on P(K) ~7 M. For this reason 

we modify our official language by letting Y’N = {E, rW, IC, p,A I,. . ,AN}, where p is a 

new predicate symbol and K is a new constant symbol. 

Definition 0.8. A model -4 = (M, E,@,K.#, p,At , . . ,AN) is a premouse (above the 

reals) if 

(1) .k is a transitive model of R+, 

(2) ..& k “p is an IF&complete measure on K”. 

k! is a pure premouse if 4 = (M,&‘,K.@, 11). Finally, k’ is a real premouse if it is 

pure and [w.& = [w. 

To distinguish our definition of a premouse from the premice of Dodd-Jensen [5], 

we may sometimes refer to our version as “premice above the reals”. 

Definition 0.9. The theory PM is the theory Ri together with the sentence “p is an 

&complete measure on E”. 

The statement “p is an &-complete measure on K” is a 171 assertion. The theory PM 

can be axiomatized by a single 172 sentence. 

We defined in [l] the ultrapower of a premouse L&, denoted by &‘I, and showed 

that a version of Los’ Theorem holds for this ultrapower. We shall write K or K.& 

for K.@ when the context is clear. We shall slightly abuse standard notation and write 

“M={fEMjJ‘: K --f M}. For f E “M, we write [f] for the (usual) equivalence class 

of .f (see [l, p. 2261). 

Theorem 0.10. Let .A be a premouse. Then 

c-&l k cp([fll,..., [fnl) * ~2 t= ii” E K: cP(fi(t). . . . > f,(t))> E PL, 

for every & formula cp and jk all f,, . . . , fn E KM. 

Proof. See 2.4 of [I]. 0 

For a premouse A define rr At. . c A? + A!, by 7@(a) = [c,] for a EM. When the 

context is clear we shall drop the superscript and write rc for I@. 

Corollary 0.11. 71: A# + A,. 
&I 

Lemma 0.12. Let At! be a premouse. Then 7~: .A --+ .A] is cojinal and hence, 7-t: 
.&Y - J‘fz,. 

LI 

Proof. See 1.18 and 2.6 of [l]. 0 
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Lemma 0.13. Let A be a premouse. Then d&f1 b PM. 

Proof. See 2.7 of [l]. 0 

The proofs of Definition 0.9, Theorem 0.10 and Corollary 0.11 use the fact that a 

premouse & is transitive. The ultrapower &I is not necessarily transitive (or even 

well-founded). However, &‘i inherits from ,.&’ all the properties required to form the 

ultrapower and to prove that Definition 0.9, Theorem 0.10 and Corollary 0.11 apply to 

.,&‘I. Thus, we can iterate this ultrapower construction through the ordinals. 

Definition 0.14. Let .,&’ be a premouse. The premouse iteration of & 

is the commutative system satisfying the inductive definition: 

(1) &Va=,&‘Z, 

(2) nYB = identity map, and ngy o nap = rcQy for all x G/J d y <i, 

(3) If ,? = R’ + 1, then A;, = ultrapower of .,&‘I,/, and rc,~ = rK/’ o rc,~,! for all CI <A’, 

(4) If ;1 is limit, then (&‘i, (7~~;. : ~2’~ + ,A!i),,;) is the direct limit of 

We note that the maps in the above commutative system are cofinal (see 

Definition 1.18 of [ 11) and are Ci embeddings, that is, 

for all c( d p E OR. 

Definition 0.15. A premouse _&’ is an iterable premouse if 4;. is well-founded for all 

~EOR. 

In the paper [I], with which we shall assume the reader is acquainted, we introduced 

the Real Core Model, K([W), and showed that K( rW) is an inner model containing the 

reals and definable scales beyond those in L(iw). We assumed that K( rW) satisfies the 

Axiom of Determinacy. To establish our results in [l] on the existence of scales, we 

defined real l-mice and showed how the basic fine-structural notions of Dodd-Jensen 

[5] generalize to iterable “premice above the reals”. Recall that & = (M, [w, K,P) is a 

real l-mouse if k’ is an iterable real premouse and 9([w x ~)flZl(M) gA4, where A4 

has the form JU[p]( rW) and K is the “measurable cardinal” in ,&Y. Real l-mice suffice 

to define the real core model and to prove the results in [l] about K([W); however, 

they are not sufficient to prove all the results in the present paper. That is, some of 

our results require the full fine-structure of K([W) as developed in [2]. 

In the paper [2] we generalized Dodd-Jensen’s notion of a mouse to that of a real 

mouse JEX containing all the reals and having the form k’ = (M, [w, K, p). The definition 
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of a real mouse is obtained (roughly) by “advancing” the notion of a real l-mouse; 

that is, by 

(i) replacing 11 with C,, where n is the smallest integer such that Y(R x ti) n 

&+I (JQ e M, and 
(ii) defining a stronger iterability condition. 

We shall now (more formally) review the definition of a “mouse” and the definition 

of “mouse iteration”. 

Definition 0.16. Let .kZ be an acceptable pure premouse. We say that ,M is critical 
if pr,+’ 6 K+* <pyti, for some n E o. This integer n is denoted by n(A) and we write 
.,,g = ,/fl”(. I/). 

Definition 0.17. Let ./d be a critical pure premouse. Since. t? is also a premouse, let 

(*I 

be the premouse iteration of ._&?, as in Definition 0.14. We say that .&’ is a mouse 

whenever (i) .R is an iterable premouse and (ii) the system (*) of transitive models 

can be extended (by decoding master codes, as in [2]) to a commutative system of 

transitive structures 

The system (J) is called the mouse iteration of Jz’. If, in addition, the mouse .,&’ 

contains all the reals, that is, if R” = R, then J?’ is said to be a real mouse. 

Theorem 0.18. Suppose ~4’ is an acceptable pure premouse and let n E o. If op”~~ 3 

K./I, then y,Z = pr,,. 

Proof. This follows from Corollaries 2.13 and 1.33 of [2]. 0 

Theorem 0.19. Let n E CO. Ij’ .A is a mouse, then ~7~ = p;, whenever py4( is dejined. 

Proof. This follows from Corollaries 2.13, 1.33 and 2.38 of [Z]. 0 

Remark 

( 1) An iterable real premouse is acceptable (see Theorem 1.4). 

(2) A real l-mouse .k’ = (M, R, K, p) is the simplest of real mice, that is, ,M is a real 

l-mouse if it is an iterable real premouse and CP(R x K) Ti Z1(M) g M. 

The following non-standard definition of cardinality in a structure “above the reals” 

is given in [2]. 

Definition 0.20. Let .k be a premouse. 



(1) For a E A4 the Ck-curdinality of a, denoted by la].,~, is the least ordinal /z E OR.” 

such that f :I x R.‘@ 2. for some f EM. 
(2) An ordinal A<OR”@ is an ,I-cardinal if A= I,l].n or i, =OR”#. 
(3) For an ordinal /z < ORA, 22 is the least .X-cardinal greater than A. 

Lemma 1.7 of [l] implies that for a set a in a premouse &, there is a function 

f E 4 such that f : [a]'" x [WA 2 a, for some a <OR.“. Thus, Lemma 1.4 of [2] 

shows that the ,&-cardinality of any set in &! exists. 

Remark. In the definition of ~-cardinali~, we have decided to use the cross product 
1 x K?&. In the special case where 3, = 0, the cross product 0 x ll?? = 0 and hence, does 
not involve any reals. So, when applying the above definition, we shall abuse cross 
product notation slightly, and define 0 x 1w” = 8%‘. 

In next section, we shall extend the above notion of “cardinali~” to certain inner 
models of ZF containing the reals. This completes our overview of the notions and 
results presented in [l, 21. For any terms that are undefined below, we refer the reader 

to these two papers. 

1. K(R) and the GCH 

Dodd-Jensen’s Core Model K satisfies AC + GCH, that is, the Axiom of Choice and 
the Generalized Continuum Hypothesis. We recall that the Real Core Model K(R) is 
the union of real l-mice, that is, 

K(R)= {x: 3N(N is a real l-mouse AxEN)}. 

K([W) is a natural generalization of the Core Model K. In this section we shall show 
that K(IW) satisfies a “generalized continue hypothesis” of the form 

(Vi, f OR) [the cardi~ulity of P(n x Lw) = the first ca~di~~~ larger than 21. 

However, K( Iw) does not satisfy the Axiom of Choice (assuming AD). In particular, 
P’(n) cannot be well-ordered in K(IW) for any ordinal I>cu. So, we shall modify the 
standard definition of cardinaIity in K(R). 

~finition 1.1. Let A4 be an inner model containing the reals II& 
(1) The M-cardinality of a set a E A& denoted by IaIM, is the least ordinal 2 f OR 

suchthatf:;lxlR%.forsome fEM. 
(2) An ordinal R is called an ~-card~~a~ if A= ]jl]~. 
(3) For an ordinal /1 the least M-cardinal greater than i, is denoted by 1;. 

Remark. We have chosen (as remarked earlier) to use the cross product 1 x iw in our 
definition of M-cardinality. However, the cross product 0 x [w = 8 and does not involve 
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the reals. When applying the above definition, we shall abuse standard notation (in this 
special case only) and define 0 x [w = iw. consequently, if f : R 2 a for some f EM, 

then ]a]~ = 0. 

Since K([W) is the union of real l-mice, Lemma 1.7 of [l] and Lemma 1.4 of 
[2] imply that the K(iW)-cardinality of every set in K(IW) exists. However, we must 
distinguish between the notion of an ordinal A being a K(R)-cardinal and the notion 
of E, being a standard cardinal in K(R). 

Definition 1.2. Let A4 be an inner model containing the reals II& 
(1 f 1. is a cardinal in M if for no t <i, does there exist an f EM such that .f : 5 F 1. 
(2) L+ is the least cardinal in A4 greater than 2. 

Remark. In K(R), O&,, = O+ and for all ordinals 1< @(n) 

(1) I&,, = OK@), 

(2) PIK([W) = 0, 
(3) P(~)lK(JB, = 0, assuming K([W) b AD (see 28.15 of [S]). 

Definition 1.3. Let M be an inner model containing the reals [w. We shall write M /= 
“GCH” to denote that 

Note that if M k “GCH”, then M i=: (‘$A E OR) [/P(n)], <,%;I. 

Remark. For any inner model M of ZFC, we shall write lalM to denote the standard 

cardinality, in M, of a set a E M. Also, we shall write A4 + GCH to mean that the stan- 

dard Generalized Continuum Hypothesis holds in M, that is, A4 /= (‘JI E OR)[2’ = %+I. 

We will show that in fact, K(R) k “GCH” and that certain generic extensions of 
K(R) satisfy the standard GCH. We now state a generalization of Lemma 5.21 of 

Dodd-Jensen [5]. 

Theorem 1.4. Suppose that .A is an iterable pure pre~o~se above the reals. Then 
.4 is acceptable. 

Proof (Sketch). A proof of this theorem is actually given in [3]. The proof is a 
generalization of Dodd-Jensen’s proof of Lemma 5.21 in [5]. For this reason we only 
discuss, here, the main ingredients that are used in the proof of Theorem 1.4. Let & 
be an itEable pure premouse above the reals and let K = K’@. One proves by induction 
on ‘J <OR-# that _kP is acceptable (see the first two paragraphs of Chapter 11 of [4]). 
To ensure that &?+I ” is acceptable, assuming that &” is acceptable, one must prove 
the following two lemmas (see De~nition 0.16). 



Lemma 1.5. Let y<OR,&. Auburns thut 4’; is u~~~ptab~~ and ~riti~al. Let n = 
n(_kP). Zf &p <K, then B(W) i-l fkF+ c: 2;,(Av). 

For any pure premouse above the reals, say Jlr, define @” = {u E II’ : jT,(a)(, +. < 

IC”}, where T,(a) denotes the transitive closure of a. Lemma 1.9 of [l] states that 
.Af /= VEly(y = Z’c(a)) and, in addition, the comment following Definition 0.20 shows 
that .,V + V&lii(/i = IT,(a)]. $‘). Thus, the definition of K’? is well-defined. 

The next lemma is a direct generalization of Lemma 4.9 of Dodd-Jensen [5]. 

Lemma 1.6. Let y<o^R,“. Assume that J&C is ~c~eptabt~ and critical. Let n = 

n(JP). Zf pf&! = fc, then Hi?-’ =H;;K’+‘. 

Using the above two lemmas, the argument proving Lemma 5.21 of Dodd-Jensen 
[5] can now be adapted to prove that A? g+’ is acceptable (in addition, see Chapter I 1 

of [4]). q 

Remark. Lemmas 1.5 and 1.6 are used in [3] to solve a problem for constructing scales 

in K([W). Let ,&’ be a iterable real premouse and suppose that a set A is constructed 
in M’+‘\M’, where IC.’ <y<OR.“. Since we are using the measure p.,” to construct 
new sets in MY+‘, it is possible that A EM)‘+‘\&,~(,,.@‘). The above two lemmas are 
used to show that this cannot happen when A is a set of reals. In particular, when a 
new set of reals A is const~cted in My+’ \My, then AE&(&‘). In f3], this fact is 
impo~ant for our dete~ination of whether or not A has a scale of minimal complexity 
in K(iw). 

Our next lemma is simply a restatement of Lemma 1.10 of [2]. 

Lemma 1.7. Let ,&’ be acceptable. There is a uniformly lC:,(k’) sequence 

where v <OR.’ and v’ <OR.&, such that 
(1) {a&: i<vAwj<v’AxE lFP) =P(v x ~)n~, 

(2) {a&,: i<vi\cvj<zAxE R.“) EM for each z<v’? 

(3) It’ < v;$.. 

Proof. See [2]. cl 

Corollary 1.8. K( [w) + “GUI”. 

Proof. Theorem 5.5 of [I J implies that K(R) /= “V is the union of real l-mice”. We 
work in K( 5%). Let ;I be an infinite ordinal. Let A’ be a real l-mouse such that 
.P(A x [W)E .A! and ]A& = ]A/&,,. Since A’ is acceptable, Lemma 1.7 implies that 
js(A x IW)/,,g Q /A],>. Because /I&,, = /A./> and ,P(A x RIB) E .A’, it follows that ]P?p(A x 
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Before we prove our next theorem, we shall first show that generic extensions “pre- 

serve” K(IW). Let M be an inner model of ZF and let KY”’ be the set of reals in M. 

Definition 2.34 of [l] describes when a structure is a l-mouse and when it is a real 

l-mouse. We shall say that a structure ._ 1“ is an [w M l-mouse if .1’” is a l-mouse and 

[w ’ = R”. In other words, . 1 is a l-mouse having [w” as its set of reals. Let K(rW”) 

be the union of IWM l-mice. Our next result shows that forcing over A4 does not add 

any new [WM 1 -mice and thus preserves K( KY)““. 

Lemma 1.9. Let M be an inner model of ZF, let P CI M he a partial order. Suppose 

that G is P-generic oz’er M and that M[G] + ZFC. Then K(R)M =K(R”)MIGl. 

Proof. We are assuming that AC holds in the generic extension M[G]. However, we 

do not assume that AC holds in the ground model M. Recall that K(R)“” is the union 

of real l-mice in M, and IY(PJ?)~[‘) is the union of IWM l-mice in M[G]. So, to 

prove that K( rW)M =K([W”)“‘[o], ‘t i 1 s sufficient to show that M[G] does not contain 

any new IWM l-mice. To do this, suppose that .,1 is an IWM l-mouse in M[G]. We 

shall prove that .,t- EM. Let fI>max( I( 1’1 M[G), lPI”IG1) be a regular cardinal in M[G]. 

Since O> IPI”[G) IS a regular cardinal in M[G], it follows that P is a partial order 

with the n-chain condition in M[G]. One can now prove that for any C E M[G] if 

M[G] b “C is closed and unbounded in f)“, 

then there exists a C’ EM such that C’ C C and 

M k “C’ is closed and unbounded in 0” 

(see the proof of Lemma 10.14 of [S]). Now, in M[G], let 

be the premouse iteration of .)I” and let ti, = ~a& ’ ) =K’ I, for each a E OR”tG1. The 

fkh-premouse iterate of ..f is a transitive structure of the form <,+$ = (No, E , BP”‘, ~1, 

p ’ I’). Lemma 2.37 of [l] asserts that ,& is a l-mouse and so, let w = %?(J$‘;H) be the 

core of ,,hi, (see the bottom of p. 239 of [l]). The core %? is a l-mouse and Lemma 2.32 

of [l] shows that %‘(~tn)= w(.,$“). Theorem 2.39 of [l] implies that there is an ordinal 

5 E M[G] such that %?c = ./t . . 

Since 0 > 1, VI M[G1 is a regular cardinal in M[G], it follows that ICY = 8 and that 

I = {KC/~: P < 0) E M[G] is closed and unbounded in 0. Corollary 2.14 of [l] shows that, 

for each /I<fI, the set Z\tib is a set of order Cr(.~l$, {n,lo(a): a ENS }) indiscemibles. 

In addition, for all X E P(q) n N,, 

‘YE/&’ if and only if 3x<fI(X >I\%). 
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Hence, given I and [W”, one can construct .& (see the proof of Theorem 2.43 of [l]). 

In particular, one can construct J$o using the filter ~1 on 0 defined by 

AEPI if and only if Flcr<O(A>I\a). 

In fact, given any closed unbounded I’ C I, one can construct J@ from I’ and [WM. 

Moreover, as noted above, there does exist an I’ z I in M such that 

M b ‘I’ is closed and unbounded in 0”. 

It now follows that Jv;, EM and hence, @? = V(No) E M. Since 5 is also an ordinal in 

M, we see that %?t EM and, because Jf = %‘t, we conclude that Jf EM. Therefore, 

K(rW)M =K(uP)MW 0 

All the generic extensions discussed in this paper will satisfy the Axiom of Choice 

and so, Lemma 1.9 shows that these extensions preserve K([W). However, K([W) is 

preserved even when the generic extension is not a model AC. 

Corollary 1.10. Let M be an inner model of ZF, let P E M be a partial order. Suppose 
that G is P-generic over M. Then K( R)M =K(R”)M[G]. 

Proof (Sketch). To prove that K(IW)M =K(IW M ) MIGl, it is sufficient to show that MEG] 

does not contain any new IWM l-mice. Suppose that JV is an [W”” l-mouse in M[G]. 
By refining the proof of Lemma 1.9, we shall show that N E M. 

Let CI E ORM be such that P E V,” and let X = Vz2. In M[G], let Y = JV” x X and 

let L(Y) be the smallest inner model of M[G] containing Y as a set. Construct a partial 

order Q E L(Y) so that any H, which is Q-generic over L(Y), induces a well-ordering 

of Y in L(Y)[H]. Now, let H be Ckgeneric over L(Y). So, L(Y)[H] k ZFC. Let 

0 > max( IN]L(Y)lHl, 1 PIL(y)[H]) be a regular cardinal in L( Y)[H]. Since 0 > 1 PJL(Y)[H] is 

a regular cardinal in L(Y)[H], it follows that P’ is a partial order with the $-chain 

condition in L( Y)[H]. Since V,2 E L( Y)[H], one can now prove that for any C E M[G] 

if 

M[G] b “C is closed and unbounded in P’, 

then there exists a C’ EM such that C’ C C and 

M k “C’ is closed and unbounded in 0” 

(again, see the proof of Lemma 10.14 of [S]). In L(Y)[H], let ICY = 0 and I C 8 be as 

in the proof of Lemma 1.9. It follows that I E M[G] and hence, there exists a closed 

unbounded I’ C Z in M. Therefore, ,V EM. 0 

For the remainder of this paper we let Q = (Q, <) be the standard partial order 

that produces (under DC) a generic enumeration of all the reals in length wi; that is, 
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Q={.sE~R: EE~.Q} and f or s, t E Q, sd t if and only if dom(s)>dom(t) and t =s 1 

dam(t). Let HOD be the class of hereditarily ordinal definable sets. 

Theorem 1.11. Let Y =K(R). suppose &zt V /= ZF + DC csnd let G be Q-generic 

over V. Then 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

[WV = 0;9UG1 

V s (,,&I 
&) &+~G], 
@V = ,,,vy 
(@+)v =: fjp, 
V[G] + ZFC f GCH, 
HOD” = HODv’G’. 

Proof (Sketclz). Let Y =K(lR). Since K(R) +DC, it follows that both IFB and WI are 
preserved under Q-forcing. We now show that K( R)[G] /= AC. An argument is given 
in [1 l] (on p, 203) which shows that the Axiom of Choice holds in any forcing 
extension of a ground model A4 of ZFC. A simple modification of this argument will 
prove that the generic extension K(R)[G] satisfies AC. Let X be any set in K(R)[G]. 
We will show that X can be well-ordered in K(IW)]G]. Let CT be a Q-name for X. fn 
K(R) there is an ordinal a and a function rc : c1 x R 2 dom(cr). Using II, one can now 
construct a Q-name z for a function f E K( R)[G] such that .f : R x R 2 X. Since 
there is a bijection in K(R)[G] between R and o r, it follows that there is a function 
g E K( R)[G] such that g : I, 2 X for some ordinal i.. Thus, X can be well-ordered in 

~W)[Gl- 
Lemma 1.9 implies that the generic extension V[G] does not add any new real l- 

mice. Thus K(R) =K(R)V[G). Now, since Q is weakly homogeneous (see p. 129 of 
[8]) and because V is definable in V[G], it follows that HODY = HOD’[‘]. 

Proof. Let 5 >,i_>wt. 

(=+) Assume that f EK(R)[G] is such that f : 2 2 5. Let f be a Q-name for 
f E K( R)[G], and let ri be a canonical Q-name for a E K(R). Let p E G be such that * 
~lt~~~:~~~‘~.Definethemap~:~x~~~in~(~)by 

h(a,q)= fl, get& /?E( and p-qll-“f(di)=j”, 
0, otherwise. 

Here p-q is the concatenation of q to p, Since h E K(R) and there is a map in K(R) 
from R onto Q, it follows that there is a map y E K(R) such that g : I x Iw 2 5. 

(e=) Assume that gEK(lR) is such that 9: ;t x R 2 5. Since there is a bijection 
in K(!R)[G) between R and 01, it follows that there is a map f E K(R)[G] such that 

onto .f:3,--+(. cl 
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Proof of Theorem 1.11 (C~~~~~e~~~~). For any ordinal c 2 01 the Claim implies that 
< is a cardinal in K(&!)[G] if and only if t is a ~(~)-cardinal. Hence, Ov and (Of)” 
are collapsed to ~2 and 03, respectively. 

Now, since K(R) b “GCH”, the argument (see [I 1, pp. 202-2031) showing that the 
Power Set Axiom holds in the forcing extension K([W)[G] can now be used, together 
with the above Claim, to establish that K( [W)[G] I=: GCH. q 

Remark. 

(1) Note that G in Theorem 1 .11 can easily be coded as a subset of ~r(n’. 
(2) By Theorem 5.14 of [l], the conclusion of Theorem I.1 1 also holds under the 

assumption K( O;n) + ZF + AD. 

For a Boolean Algebra @, let 

W, = {a E & ~(a) = a for every automorphism rc of B}. 

For g E HOD, we shall write J, 0 “OD to denote the computation of &?* in HOD. Given 
an inner model M of ZF, we say that G is .%-generic over M when 8 is a complete 
Boolean Algebra in M and G is a generic (over M) ultrafilter. 

Our next two lemmas follow directly from a theorem of Vopenka (see Theorem 59 
of [6, p. 2691). For the remainder of this section, 9 will denote a Boolean Algebra. 

Lemma 1.12 (ZFC). Suppose Y =HOD[G], M&W G is B-generic ouer HOD. Then 

G n :BfoD & HOD. 

Lemma 1.13 (ZFC). Suppose V = HOD[G], where G is g-generic ouer HOD. IfM C 
HOD is a (transitive) inner model of ZFC such that 

(1) .gEM, 
(2) Gn&I~*n&I4, 
(3) v = M[G], 

then M = HOD. 

Another theorem of Vopenka states that if V =L[A] for a set of ordinals A, then 
V is a generic extension of HOD (see Theorem 65 of (6, p. 2931). Our next lemma 
generalizes this theorem and gives us a method for “computing” HOD. 

Lemma 1.14 (ZFC-tGCH). Assume V =L[D][A] and L[D] C HOD, where A C K E 
OR und DC V is u set or a proper class. Then there is a Boolean Algebra :4J = 
(B, <.#) where Bdlc+’ is an ordinal, and there is a G which is &generic over HOD 
such thut 

(i) Y = HOD[G], 
(ii) G f~ &?yoD E HOD. 

In addition, there exists a b : K -+ B such that 
(iii) HOD =L[D]({&h,~}) =L[D](P) 
r&ere 2 = G n @on * and P C IC++ is a caffonica~ coding of 1.33, b, g). 
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Proof. Since the proof of V =HOD[G] is essentially the same as the proof of 
Theorem 65 given in 161, we first give a sketch of the proof of (i). Let C =OD n 
,Y(~(K)), where OD is the class of ordinal definable sets. Consider the partial order 
@ = (C, C). There is a complete Boolean Algebra .@ = (B, s.8) in HOD, where B is an 
ordinal, such that 63 is isomo~hic to :8 as witnessed by an ordinal definable isomor- 

phism n : C --+ 3. Define G = {R(U): u E C A A E u}. One can show that G is B-generic 
over HOD, and our next Claim shows that Y is the resulting generic extension. This 

Claim, together with Lemma I. 12, implies that G fl @On E HOD. 

Claim. Y = HODIG]. 

Proof. Define b : K + B by b(a) = rt({X C K: IX EX}). Clearly, b E HOD and for every 
!KEK 

(EA H b(a)EG. 

Therefore, A E HODIG]. By assumption, L[D] S HOD. Thus, L[D][A] C HOD[G]. 
Hence, V=HOD[G]. El 

Proof of Lemma 1.14 (CumpEetion). Since C satisfies the (x’+)‘-chain condition 
(see 6.7 of [ 11, p. 2 12]), B has the (K’+)‘-chain condition in HOD. Furthermore, 

V~pl<K’+ since V i==GCH. Thus, HOD/= IB[< (K+‘>’ (see 6.9 of 111, p. 2131). 

Therefore, the complete Boolean Algebra ,@ = (B, d ,I) in HOD, where B is an ordinal, 
can be taken so that B< fc++. 

Finally, to prove (iii), let M =L[D]({&?, b,g}). Clearly, A4 C HOD. Thus, G is 
&?-generic over M and V = M[G]. Therefore, M = HOD by Lemma 1.13. Now let 
PC ti++ be a canonical coding of {!#, b,&. Hence, HOD=L[D](P). ii 

Suppose that .,& is a real 1 -mouse. Let V = U(,M) be the core of A, let (nip : %fx -+ 

VpjzS,g~~ be the premouse iteration of W and let IC% = rce,(fc’ ) for each ordinal CI. De- 
fine i(,&) to be the ordinal ;1 such that W;. = .N (see Definition 2.36 and Theorem 2.39 
of [l]) and define I~#= {IC,: a<i(,&)). 

Definition 1.15. Define the class D to be 

D={(&ti): 3_&(.&is a real 1-mouseA~=rc~~Ai(.X)=oA~EI.~)}. 

Suppose that .&? and ..&- are real 1 -mice such that I? = fc ” and if_&‘) = i(&“) = o. 
Then Lemma 5.3 of [l] implies that .1= ..$“. 

Lemma 1.16. ~(~~=~[~I(~~. 

Proof. This is a direct analogue of the fact that K =L[D], where K is the Core Model 
of Dodd-Jensen [5] and D is defined as in Definition I. 15 above, but “without the 
reals.” See Chapter 14 of Dodd [4] for the details. El 
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We are now in a position to give our first computation of HODKc”‘. 

Theorem 1.17. ~~~~~s~ that K(R) + ZF+DC. Then there exists a P C (~+)~(~) such 

that HODK’“’ = L[D](P). 

Proof. Let V = K( R) and let 62 E V be the standard partial order that produces (under 
DC) a generic enumeration of all the reals in length 01. Let A be Q-generic over Y. 
Theorem 1.11 asserts that Y[.4] + ZFC + GCH, (O+)’ = o$lA1 and HOD’ = HODVlA3. 
So we write HOD=HODV =HODVIAl and shall now compute HOD in VIA]. Note 
that Y[Kj =K(R)[A] =L[O]( R)[A] =L[D][A], where A can be coded as a subset of wi . 

Clearly, L[D] tr HOD. Thus there is a P C w3 = (O’)V such that HOD = L[D](P), by 

Lemma 1.14. Therefore, P E K(R), P C (O+)‘(‘) and HODK(“) = L[D](P). Cl 

Remark. Assuming ZF + AD + 3X C R [X @K(R)], we show in Section 4 that 
HOD~(~~ --K(P) where K(P) is the Core Model relative to PCI(@+)“(R). 

2. Weak ultrapowers 

Let h4 be an inner model of ZF. We now define what it means for ~1 to be a 
“measure” on @(FL) = P(K) n M, and we shall define the ultmpower of (~,~). We 
do not assume that ,u EM. 

Definition 2.1. Let M be an inner model of ZF and let K>W be an ordinal. We say 
that ~1 is an ~-~~~s~re on K if 
(1) 1-1 is a proper subset of y”(x) containing no singletons. 

(2) ~x,Y[(X~YE~~(,)AXE~)~YE~]. 
(3) VX f P”(x) [X E/z v (ti\X) E ,L&]. 
(4) If A<rc, {Xc:t<A)EM and (V<<A)X,E~, then fl,,,XtEp. 

(5) If (X~:~<K)EM and (‘v’is<~)X~~~, then (<EK:~E n,,,X,}Ep. 

Conditions ( 1) and (2) ensure that CL is a filter on PM(x). Condition (3) asserts that 
p is an ~ltra~~ter on PM(~). Condition (4) is called ~-cam~lete~e~~ and, in this case, 
,u is said to be Ic-complete. Condition (5) is called normality and, in this case, p is 
said to be normal. 

Definition 2.2. Let M be an inner model of ZF and let y be an M-measure on K. We 
say that j4 is ~~-c~rn~~ete if the following holds: 

If (A, :x E R”) is any sequence in M such that A, E p for all x E R”, 

then n A, f h. 
XEB;P” 

(1) 

Remark. Assuming AD, there are unboundedly many measurable cardinals K: < 0. It 
is easy to check that their measures are not R-complete in V. However, any (normal) 
measure on K > 0 is R-complete in V. 
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Lemma 2.3. Suppose that M is an inner model of ZF+ AD+ DC and that p is an M- 

measure on K > O”. Then for any f: K + .9(R) in M, there exists an A E 9(R) n M 

such that {[EK: f(<)=A}Ep. 

Proof. Define in M the relation dw on P(R) by 

A GwB if and only if A is Wadge reducible to B 

and define A <,B if and only if A B~BAB 6, A (see p. 424 of [15]). Because M 

is an inner model of ZF + AD + DC, it follows that 

M + “ < ,., is well-founded and rank( <,.,) = 0”. 

For A E Y(R) n M, let ]A]! be the <,-rank of A (in M). Define g: K+ OM by 

g(5)= lf(4)lK. S’ mce OM <K, there is a i, <K such that the set U = { 5 E K: g(t) = A} 

is in p (by K-completeness). In M, let W 2 @” be universal for the Wadge degrees 

of <,-rank less than 1. + 1 and for each 5 E U define Ct = {x E I@: W, = f(t)}. 

Claim 1. (V&t’ E U) (C, n Cc, # 0 3 Cc = Ctf ). 

Proof. Let 5, (’ E U and suppose that Cc n Cc, # 0. Let x E Cc n Ct/. Then f (4) = IV, = 
f(5’). Hence, Cc = Ccl. 0 

Claim 2. 3C ((t E K: Cc = C} E p). 

Proof. Assume for a contradiction that there is no such C. For each 5 E K define 

YJ = 

i { 

1~ E u: C, # C:> if l E U, 
K if 5el.J. 

Clearly, (Yt : i” <K) EM and by assumption (V< < K) (Y, E p). By normality the set 

Y={{Elc:5E T\,<<YV}’ IS in p. Claim 1 implies that Cc n C~I = 0 for distinct t,<’ E Y. 

Thus, we can define in M a map from RM onto Y. However, Y E p and so, Y has 

order type K. Hence, K < GM. Contradiction. U 

Proof of Lemma 2.3 (Conclusion). Now let C be as in Claim 2, and let A be such 

that A= W, for all XEC. So {~EK: f(<)=A}~p. 0 

Corollary 2.4. Suppose that M is an inner model of ZF + AD + DC. Zf p is an 
M-measure on K > O", then p is R”-complete. 

Proof. To prove that p is R”-complete, let (A, :x E R”) be any sequence in M such 

that A, E p for all x E [WM. Define the function f : K -+ 9(R) in M by 

By Lemma 2.3 there is an A C R M in M such that U = { 5 E K: f (4) = A} E p. We now 

show that A = [WM. Let x E [WM. Since A, E p, A, n U is non-empty. Let i” E A, n U. 
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Hence, x E f(c) =A. Thus, A = [WM. It follows that n, E Iw,+f A, = U E ,u. Therefore, P 

is PP-complete. 0 

Given an inner model M of ZF and p, an M-measure on K, we define an ultrapower 

of (M, p). We will denote this ultrapower by KM/p where KM = { f EM: f : K + M }. 
For f,g E KM define 

f-g if and only if (M,P)~{~:EK: f(l)=g(O}Ep. 

The above set is in M, and N is an equivalence relation on KM. For f E “M, we denote 

the equivalence class of f by [f] (implicitly using Scott’s Trick). Let MI = KM/p = 

{ [f 1: f E “M} and define 

[f 1 l [sl if and only if W, cl) k {t E 1~: f (0 E s(5) > E P, 

The set on the right-hand side is in M and therefore can be measured by p. For 

u EM, let c, E KM be the constant function defined by c,(t) = a for all i” E K. Define 

the natural embedding j : M ---) Ml by j(u) = co. 

We shall write M for (M, E) and write MI for (MI, Ed’ ). Note that ~~~ may not be 

well-founded. Since p is only Ic-complete for sequences in M, the usual proof that E”“’ 

is well-founded (which uses DC) may break down. We do not assume that k EM. 

Lemma 2.5. Suppose that M is an inner model of ZFC. Suppose that p is an M- 

measure on K. Let MI be the ultrapower of (M, p) and let j :M + MI be the natural 

embedding. Then 

(1) j:M;Ml, 
IO 

(2) j(O=tfor all 5<K, 

(3) W~,@“I)Fx<<j(lc). 

Proof. To prove (1 ), it is enough to check that Los’ Theorem holds for this ultrapower. 

Recall that KM denotes functions in M. 

Claim. For every C, formula cp in the language of set theory, 

MI I= cpW”11,. . , [fnl> if and only if (MP> 
/={cTElc: cp(fl(5),...,fn(5))}E~, 

for all f,, . . . , fn E KM. 

Proof. This is done by the usual induction on the complexity of formulae. The exis- 

tential quantifier step follows because M satisfies the Axiom of Choice. 17 

Proof of Lemma 2.5 (Conclusion). Assertion (2) of the lemma follows from JC- 

completeness and (3) follows from the normality of p. I7 

Remark. We could “iterate” the M-measure p on K to an Ml -measure pl on j(K) by 

the clause 
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if the above subset of K is a member of M. If ,LL EM, then this would be the case. 

However, we do not assume that p E M. 

We now show that Los’ Theorem holds for certain “choiceless” inner models. Let 

OD(X) be the class of sets which are ordinal definable from an element in X. In 

particular, OD(R) is the class of sets which are ordinal definable from a real. 

Lemma 2.6. Suppose thut M is an inner model of ZF + V = OD(R). Suppose that 

p is an R”-complete M-measure on K. Let MI he the ultrapower of (M, p) und let 

j: M + MI be the nutural embedding. Then 

(1) j:M -MI, 
I, 

(2) j(t)=> ftir all <<k., 

(3) (MI,@%=<<~(K), 
(4) EP=lJP. 

Proof. To prove (l), it is enough to check that Los’ Theorem holds for this ultrapower. 

Claim. For every 1, ,formula q in the language of set theory, 

MI ~~cp([f~l,...~[fnl) tf’md only if’ W,P)~{~EK: c~(fi(r),...,fn(5))}E~, 

jiw all J;,...,fnEKM. 

Proof. The proof is by induction on the complexity of cp. The existential quantifier 

case is the only case which requires checking. The usual proof of this case assumes that 

M satisfies the Axiom of Choice, but we can get by with a weaker choice principle. 

Suppose that cp is the formula ~u$(u, ~‘1,. . , v,), where $ is in C,. Let f;. , fn E 

‘M and suppose that 

(M P) + { i- E u: %4n, fi (0,. , Jn(4)) > E ~1. 

We want an .f’ E “M so that 

(M,p)k{c”E~: ~(f(5),fi(~),...,fn(4))}E~. 

Define in M the function h: K --) P(R) by 

h(U={xE@: ~~[~EOD({x})~~(~,.fi(;“>,...,fn(5)>1>. 

Clearly, (M, p) i= {< E K: h(t) # S} E p. Because p is @-complete, there is an x E RM 

such that (M, p) + {r E K: x E h(l)} E 1. Fix such a real x and let W be a well-ordering, 

definable over M, of the class OD({x})“. Now define the function f : K -+ M, in M, 

by 

f(l)= o 
{ 

the W-least u such that $(u, f,(5), . , .fn(5)) if v exists, 

otherwise. 

Thus, f’ is as desired. 0 
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Proof of Lemma 2.6 (Conclusion). Assertion (2) of the lemma, follows from K- 

completeness, (3) follows from the normality of p and (4) is implied by R”- 

completeness. 0 

Corollary 2.7. Suppose M is an inner model of ZF + AD + DC + V = OD( R). Suppose 

that p is an M-measure on K > O”. Let MI be the ultrapower of (M, p) and let 

J': M -+ MI be the natural embedding. Then 

(1) j:M -Ml, 

(2) j(5) =2fir all t<ic, 

(3) (Ml, ~"')~=<<jw, 

(4) [WM = RM’. 

Proof. Since p is an M-measure on K> O”, Lemma 2.4 implies that p is R”- 

complete. Lemma 2.6 now implies the desired result. q 

We will want to be able to iterate the above ultrapower operation on M. To do this 

we shall need (as remarked above) to ensure that certain subsets of K are in M. 

Definition 2.8. Let p be an M-measure on K. If every sequence (At: 4 E rc) in M fl 

K9(~) satisfies {g E IC: At E p} EM, then we say that (A4, ,u) is good on K. 

If (M,p) is good on K, then (M,p) is also said to be “weakly amenable” (see p. 244 

of [W 

Definition 2.9. Let p be an R”-complete, M-measure on K. If every sequence (Ac~,~) : 

(&x) E K x R”) in A4 fl KxRUP(~) satisfies {(&x) E li x R”: ACg,x) E p} EM, then we 

say that (M,p) is really good on K. 

Clearly, if (M,p) is really good on K, then (M,p) is good on X. 

Let M be an inner model of ZF + V = OD( R) and suppose that (M, ,u) is really good 

on IC. Let ji, :M + A41 be natural embedding of M into the ultrapower Ml = KM/p. 

Let 1~1 = jt, (Ic) and let 

Pl ={[flEM: (5EK: f(t)Ep}Ep}. 

We shall call ~1 the first iterate of p. One can show that the structure (Ml, ~1) is 

“really good on ICI”. We put this in quotes because Ml may not be well-founded. 

To illustrate how one can show that (Ml, pl ) is “really good on KI”, we prove the 

following proposition. 

Proposition 2.10. Let (M, p) and (MI, pl) be as above. Then 
(i) ~1 is Icl-complete, that is, (Ml, ,ul ) satisjies (4) of Definition 2.1. 

(ii) ~1 is R”l-complete, that is, (Ml, ~1) satisjies (1) of DeJinition 2.2. 
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Proof. First we prove (i). Suppose that i <j(rc), (X, : 1’ <EL) E A41 and (Vy < J)X) E ~1. 

We need to show that &.,;, X~.~~,.Let,f,g~M,whereg:~~uandf:~--tM,be 

such that [g] = A and [f] = (X7 : 7 <[g]). So, 

{< E K: f(r)= (A<,,: ;,<g(i”))} E P 

and we can assume that A<.7 C K for all l, y E K. The sequence (A(<,,) : (5, y) E K x K) 

is in M and so, it can be coded as a k-sequence in M. Since (M,p) is good on K, it 

follows that C = {(r, y): A;,:. E p} EM. Now, define the function G : K x K -+ P(K) in 

M by 

G( r, ?) = 
{ 

AK;... zhit;js;. CT 

Note that G(5,y) E ~1 for all 5,~ E K and, since p is rc-complete, it follows that nv__(:) 

G(<,~)EE for all {<K. We now show that 

Suppose, for a contradiction, that {< E JC: (37 < g(<))[G(& y) # A<a] } E p. Define the 

functioni;:K+k+l by 

X0 = 
i 

7 if y is the least y<g(t) such that G(<,Y)#A~,+ 

K otherwise. 

Itfollowsthat {5:i;(5)<g(r)}ECLandso,[j;]<~.Define~(i”)=A~(5),5ifj;(5)<K,and 

z(t) = 8 otherwise. So, z(t) 6 p for all 5 E K and hence, [z] 6 pLl. So [z] =XG, $! pl 

and [i;] < [g] = R, which contradicts our assumption that (Y’y < J)X,, E pI. 

Letting h : K -+ M be the function in M defined by 

h(r)= n G(&y), 
VCY(Z) 

it follows that [h] E ~1. In addition, since h(t) = n;,<gc6j As,,. for “almost every” 5, we 

see that [h] = n,,, X7. Thus, (MI, ~1) satisfies (4) of Definition 2.1. 

The proof of (ii) is very much like the proof of (i), except we use the [W”- 

completeness of ~1 and the fact that M is really good on K. Recall that P” = [W”l 

and so, we shall assume (for notational simplicity) that IF! = lf?“’ = [W”l. Now suppose 

that (X, : u E R) E MI and (Vu E R)X, E pl. We need to show that &nXa E pI. Let 

REM, where f:Ic+M, be such that [f]=(X,:a~lR). So, 

and we can assume that A <,a C K for all (&a)~ K x [w. Because (M, p) is really good 

on K, it follows that C = {(&a): At,, E p} EM. Now, define the function G : K x R --+ 

Y(K) in M by 

if (t,a)EC, 

otherwise. 
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Note that G([,a) E p for all (5, a) E K: x aB and, since ~1 is U&complete, it follows that 

noEea G(<,a)~p for all 5 cu. We now show that 

(5EK: (~‘~EIW)[G(~,~>=A~,~I}E~L. 

Suppose, for a contradiction, that (CE K: (3 E iw) [G(& a) #,Qa]} f p. By [w- 

completeness, there exists a b E R such that {SE rc: G(& b) #A&,()} up. 

Define ?(<)=Ab,c. So, x({)$p for all (Elc and hence, [.?]$hi. So [?I =Xb$~i, 

which contradicts our assumption that (‘da E 58) X, f ~1. 

Letting h : K -+ M be the function in M defined by 

h(5)= n G(<,Q), 
UEaB 

it follows that [h] EP~. In addition, since h(t) = noER At,, for ‘“almost every” 5, we 

see that [h]=n,,, X,. Thus, (Mi, ,~t ) satisfies (1) of Definition 2.2. El 

So, if (M,p) is really good on K, then the structure (MI, ~1) inherits all the properties 

from the structure (M, ,u) necessary to construct an ultrapower MS of (MI, ~1) and to 

define a natural embedding jr2 : MI -+ A4p,. This p rocedure can be iterated through the 

ordinals and thus, one obtains the commutative system 

@‘&&os~ (j,“, :& +‘@.,YtoR) 
0 

such that @&pa) is “really good on K~” for each aEOR, where fca =j&(rc). 

We write pa for the ath iterate of ,u and write M, for (M,, E ““?). We say that (M, ~4) 

is ~~~ak~y iterable if I%& is well-founded for all ordinals 61. In this case we always 

identify M, with its transitive collapse. 

Similarly, let M be an inner model of ZFC and suppose that (M,p) is good on K. 

We get a commutative system 

such that for each ~EOR, (M,,P~) is “good on rcX” where rcZ =&(K). Again, we write 

,u, for the clth iterate of p and write h4, for (M,, E”’ ). We say that (M, p) is ~~eQkly 
iterable if M, is well-founded for all ordinals c(. In this case we always identify M, 
with its transitive collapse. 

Remark. Kunen was the first to define the system (1) starting with an inner model M 
of ZFC and a weakly amenable M-measure on IC (see Section 19 of [8]). 

We now present a condition (see Definition 12.15 of [4]) on an inner model M 
which will ensure that a given ~-measure is good (really good) on K. 

~efini~on 2.11. Let IC be an ordinal and suppose that M is an inner model of ZF. 

We say that A4 is K-maximal provided that, whenever n: M 2 M’, M’ is transitive 
<I 

and a(<) = { for all 5 E K, then M = M’. 



Lemma 14.19 of 141 asserts that K, the Core Model, is O-maximal. Our next result 

generalizes this result to K(lw). 

Lemma 2.12. K(R) is 0-maxkd. 

Proof. Suppose x: K([W) 7 M, where M is a (transitive) inner model. Note that 

[WEM and since K([W) k V-K(R) ( see Theorem 5.5 of [1]), it follows that M /== V = 

K( iw). Let ,,,+“EM be such that M k “,V” is a real l-mouse”. By absoluteness, ,Y’ is a 

real l-mouse. Thus, MCK(rW). To see that K(rW)CM, let a~K(lk!) and let ;&‘EK((FB) 

be a real l-mouse. Let .K = a(.&‘) and, since K is an elementary embedding of I(( iR) 

to M, it follows that M /= “. 1:‘ is a real l-mouse”. Lemma 2.25 of [l] implies that 

there is a f? f OR such that the premouse iterates + 4) and .,,t;n are comparable. Because 

rr is an elementary embedding, it follows that CT : .1 F c ,C -, where CT = n 1 .A’. Thus, 
I) 

o:F1’--+F1 is G-extendible (see Definition 2.30 of [I]). By the proof of Theorem 

2.3 1 of [ 11, there exists an E -order preserving map rr~ : OR.““’ + OR. “I and hence, J?‘~, 

must be an initial segment of ‘Vi,. Thus, ,,&‘C, EM because ..t>, EM. Therefore, the core 

‘??(, ~&‘)EM (see Definition 2.36 and Lemma 2.37 of [I]). Because .,.d is an iterate of 

its core (by Theorem 2.39 of [I]), it follows that .& E 34. Hence, UEM. Therefore, 

K(R)CM. II 

Given an inner model A4 with an ~~-~ompIete ~-meas~e p on K, the next lemma 

gives a condition which implies that (~,~) is really good on K. This will allow us to 

generate the iterated ultrapower of (M,@). 

Lemma 2.13. Suppose that A4 is un inner model of ZF + V = OD([W) which is K- 

maximal. Let p he un R”-complete M-meusurp on K. If the ultrapower “M/p is 
well-founded, then (M,p) is really good on K. 

Proof. Let MI = ‘M//l, where “M = { f EM: f : K -+ M }_ Since MI is well-founded, 

we identify MI with its transitive collapse. Let j : M F Ml be the natural embedding. 
/,> 

Because h4 is K--maximal, Lemma 2.6 implies that M = RI]. Let A = fAtir,,t : (4,x) f K x 

R*‘) be a sequence in M W ’ “‘a(ti). Note that 

At;,xj~p if and only if ~fj(A)(<,x) 

for all (<,n)~ K x R”“. Therefore, 

{(<,X)EK X R”: &.,v,E~}={(~,X)EKx i@: KEj(A)(&x)}. 

Since j(A)EM, it follows that {(<,x)EK x R”: Acyl,)~p}~A4. Thus, (A4,p) is really 

good on K. El 

Corollary 2.14. Suppose that K(R) /z= ZF + AD und that p is a K(R)-measure un 
K > @(“). If the ultrap#~~ler “K( R)/p is ~~~~ll~~~unded~ then (K( !R),p) is really good 
on K. 
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Proof. Assume that K(R) + ZF + AD and let p be a K( R)-measure on rc> OK(‘). 

Theorem 5.14 of [l] implies that K(R) b ZF + AD + DC. Corollary 2.4 implies that ,u 

is @(“)-complete. In addition, Lemma 1.16 asserts that K(R) k V = OD( R). Now, be- 

cause K(R) is O-maximal, Lemma 2.13 implies that (K(R),p) is really good 

onrc. 0 

3. Generic extensions of weak iterated ultrapowers 

A typical argument proving that an inner model is “iterable” usually requires DC, 

the Axiom of Dependent Choices (see pp. 254-257 of [S]). However, we are not 

assuming DC. So the goal of this section is to develop some tools which will be used 

in Section 4 to prove that (K(R), p) is weakly iterable without DC, whenever p is an 

countably complete, K( R)-measure on K > OK(‘). 

Let M be an inner model of ZFC and suppose that p is an M-measure on K. 

LetHF={xEM: Mbjlr,(x)]<rc}. Let P=(P,<) be a partial order inHF. When- 

ever G is P-generic over M, we shall call M[G] a small generic extension of A4 and 

define p[G] > ,u by 

p[G]= {XCK: ~EM[G]A~YEM(YE~AYYC)}. (*) 

We call p[G] the generic expansion of p. We will show that ,u[G] is a good M[G]- 

measure on K, whenever p is a good M-measure on K. We will also show that small 

generic extensions can be used to expand a system of iterated ultrapowers to a larger 

system of iterated ultrapowers. For the remainder of this section M, P and G will 

be as above, and we will not distinguish between P and its domain P. Let 2 be a 

P-name for XEM[G], and let a’ be a canonical P-name for REM. 

Lemma 3.1. If (M, ,u) is good OIZ K, then (M[G], p[G]) is also good on K. 

Proof. To prove the lemma it is sufficient to prove that p[G] is (1) an ultrafilter, 

(2) normal and (3) weakly amenable. We do this by means of three claims, The first 

claim implies that p[G] is an ultrafilter. 

Claim 1. (VXEP M’G’(,)>(3YE~nn)[Y~XvYcrc\X]. 

Proof. Let X EP~[~I(K) and let _? be a P-name for X. Let PEG be such that 

pll-k~~?. For each qE[FD, let A,={~EK: qlljE-%?} where qll[ET is an abbrevi- 

ation for the statement “q decides f~ p’, that is, “q It- k~ 2 or q IF i$R”. Con- 

sider the set D = {q E P: q d p AA, EP}. Because (M, p) is good on K, it follows 

that DEM. By k--completeness, D is dense below p. Therefore, let qE G n D. Let 

B={~EA,: qky’EB}EM and let C={~EA~: qll-[$8}EM. SinceA,=BUC and 

A,E,~, either BEG or CE~. If BEp, let Y =B. Thus, YEM and Y C X. If CE~, let 

Y = C. Therefore, Y EM and Y C K\X. This completes the proof of Claim 1. 0 
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We now show that p[G] is normal. 

Claim 2. Let {Xt: <<K)EM[G] he such that (ti5<~)(X<Ep[G]). Then ((EK: (E 

I@-&<~ x,kcWl. 

Proof. Suppose (Xs: ;_” c K) E M[G] is such that X, E p[G] for all 5 < K. Let X = { 5 E K: 

w7,,t X,}. We must show that XE,U[G]. Let f: ~+P(rc) be such that f EM[G] 

and (‘d[ < K> f( iJ) = Xt. Let f be a P-name for .f and let p E G be such that p If .f: 2 --+ 
P(2). Define in M, 

for each q d p and <E K. Since Xt E p[G] for each g E K, it follows that for all t E IC 
there exists a q < p with qE G such that AC4,;) E p. 

Now let 

Because (M, y) is good on K, it follows that BEM. For each t f K, define Y, I= 
j”$q,i-jEBA~4.g). Note that (Yt: ~<Ic}EM and for each c~rc, YccXc and Y~EP by 
rc-completeness. Let Y = { 5 E K: 5 E nq < E Y, ). S’ mce p is normal, YE,u. So Y 2 X and 
YE p. Therefore, X E~[G]. 0 

Finally, we show that (~[G],~[G]) is good on K. 

Claim 3. Ler (X,: @ZK) he a sequence in M[G]r:V’(k-). Then {<EK: X,-E&G]}E 

‘WGI. 

Proof. Suppose (Xc: ~cK)EM[G] is such that XtClc for all (<K. Let X={<EK: 
X~E~L[G]}. We must show that XcM[G]. Let f :ti-+9'(~) be such that j”gM[G] 
and (‘dl <K) .f(j;) = Xt. Let f be a P-name for f and let p E G be such that p II- _f : R --+ 

9( 2). Define in M, 

for each q < p and < E K. For each 5 f K, note that X: E p[G] if and only if there exists 
a qdp such that qEG and &,<)E@. 

Now let 

Because (M, ,a) is good on K, it follows that BE M. For each < E tc, 

XtEpt[G] if and only if (3qEG)[(q,<)EB]. 

Therefore, XfM[G]. Cl 
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Proof of Lemma 3.1 (Completion). This completes the proof of the lemma. Cl 

Recall that A4 is an inner model of ZFC, ,U is an M-measure on K, P is a partial order 

in El,” and G is P-generic over M. Now, let j p : M --+ MI be the natural embedding 
z,, 

of M into the ultrapower Mi = “M/p. In addition, let ~1 be the first iterate of p. 

If (M,,u) is good on K, then by Lemma 3.1 (M[G],p[G]) is also good on K and 

we can form the ultrapower of (M[G],p[C]). In this case, let jai’] : M[G] F MEG]1 
,/I 

be the natural embedding of M[G] into the ultrapower M(G]i =“M[G]/p[G], where 

‘M[G] = (~EM[G] : f : K -+ M[G]}. 

Lemma 3.2. Assume (A4, p) is good on K. If MI is transitive, then 

(1) PEMI. 
(2) G is also P-generic over A&,. 
(3) There is an e~~edd~~g jG > jP such that jG : M[G] 7Mt[G]. 

(/ 
(4) The ultrapower M[G], is well-founded. 

(5) M[G], = A4, [G], p[G]l = pl [G], and j”[G] =jG 
where p[G], is the Jirst iterate of p[G] and ,a~ [G] is the generic expansion of ~1. 

Proof. Since P EHF, it follows that jp(l?) = P and jfl(p) = p for all pi P. Also, 

because (M,,u) is good on K, YpM(P)= 9M1(ff) (see Lemma 19.1 of [8]). Thus, PEM~ 

and G is P-generic over Ml. 

Since G is P-generic over both M and Ml, let ig and it’ be the G-interpretations 

of the $-names in M and Ml, respectively. Since j!-’ is an elementary embedding, 

jr(i) is a P-name in Mt for all P-names 1 in M. We now define an embedding 

jG :M[G] --+Mi[G]. For XEMIG], let REM be any P-name for x (so $(2)=x) and 

define 

j’(x) = ig’u”(;)). 

Claim 1. jc is ~el~-de~~ed and jG : M[G] T Ml [G]. 
(1 

Proof. To show that jc is well-defined, let 2,j~M be P-names such that i$(j) = 

iE(i). Let pi G be such that p IF 2 = _$. Since jp( p) = p, j@(P) = P and jp is ele- 

mentary, we conclude that 

M, + ‘,p Ikjqx”) =j”(Jy. 

Therefore, 

To see that jG : M[G] -+ Mt [G] is elementary, let ~0,. . . ,x, EM[G] and let q~ be a 

formula such that 



Let 1, be a P-name such that iF(&) =xi for each i bn. Let p E G be such that 

M + “p 11 (p(.?o,. . .&y’. By applying jic, we see that MI + “p Ih cp(ji’(&), ,jfi(x^,))“. 

Therefore, 

MtGl i= tpV’(~o),...,.~~t~,)). c 

Claim 2. (\JX E n YMFG1 (tc))[X~p[G] -s ej”(X):]. 

Proof. Let X EA~[G] n P(K). We show that X E,u[G] +=+ KE j’(X). 

(*) Suppose that XE &G]. By the de~nition of /i[G], there is a Y EM such that 

Y e/l and Y C X. Because j” : A4 7 Ml is the natural embedding, KE~P( Y ). Since 

jc : M[G] 7 MI [G] and M[G] + Y C X, we have that Ml[G] /= jG(Y) Cj”(X). But 

j’(Y)=jfl( Y); therefore, KEY'. 

(t=) Suppose that KEJ‘~(X). We show that XE~[G]. Suppose that X$&G]. Then 

Y = (K\X)E&G]. Thus, by the proof of (==+) above, it follows that KE~~(Y ). But 

j”(X) n.j’(Y)=j’(X) f\.j’(~\X)=0. Contradiction. q 

We now show that (M[G],, E M[G)~ ) is isomorphic to (Ml[G], ~~“~1) and hence, 

the ultrapower of (~~G],~[G]) is well-founded. Define a map 

B : (M[G], , E”[“, ) + (M, [G], E”~[‘)) 

as follows: for a~M[Glt, let ,f: ti+M[G] be any function in M[G] such that M[G]t + 

J “‘[‘l(f)(ti)=a (see 5.13 of [S]) and define 

0(n) =j6(f&i). 

Claim 3. o is well-de$ned and cr : (M[G]t, E~[~)I )+ (Ml [Cl, E~‘[~]) is an onto iso- 

morphism. 

Proof. To see that CT is well-defined, let f : K -+ M[G] and y : K - M[G] be any two 

functions in M[G]. Then 

(M[G],, E”“‘~ ) t= j”[“‘(J‘)(K) =j”“(,)(K) 

ti (M, [G]. E ““” ) /=jGW(k-> =jGGm). t+1 

The last equivalence follows from Claim 2. One can also show, arguing as in (+ ), 

that M[G]t ka~b % M,[G] k=(a)~o(b), for all a,b~M[G]t. Now, to see that (T is 

onto, let b EMI [G] and let 6 E MI be a P-name for b. There is a function g EM such 

that g : K -+ A4 and j~(g~(~) = h. Since { 5 E K: g(t) is a P-name} f p, we can assume 

that g(t) is a P-name for all r E K. Let f EM[G] be the function f : K -+ M[G] defined 

by f(j’) = if(g(5)). One can check that j’(,f)(~) = b. Hence, 0 an onto isomorphism. 
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Proof of Lemma 3.2 (C~~~~e~~~~). The relationships between the maps defined above 
are outlined in the commutative diagram 

WGI - JWIIGI u-3) 

where id is the identity map and M P, Mf are the classes of P-names in M and Ml, 

respectively. cl 

Lemma 3.3, Assume (M, p) is good on K. If (M, p) is weakly iter~b~e, theta (M[G], 

p[G]) is also weakly iteruble. 

Proof. Assume that (~,~) is weakly iterable and let 

be the weak iteration of (44,~). So, M, is transitive for all 01 E OR and since P EIIIF, 
it follows that ji,(P)=P, &(p)=p for all PEP, and .P”(P’)=PMX(P). Hence, 
PEM, and G is P-generic over M, for all ordinals CI. 

Lemma 3.1 implies that (M[G],&G]) is good on K. Therefore, Iet 

~PfIGlaO,E~~I ti$F’ : ME% 7 WGlpfa~p~~~j 
0, 

be the weak iteration of (~~G~,~~G]). We must show that M[G], is well-founded 
(transitive) for all elf OR. 

Since G is P-generic over M, for all ordinals o(, it follows (see (3) of Lemma 
3.2) that the above commutative system (*) can be extended to the commutative 
system 

((M,[GljaeoRt (i$:WGl ~~M~[GI)MPEoR) 
I, 

where j$ > ji,, and MJG] is transitive for all ordinals a<& By generalizing the 
commutative diagram (D) in the proof of Lemma 3.2, one obtains the commutative 
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diagram 

-ilf(,l 
/Oi 

l’l(;l 
)I2 

,m 
t.,il 

M[Gl -- WGII L M[G]? - ‘.. ----i M[G]; - M[Gl,+I t’ 

h4[G] ----) Ml[G] - IM2tGl _~j . . -- M;[G] F Mi+,IGl 

One can now prove by induction on /3 
(1) the iterate M[G][j is well-founded. 

(2) WGI, =MpCGl, 
(3 ) A% = ~/dGl, 
(4 1 j$’ = & 

- . . . -- M” -----+ 
1. 

i” 
M”,, .I. 

,.,+I 

that 

for all ordinals LY <p, where p[G]g is the j3th iterate of p[G] and pb[G] is the generic 
expansion of ,q. When p= 3, is a limit ordinal the proof of (l)-(4) is clear, and 
when /I = i c 1 is a successor ordinal one can establish (l)-(4) as in the proof of 
Lemma 3.2. Therefore, (M[G],p[G]) is weakly iterable. Cl 

4. AD and a set of reals not in K(R) 

We emphasize again that we do not assume DC, the Axiom of Dependent Choices. 

Lemma 4.1. Assume ZF + AD + 3X C: R [X 4K( R)]. Then there exists an ordinal K 

and a fi such that 
( 1) b is a K( Rf-measure on ti, 

(2) (@+)K’“’ <K <@, 

(3) (K(R),i) is really good on K, 

(4) (K(R), 1;) is weakly iterahle. 

Proof. We are assuming V k ZF + AD + 3X C: R [X @K(R)] where V is the universe 
of sets. Let cp be the conclusion of the lemma we want to prove. We will take generic 
extensions of transitive inner models of V to show that V k q. This is comparable 
to showing that q is true in every countable transitive model of a sufhciently large 
fragment of ZFfAD+EiXJR[X$K(R)]. Thus, ZF+AD~3XC[W[X~K(IW)]tcp. 

By Theorem 5.14 of [l], K(R) FZF + AD f DC. By assumption, let X 2 R be 
such that X @ K( OX). Using AD, Wadge’s Lemma (see 7D.3 of [ 151) implies that 
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every BE 9( R) n iu( R) is a continuous pm-image of .X. Thus, @(n) < 0. By standard 
results of AD, it follows that (~+)~(~~ <(@r;(w))i- < 0 (see 7D.19 of [IS]). In addi- 
tion, under AD, it follows from work of Kechris [lo] that there exists a measurable 
cardinal fc with measure v such that (@f)K(R) <K < 0. We shall use v to construct a 
K(R)-measure I; which is really good on IC and then prove that (K(R), fi) is weakly 

iterable. 

Remark. The above consequences of AD, cited in [to, 151, do not require the Axiom 
of Dependent Choices for their proofs. 

Now, let A be Q-generic over X(R), where Q is the standard partial order that 
produces (under DC) a generic enumeration of all the reals in length WI. Again, 
we note that A is essentially a subset of or. Let 7 = K(R)[A]. Since K(R) /== DC, 
Theorem 1.11 implies that 
( 1) r&p(*) = p, 

(2) (Q(R) Ez (07 

(3) K(R) =K(j$, 
(4) OK(n) = cu;, 

(5) (O+)K(R)=O~, 
(6) Q=ZFC+GCH, 

(7) HOD”@) = HOD? 

By Lemma 1.16, K( 83) = L[D]( W) where L) is as in De~nition 1.15. Let # = HOD’;. 
Note that y = lu( !$‘)[A] = L[D]( R)[A] = L[D](A), A c COT, and L[D] C 2. Thus, by 
Lemma 1.14, 7 is a generic extension of 2 and one can compute HODK(“); that 
is, there is a Boolean Algebra &J = (B, d :ti) where B < coy is an ordinal, and there is 
a G which is .g-generic over 2 such that 

(i) V= %[G], 
(ii) GngT=gijE. 

In addition, there exists a b : WI + B such that 

(iii) X=L[D]({.%b,E})=L[D](P) 
where P C ~3’ is a canonical coding of {J?#, b,z}. Therefore, 

&? = HOD’ = HOD “‘“‘=~ILtJ({Xl,b,~})=~[D](P). 

For the remainder of this section we will not distinguish between the Boolean Alge- 
bra B and its domain B. 

Let N = L[D, v](P). Note that N + ZFC and that 8 = L[D](P) is an inner model of 
N. Since N C_ “v is a measure on K”, one can define in N a normal measure ,UEN 
on K and, by absoluteness, one can show that N is iterable by p. We first establish 
that (2,~) is a good on rc, and then we shall show that (3,~) is weakly iterable. 

Let Ni = “N/,u be the ultrapower of (N, p) and let Xi = “X/p be the ultrapower of 
(%,p). Since 2; can be embedded into Ni, it follows that Xi is well-founded and, 
as usual, we identify Xi with its transitive collapse. Let jr : ST + ~6 be the natural 
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embedding. Since ,I% b ZFC, Lemma 2.5 implies 

(1) j”:.P+& 
‘(# 

(2) ji”(5) = s” for all i_‘<lc, 

(3) x, + K<j”(#). 

Our first goal is to show that Y? = XI, from which we shall conclude that (X, ,u) is 

good on K. The proofs of these two assertions will be accomplished in a series of 

claims (see Claims 5 and 6 below). 

Claim 1, jJi(p) =T p and @“(P) =jk’(P*(F)) = L@‘(P). 

Proof. Let ( = ~~+)~(~~ and note that P C 3t <K Since 

N /= “p is a normal measure on K”, 

standard arguments about measurable cardinals show that Y*(a) =jk(P”(a)> = 

Sqx). cl 

Claim 1, together with its proof, implies that 

(1) jfi(9$)=:U, 

(4) G is 9?-generic over X1. 

Lemma 3.2 implies that there is an embedding jc >j” such that jc : X[G] F XI [Cl. 
a,/ 

Claim 2. yipr C HOD.fit[G1. 

Proof. As noted above, 2 = HODV and X[G] =T’. Let x E 21. We shall show that 

XEHOD.~‘~~~. Let f ~“2 be such that jp(S)(~) =x. Since f E 2, it follows that 

X[G] ~~EHOD. Thus, ;r;“l[G] +j’(f)~HoD. But jr(f’)=jG(f) and so, Y?I[G] I=. 

jp(,/)~HoD. Therefore, Xt[G] bj!‘(f)(rc)~HOD, that is, Xr[G] +xEHOD. U 

Claim 3. yi”r =HODclEG1. 

Proof. Since jG : &?[G] 7 Xi [G], j’(G) = G and 
(1 

.X[G] /= “G is g-generic over HOD and Y = HOD[C]“, 

it follows that 

x, [G] + “G is $8 -generic over HOD and V = HOD[ G]“. 

Since .@, 2 E .%‘r , Lemma 1.13 Claim 2 imply that XI = HOD.““‘. q 

Claim 4. K(R) =LK(R)~I[~~. 

Proof. ( C ). Let J# EK(R) be a real l-mouse. We shall show that J#EK( R),ly’lG1. 

Theorem 5.5 (iii) of [l] will then imply that ~(~)~~~~)~~i[G1. To see that .&E 
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K(5!)~filG1 let V= V(J&‘)EK([W) be the core of ~8?’ (see Definition 2.36 of [I]), 

let 

be the premouse iteration of %’ and let rc, = rcscc(rcV) for each ordinal a. We shall show 

that VU EK([w)~~[~] and thus, %? E K( rW)“l”l’Gl (see 2.35, 2.37 and 2.38 of [l]). Since 

every l-mouse is an iterate of its core (by Theorem 2.39 of [l]), it will then follow 

that &!EK( [w)~z~lGl. So we shall assume without loss of generality that J%’ = WC,,. 

Note that K( Iw) = K( [~)“[~l and thus, %[G] b “Jz’ is a real l-mouse”. Because jG : 

X[G] 7 ,#i[G], it follows that Xl[G] +‘*j’(~%‘) is a real l-mouse”. Let ./lr= 
0, 

j’(A) and o =jG r ~2’. Note that o: .M 7 M. Keep in mind that I’, X, ;X; and 

%i[G] all have the same ordinals. In addition, X and %‘I are inner models of V 

while yi”l [G] is not an inner model of V. Also note that ME V and ME Yi [G]. Our 

plan is to show that ~8’ and Jf have comparable premouse iterates. A theorem of ZF 

(see Lemma 2.25 of [l]) states that any two iterable real premice have comparable 

iterates. However, before we can apply this theorem we must ensure that both .&’ and 

JV are elements in the same transitive model of ZF. 

Subclaim. The structures JZ%‘, J1/’ and the map 0: A’ 7 ,Y- are all elements in V. 
I/ 

Proof. That M E V is clear. Let d = ((Ic,, K,) : n E w). Note that 4’ can be completely 

constructed from d and (w; that is, define pd by 

AEpd if and only ifACq,,A\nEw Vk>n(qEA) 

and observe that 4 can be constructed (literally) relative to pd and above [w. 

Lemma 5.3 of [l] implies that dEHOD=X. Since jp C jG, it follows that j’(d) = 

jr(d). Hence, j’(d)E,yi”l. Also note that j’(d) and [w completely determine the con- 

struction of JV” in Xi[G]. Because j’(d)E V, we see that ./lr~ V. In addition, d and 

j’(d) together with 1w completely determine the construction of the map (T : A! T ,I/ 
I, 

and thus, a~ V. 0 

Proof of Claim 4 (Completion). Because & and ~4’” are both in V, Lemma 2.25 of [l] 

implies that there is a BEOR such that the premouse iterates JZ’CJ and .Af# are compa- 

rable in V. Also, since o : A 7 JV is in V, it follows (see the proof of Lemma 2.12) 

that J& must be an initial segment of JV~. Thus, J&O E Xi [G] because JV~ E %i[G]. 

Therefore, the core %?(&)~pi[G] (see Lemma 2.37 of [l]). Since .k’ is an iterate of 

its core, ME &‘i [G]. Hence, ,J? EK( [W).filG1. Therefore, K(IW) C K( [W)“‘tG1. 

(2) Let &EK(IW) CYIIG1 that is, Xi [G] /= “&Y is a real l-mouse”. We shall show 

that J%‘EK(IW). Let %? = @?;A) E Xi [G] be the core of .4’ and let 

be the premouse iteration of %? and let lc, = rcaa(rcV) for each ordinal cx. As above, 

we shall assume without loss of generality that J%‘=%?~. Let d EX~[G] be defined as 



in the proof of the above Sub&rim. We note that ~~HOD~~[~] which follows from 

Lemma 5.3 of [l]. By Claim 3, HOD. sl~Gl = ..rvi, Therefore, d E 1’. Since . K can be 

constructed completely from d and R, we conclude that .KE V. Hence. .#EK(ifB). 

Thus, K(IW)“““] cK(DB). Cl 

Claim 5. 2 = .#I. 

Proof. Since .F[G] + “HOD = HODK’IW”’ and jG: ,O[G] T c%t[G], it follows that 

#‘r [G] b “HOD = HODKcR8’“. Now, because .F = HOD”[‘) and -Xl = HODIY’t”‘, 

Claim 4 implies that J? = %c-, . Cl 

Claim 6. (.K. y) is good on K. 

Proof. Recall that Xl = ^&‘/p, where “‘X = { f E :I: f: K 3 .% }. Since .z@ = .@t, an 

argument analogous to the proof of Lemma 2.13 (using Lemma 2.5) shows that (:#, p) 

is good on K. [_I 

Claim 6 implies that we can form the commutative system 

((%),EoR’ (&% --y-- +)zG/CEOR) 
<I 

(see Section 2). Recall that (~,~) is iterable and, since each weak iterate of (.#‘,p) 

can be embedded into an iterate of (NT p), we have that (J?, p) is weakly iterable. 

Therefore, (:%‘[G], p[G] ) . g d IS oo on u and is weakly iterable by Lemmas 3.1 and 3.3, 

respectively. Let 

be the weak iteration of (.F[G],p[G]). Recall [see (3.0) in Section 31 that 

that is, fi = p[G] fl K(IW). Note that p n .P C $ C p[G] and that fig P’. 

Claim 7. (K(R), $) is really good OIZ K. 

Proof. By Claim 4, K( [w) = K([W) ‘I[‘] Since p[G] is an #[G]-measure on K, we see . 

that @ is a K(R)-measure on K. Let K(R), = “K(R)/& be the ultrapower of (K(R), p). 

Because K(IW)r can be embedded into the well-founded ultrapower “%?[G]/it = &'[G]r , 

it follows that K(iR)r is well-founded. Corollary 2.14 implies that (~(~),~) is really 

good on K. EI 
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Claim 8. (K(R), fi) is weakly iterable. 

Proof. By Claim 7, (K(lR),b) is really good on K. Thus, let 

((K@)Az,,,? Q$ :K@), A K@)&&%OR) 

be the weak iteration of (K(R), fi)?Since (X[G],p[G]) ’ IS weakly iterable, we have 

that X[G], is transitive for all ordinals a. Because K(R) 5 %‘[G] and b C ,u[G], one 

can define (by induction on cc) embeddings 

5X : K(R), - WGIC, co 

satisfying 

(1) zo is the identity map, 

(2) 7, : (K(~hx> F,> ; (=@[GLAGlcA 

(3) ‘/j Oj$ =$I o z, for all ordinals a 6 p. 

Therefore, (K(R), b) is weakly iterable. 0 

Proof of Lemma 4.1 (Conclusion). This completes the proof of the lemma. q 

Definition 13.8 of [4] states that if p is a normal measure in L[p], then Q] is called 

a p-model. We now extend this terminology to the analogous inner model above the 

reals. 

Definition 4.2. If p is an R-complete IQ](R)- measure on IC, then &l(R) is said to 

be a p-model with critical point K. 

Let v=p nL[p](R). Note that v~L[p]([w) and that 

L[p]( R) + “v is an R-complete measure on K”. 

Lemma 4.3. Suppose that (K(R), ,a) is really good on K. Ij” (K(R), p) is weakly 
iterable, then there is a p-model L[v](R) with critical point A > K such that 
(1) L[v](R) is iterable, 

(2) qn x R)nL[v](R) CK(R). 

Proof. Let cp be the sentence we want to prove, that is, 

V$& (“(K(R), p) is really good on K and is weakly iterable” + $(K)) 

where $(K) is the assertion 

3v3[L[v]( R) is a p-model with critical point i > K 

A L[v]( R) is iterable 

r\P(i+ x R)nL[v](R)cK(R)]. 

We now show that V /= cp for any countable transitive model V of (a sufficiently large 

fragment of) ZF. Thus, ZF t cp. 
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Let V be a countable transitive model of ZF. Suppose K, p E V are such that 

V /= “(K(R), p) is really good on K and weakly iterable”. 

In V, let A4 = L[D, p]( rW) where D is as in Definition 1.15. By absoluteness, 

M b “(K( [w), p) is really good on K and weakly iterable”. 

If we can show that Ad k II/( K), then V b $(K) by absoluteness and thus V k cp, com- 

pleting the proof. Hence, our task is to prove that M b $(K). 

In M, let P be the partial order P = (K!““, < ) where p dq if and only if q is 

an initial segment of p, for all p,q E [WC”‘. Let G be P-generic over M. Clearly, 

M[G]=L[D,p](G) and M[G] +ZFC. 

Definition 2.34 of [l] describes when a structure is a l-mouse and when it is a 

real l-mouse. Definition 2.18 of [2] generalizes these concepts and defines when a 

structure is a mouse and when it is a real mouse. We shall say that a structure 1” 

is an IF@ mouse if A” is a mouse and [w ’ = IF!!. In other words, J“ is a mouse 

having IWM as its set of reals. Let K( rW”) be the union of [WM l-mice. We note that 

the forcing extension M[G] does not contain any new LW”’ l-mice (see Lemma 1.9). 

Therefore, A’ is an &PM l-mouse in M[G] if and only if 1 is a real l-mouse in V. 

Thus, K(rW)V =K(rW)M =K([W M M[G] By absoluteness, we conclude that ) 

M[Gl t=“W@‘h4 is really good on K and weakly iterable”. 

Until further notice we shall work in M[G], a transitive model of ZFC. Let 3, > K be 

a regular cardinal. Let (K(rWM );, ~;1) and Kj, be the Rth iterates of (K( rW”), 11) and K, 

respectively. Note that K( [WM )n = K( [WM ) (see Lemma 2.12), Kj. = I, and pj. C Fj, where 

Fj, is the closed unbounded filter on A. It follows that /ljb is countably complete. Let 

v = p;. and note that v EM. 

Let jL+ = A+ L,v,(rw,,,j be as computed in L[v]( l@‘) (see Definition 1.1). 

Claim 1. 

(l) ‘?(lb x IW")riLIV]([WM)CJj,-[V](IW"), 

(2) (Mx<A+)(383cc)(p<i+ A.?(2 x rW”)nJ,~+,[V](IWM)\J~[vI([WM)fO). 

Proof. Godel’s argument for proving that the GCH holds in L can be used to show that 

.?(i x IR~)~L[~](R~)~J~,+[v](R”‘). We work in L[v](@‘) and so, we shall assume 

that L[v]([w) is the universe. 

To prove (1) let YE P(J x Iw). Let q E OR be such that Y,v E J,[v](R). Corol- 

lary 1.8 of [I] and Lemma 1.4 of [2] implies that there exists a function f : oq 
x R 2 J,[v](R). Therefore, we can form a Ci Skolem Hull of {Y} U R U i in the 

structure (J,[v](R),v). Thus there exists a Xi-elementary substructure #‘=(a#) of 

(Jq[v](R), v) containing {Y} U R U 2 such that ]Nj~[,,lt~) = li_]Ll,,l(R) (because Y C 1, x [w). 

Since .?? k R+ (see Lemma 1.17 of [l]), the transitive collapse of (H, v”) has the form 

Jh[v](R). It follows that Y E Ja[v](R) and 6 <i+. 
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To prove (2), note that P(;C x R) &J).- [v](R). Let ix < Ai be an ordinal. Since there 

exists a function j’ : x x R z J,[v]( R), it follows that there is a function g : i x R 2 

JI[v](iR). Cantor’s Theorem applies and shows that :Y(i; x R) g J3[v](R). Thus, an 

ordinal /3 2~ witnessing (2) must exist. 0 

Claim 2. (‘dfl>2:)[:F)(i, x R”)~Jp+~[~](RM)\J~[~](RM)#O + S(i x R”)f72Yw(Jp[v] 

(@“)> v) $2 J/M@% 

Proof (Sketch). Let /?ki, be an ordinal. Let ,/lr= (J~[v](R”),v)=(N,v) and *Kc = 

(JB+, [v](@” ), v) = (IV+, v). Assume that there exists a set A C ,% x R” in N+\N. Sup- 

pose, for a con~adiction, that 1;; > I for all n E o (see Definition 0.6). Let S = v f? N. 

One can now show that the structure (~~~+~[~I(~~), ) v is amenable in v (see the proof 

of Lemma 11.22 of [4]). Therefore, Jp+ 1 [f ]( RM ) = J~+I [v]( R”). Thus, A f il,(,N). 

Since r;. > i for all n E w, it follows that A E N. Contradiction. El 

Remark. Let .N = (Jp[v](R”), v) = (N, v) and A’“’ = (Jp+l [v](R”), v) = (N+, v) be as 

in the proof of Claim 2. If any set A C 2. x R M is constructed in N+\N, then Claim 2 

states there must exist a set B C 2 x RM in T,(X)\N. Claim 2 does not assert that 

A E X;,(N). 

Claim 3. V~<~~[J~[v](~~)~K(~~)]. 

Proof. Suppose for a contradiction that 3p < 1+ (J~[~~](~*~) g K(~~)). Hence, 

.F(i,x ~~)n~[v](~~)~K(~~). Let a<3, + be the largest ordinal such that J,[v] 

(RM ) C K( R?). Now let fl be the smallest ordinal such that a <p < i+ and P(n x 

rW”)nJ~+~[vl(rWM)\J~[vI(IWM)#O. Such a B exists, as noted in (2) of Claim 1, Let 

.A’“= (Jp[v](F@), v) = (N, v) and let */1’+ = (5b+i [v](R”), v) = (N+, v). Since P’(i x II@) 

n Jp[v](R”) C K(R”), it follows that ./V /= “v is R-complete” and that R1’ = R”. 

DC and the countable completeness of v, implies that .,lr is iterable. Therefore, .;lr 

is acceptable above the reals (see Theorem 1.4). Since there exists an A C A x iI@’ 

in N+\N, it follows ,,Y is critical, that is, p.T, <i, for some n E o. [To see this, 

suppose for a contradiction, that p”$ > 2 for all n E o. Theorem 0.18 implies that 

-an = p”{. > 3, for all n E w. Claim 2 implies that A EN. Con~adi~tion. Therefore, .,,V il 
is critical.] Again, by DC and the countable completeness of V, the mouse iterates of 

.;V are well-founded. Thus, .,V is an l@’ mouse. Theorem 2.49 of [2] implies that 

.,k” l K(RM). Since (K(R”), v) is really good on II (see Definition 2.9), it follows that 

Jp+, [v](R”) 5 K(R”). But cc </I + 1, and this contradicts our choice of tl. El 

Remark. Dodd-Jensen, in their analysis of the Core Model K, originated the argument 

used in the proof of the above Claim 3 (see Lemma 16.11 of [4]). 

Proof of Lemma 4.3 (Co~c~~~~~~). Claim 3 implies that 

P(n x ~~)n~[v](~~)~K(~~). 
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Hence, 

L[v]( 5P) + “v is an R-complete measure on 2”. 

By DC and the countable completeness of v, it follows that Z,[v](@“) is iterable. 

We note, stepping out of M[G], that the construction of L[v]( l@’ ) is absolute between 

M and M[G]. Therefore, 

A4 /= (L[v](R) is a p-model with critical point A > K 

A L[v]( R) is iterable 

A Y(l, x R) n L[v]( R) C K(R)), 

that is, M k $(K). This completes the proof of the lemma. 0 

Theorem 4.4. Assume ZF+AD+X C lR [X $.! K(R)]. Then there is a p-model L[v](R) 

of ZF + DC + AD with critical point 1, > @“I(‘). 

Proof. Assume ZF + AD + X C R [X $! K(R)]. Lemma 4.1 implies that there ex- 

ists an ordinal K and a K(R)-measure b on K such that (K(R), i) is weakly iter- 

able and (et )K(n) < rc< 0. Lemma 4.3 now implies that there is p-model L[v](R) 

with critical point ;1. > K such that P(R) n L[v]( R) C K(R). Hence, @lrl@) = OK(n) < 2. 

Since K(R) + DCR (by Theorem 5.14 of [l]), it follows that L[v](R) b DCn. Hence, 

~2vl(W t= DC ( see the proof of Theorem 5S(iv) and the subsequent remark in [l]). 

Consequently, L[p]( IR) + ZF + AD + DC. 0 

Remark. In the proof of Theorem 4.4, one obtains a measurable cardinal K, where 

(@+)K(R) <K < 0, and first shows that a weakly iterable K(R)-measure exists on K. 

Then one constructs a p-model with critical point jb> K. The method used to obtain 

this p-model does not produce an immediate bound on 3,; for example, it may be the 

case that 3.2 0. A little refining of the proof, yields a p-model with critical point 2 

where K <A < 0. However, since K is a measurable cardinal greater than ( @+)K(R), one 

suspects that there should be a p-model with critical point K. Corollary 4.17 (below) 

asserts that this is, in fact, the case. 

Corollary 4.5. Assume ZF + AD + X C R [X $ K(R)]. Then there is cm inner model 

of ZF + AD + DC + 3~ > 0 [K is measurable]. 

Corollary 4.6. Con(ZF + AD + X C R’ [X $! K(R)]) =+- Con(ZF + AD + DC + (Hi - 

o*) - ADR). 

Proof. Assume ZFf AD+= C [w [X $ K(R)]. By Theorem 4.4, there exists a measure 

v such that 

L[v]( R) b ZF + AD + DC + “v is an [W-complete measure on K". 
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The techniques of Martin [12] generalize and prove that 

L[v]( R) b ZF + AD + DC + (II; - w2) - ADn. 0 

Assuming AD, Theorem 4.4 implies that if there is a set of reals not in K(R), then 

there exists an iterable p-model L[v](!R). Our next theorem shows that the converse 

does not hold. 

Theorem 4.7. Suppose that L[p]( IF!) is an iterable p-model with critical point IC. Then 

(1) K(R) C-mlW> 
(2) P(K x lR)nL[p](R)=~9yK x R)flK(R). 

Proof (Sketch). We first prove (1 ), that is, we prove that K(R) & L[pu]( R). Let J& E 

K(R) be a real l-mouse. We shall show that JR EL[~](R). Theorem 5S(iii) of [l] 

will then imply that K(R) C L[p](R). Let 

be the premouse iteration of J@‘. Since (L[p](R),p) is iterable, let 

be the iterated ultrapower of (&1(R), p). Note that L[p](R), =&J(R) where pI is 

the c&h iterate of p. Let 6 be an ordinal such that J?‘O and L[po](R) are comparable 

(the proof of Lemma 2.25 in [l] can be modified to prove, in ZF, that such a ordinal 

fI exists). It follows that .k’~~ must be an initial segment of L[,Q]([~). Hence, &‘o E 

L[~H](R). Since J&’ is a real l-mouse, it now follows that JY E L[,u~n](lW). But L[~H]( R) 

is an inner model of L[p](R). Thus, .k’ E L[p](R). 

We now prove (2) that is, we prove that P(K x R) n L[/i]( R) = P(K x R) nK(R). 

Let K+ = KL+[~~,(~~,, ) be as computed in L[p](R”) (see Definition 1.1). The arguments 

used to prove Claims l-3 of Lemma 4.3 can be used to prove (2). In particular, 

the argument proving Claim 1 shows that P(K x R) n&](R) GJ,+[p](R) and that 

(b”a<lc+)(3P3a)(fl<~+ AB(K x R)nJ~+l[~]([W)\J&]([W)#fJ). Now, the proof of 

Claim 3 (of Lemma 4.3) can be adapted to prove our next result. 

Claim. V’~<K+ [Jfl[v](R) gK(R)]. 

Proof. Suppose for a contradiction that 3fi < K+ (Jg[p]( R) g K(R)). Hence, P( K x R) 

~&L](R) g K(R). Let do <K+ be the largest ordinal such that J,[p](R) C K(R). Now 

let b be the smallest ordinal such that c( < fi < K+ and Y(K x IF!) flJ/j+t [~](R)\J~[~](R) 

#0. Let ~=VpbI(WP)=W,c1) and let ~+=(JI~+,[~]([W),~)=(M+,~). Since 

L[p]( R) is a p-model, it follows that .k’ + “p is R-complete” and that Ra/ = R. Since 

L[p](R) is iterable, it follows that .Jz’ is premouse iterable; because, the premouse 

iterates of .M can be embedded into the iterates of &U](R). Therefore, ./k’ is acceptable 

above the reals (see Theorem 1.4). Since there exists an A & K x R in M+\M, it 
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follows that .& is critical, that is, p .‘& < K for some n E o {see the proof of Claim 3 

of Lemma 4.3). We now show that the mouse iterates of 19$ can also be embedded 

into the iterates of L[p](lQ) and thus, .X is a real mouse. Let .,@ be as defined in 

Definition 0.16. Let 

be the premouse iteration of,x. Note that .,J@~L[~](R) and that 

L[‘]( R) + ‘%! is a well-founded structure”. 

Thus, 

Z&](R), l= “j&(,4?) is a well-founded structure” 

(see (m) above). Now, since each .a, can be embedded into j&(J), it follows that 

.,@, is well-founded for each ordinal ~1. In addition, let E’ be as in Definition 2.15 

of [2] (recall that the relation El codes the “E-order” on the ordinals in J?‘). Since 

E’ EL[~](R) and 

1J’]( R) + “EC is a well-founded”, 

it follows that 

L[p]( R), /= “j&(E’) is a well-founded”. 

Since each Ed?7 can be embedded into jj;,(Ek’), it follows that Ekx is well-founded 

for each ordinal a. Therefore, .X is a real mouse. Theorem 2.49 of [2] implies that 

.I E K(R). Because K(R) 2 Z&](R), it also follows that the ultrapower “K(iR)/~ 

is well-founded. Thus, (K(R), ~1) is really good on K by Corollary 2.14. Therefore, 

J[j+t [/&I( Ii%) C K(R). But CI < fl + 1, and this contradicts our choice of (x. q 

Proof of Theorem 4.7 (Co~zc~~~~~~). Since ~(~) C ~[~I(~), the above Claim 

implies (2). 3 

Theorem 1.17 gives one computation of HOD ‘w) Our next theorem presents another . 

computation of HODK@’ under the assumption of ZF + AD f ?LY C R [X 4 K(R)]. In 

this case we show that HODK’“’ = K(P) where K(P) is the Core Model relative to P, 

a set of ordinals. Before we prove this, we shall give an overview of how K(P) is 

defined together with some of its properties. 

Until further notice we shall let P C q for some fixed ordinal ‘1. We shall write 

J,[v][P] to denote the zth level of constructibility relative to both v and P. We shall 

write . ..I” to denote a structure of the form .,V = (J,[v][P], K, P, v) = (N, K, P, v), where 

q < K <(r are ordinals. 
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Definition 4.8. The projectum p. 4~ is the least ordinal p 6 a such that 9i’(wp) fl zt (.,I’“) 

g N, and p.~ is the <&east PE [~a]<” such that 9(wp,~~)flCt(~V, {p})g N. 

Definition 4.9. We say that _,V = (5X[v][P], K,P, v) is a P l-mouse if 

(1) M is a premouse, that is, &” k “v is a normal measure on K”, 

(2) N is premouse iterable, 

(3) p.+-<K. 

Definition 4.10. The P Core Model is the class 

K(P)= {x: ~JV(JV” is a P l-mouse AxEN)}. 

The arguments given by Dodd-Jensen about the Core Model K can be used to give 

proofs of the next three lemmas. 

Lemma 4.11. There exists a P 1 -mouse if and only if P# exists. 

Therefore, in the case where there are no P l-mice, one assumes the convention that 

K(P) = L(P). 

Lemma 4.12. K(P) b ZFC. 

Recall that P C ‘1 where n is a fixed ordinal. 

Definition 4.13. An inner model L[p](P) of ZFC is called a P-model with critical 

point K, if &l(P) + “p is a normal measure on K>v”. 

Lemma 4.14. If &J(P) is a P-model with critical point K, then (L[p](P),p) is 
iterable, K(P) C Q](P) and P(K) n L[v](P) c K(P). 

We now present another computation of HODK(“‘. 

Theorem 4.15. Assume ZF + AD + 3x c [w [X 4 K(R)]. Then there exists a P C: 
( @+)K(R) such that HODK(“) = K(P). 

Proof. Lemmas 4.1 and 4.3 imply that there is an iterable p-model Q,u]( DB) with critical 

point K > ( O+)K@). The orem 4.7 implies that K(R) C L[p](R). By Theorem 5.14 of 

[ 11, it follows that K(R) b ZF + AD + DC. Let A be Q-generic over K(R), where 

Q is the standard partial order that produces (under DC) a generic enumeration of 

all the reals in length WI. Again, we note that A is essentially a subset of 01. Let 

r = K(R)[A]. Since K(R) b DC, Theorem 1.11 implies that 
(1) @(“I = [w”, 

(2) 01 K(n) = ,J 

(3) K(R) = K(+, 
(4) OK(R) = 01, 
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By Lemma 1.16, K(R)=L[D](R) where D is as in Definition 1.15. Let X=HOD”. 

Note that v = K( R)[A] = L[D](lR)[A] = L[D](A), A C or, and LID] C .Y. Thus, by 
Lemma 1.14, 7 is a generic extension of .%a; that is, there is a Boolean Algebra 
:%=(B, <,d) where B<u.Q- ’ is an ordinal, and there is a G which is a-generic over 
.% such that 

(i) v = X[GJ, 
(ii) Gn@z =EE.%. 
In addition, letting b : WI --f B be as in the proof of Lemma 1.14, 

(iii) .F = L[U]( (&?‘, bj}) =L[D](P) 
where P C (0’ )K(R) = co3 ’ is a canonical coding of (29, b, B^). 

Claim 1. K(P) C K(R). 

Proof. Let JV be a P l-mouse in K(P). We show that .,V E K(R). Let 

be the premouse iteration of ,k”. Also, since (~[~~l(~),~) is iterable, let 

be the iterated ultrapower of (L[p](R),p). Note that L[~](R), =L&](R) where pa is 
the xth iterate of h. Let A be an ordinal such that K ‘; = @/l(n) = 1,. For each ,x < A, 

let K, = ?&(K, ' ) and let C = {K~: LX <A}. We note that J’j is completely determined 
from P and C. Since K(P) C_ L[pj.](R), it follows that .,X E L[pj.](R) and therefore, 
C E &;I( R). Because .9’( k x R) n L[,u;,]( R) C K(R), we have that P, C E K( R). Thus, 
Jr. E K( ‘88) and so, Jt/ E K(R). 0 

Claim 2. K(P) 2 HODK@‘. 

Proof. Let d+” be a P l-mouse in K(P). By Claim 1, .MfK(R). We show that 
.M E HODK(“). Let V be the “P-core” of .,V and let 

be the premouse iteration of 92. Let K, = zsa(rcf”) for each ordinal X, and define 
d = ((ic,, K,,): n E co). It follows that %, can be completely constructed (defined) from 
d and P. In addition, d is definable from P and rem (see Lemma 5.3 of El]). Since 
P f HODK@‘, it follows that d E HODK(“‘. Therefore, %“w EHOD”@) and so, ‘Z E 
HOD~‘~). Because &” is an iterate of its P-core %J, we conclude that JVE HOD”‘“‘. U 
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Recall that G is ?&generic over 2 = HODK’n’ and 7 = K([W)[A] = &‘[G]. Claim 2 

implies that G is also @generic over K(P). Our final claim will be used to conclude 

that K(P) = HODK(n). 

Claim 3. v=K(P)[G]. 

Proof. We know that F=K([W)[A] and we want to prove that v=K(P)[G]. Because 

b : 01 + B is encoded by P, it follows that A is definable from P and G (see the proof 

of the Claim presented as part of the proof of Lemma 1.14). Hence, A EK(P)[G]. To 

show that v=K(P)[G], it is sufficient to prove that K([W) C K(P)[G]. Let &k’ EK([W) 

be a real l-mouse. We show that JZZ E K(P)[G]. Let 

be the premouse iteration of Jz’. Also let rc, = ~c~~(Ic~‘) for each ordinal a. We prove 

that J&A E K(P)[G] for some ordinal jb and thus, J& EK(P)[G]. 

L[,u](P) is a P-model with critical point ~>(@+)~(n). Let 

((L]~](P),),~oa’ (&:L[~](p), ~~[/-d(p)/&C~~OR) 
01 

be the iterated ultrapower of (L[,u](P),p). Note that L[p](P), =&J(P) where pu, 

is the clth iterate of p. Since %? = (B, < ), B c K and Y(B)~[~~](~) = Y(B)K(P) for all 

ordinals a, it follows that G is g-generic over L[pJ(P) for all ordinals rx. Thus, 

K([W) &L[p,]([w) CL[p,](P)[G] for each ordinal c(. In particular, &k’ E L[p](P)[G]. In 

L[p](P)[G] let A> max(q ]J%tj) b e a regular cardinal, where Id&( is the standard cardi- 

nality of J%‘. Because JZ), E K([W), we have that J@A E L[pJ(P)[G]. Let C = {K,: c1< n}. 

Thus, C E L[,uJ(P)[G] and 

L[,u,J(P)[G] /= “C is closed and unbounded in A”. 

Recall that, for all X E ~(ICA) rl J?A 

x E @A” if and only if 3cr <A (X > C\E). 

Hence, given C and [w, one can construct &!I.. In fact, given a closed unbounded C’, 

where C’ C C, one can build &!‘A from C’ and [w (see the proof of Lemma 1.9). 

By a standard forcing argument (see Lemma 10.14 of [S]), there is a C’ g C such 

that C’ E &L;,](P) and 

L[p,J(P) /= “C’ is closed and unbounded in 2’. 

Since ~(~)Q/l(p) = p(i)K(P) and A=ICA, we have that C’EK(P). Because C’,IWE 

K(P)[G], it follows that J&z’~ E K(P)[G]. Thus, dd E K(P)[G]. 0 

Proof of Theorem 4.5 (Conclusion). Since Y= %[G] and ~),ZE K(P) & SF 

= HOD’, Lemma 1.13 and Claim 3 imply that K(P) = X = HODK(n). q 
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Remark. Given that HOD”(R) = K(P) for some P c (O’)‘(‘), one cannot find such 

a PC y<@‘@). Otherwise, Pt (dagger) is in HOD”‘“‘=K(P) (assuming AD”“‘). 

However, as noted in the introduction, Woodin has proven that HODL(n) =Q W) for 

some W C OL(‘). The ideas used in Woodin’s proof are (probably) flexible enough to - 
allow one to show that HODKtW’ = K(P) for some P C: eKcW). Note that OL(“) < @CR) 

(when [w# exists) and so, one cannot take P = W. 

Theorem 4.16. Assume ZF + AD -I- !IX C_ [w [X $! K(R)]. Then thtyrr is a p-model 

L[‘](R> with critical point K such that (@+)L’J1l(w) < ti<O and L[/L](R) /= 

ZF+AD+DC. 

Proof. By Theorem 4.15, there exists a PC (~+)~~~) such that HO~(~‘=~(~), 

We now review how P was obtained in the proof of Theorem 4.15. We have that 

K( Iw) b ZF + AD + DC and A is Q-generic over K(R), where Q E K(IW) is the stan- 

dard partial order that produces (under DC) a generic enumeration of all the reals in 

length or. Recall that P E HOD”(n) is a subset of ( @i-)K(IW) and gives a canonical cod- 

ing of a Boolean Algebra 9I = (B, < ) E HOD K(R) In addition, there exists a G which is 

&?-generic over HODK’n’ and K( OIP)[A] = HOD K’“‘[G]. Also, recall that B 2 ( O+)K(R). 

Let K be a measurable cardinal, where (@f)K(” <KC@, and let v be a measure on 

K (see the proof of Lemma 4.1). Consider the inner model L[v](P). We now assume 

that v = L[v](P) n $1. Since L[v](P) /== ZFC, we can assume without loss of generality 

that 

L[v](P) /== “v is a normal measure on K”. 

Hence, y(B) n&v](P) 2 K(P) and, since G is g-generic over K(P) = HODK’*), it 

follows that G is also g-generic over t[v](P). Let 

v[G] = {X S K: XEL[V](P)[G] A3Y EL[v](P)(Y E VA Y 2X)) 

be the ge~levic expansion of v. The proof of Lemma 3.1, implies that 

L[v](P)[G] k “v[G] is a normal measure on K”. 

Let p = v[G] flL[ v[G]](~). One can check that p f Y. Note that 

~I~~IVVCGI I= ‘WI@Q I IS an iterable p-model with critical point K”. 

By absoluteness then, L[p](Iw) is an iterable p-model with critical point K. Theorem 4.7 

implies that 

:Y(K X nqn&L]([W)=:?qK X b$)nK(IW). 

Therefore, (@+)L[pl(QB) = (@+)K(“’ and so (@+)L[“l’“) <K < 0. Since K(R) k DCw, it 

follows that f&i](W) FDCw. Hence, I.&](W) k DC. Consequentfy, L[pJ(IR) i= ZF + 

AD-t DC. 17 
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Assuming AD, there are unboundedly many measurable cardinals KC@. It is easy 

to check that their measures are not R-complete in V. However, our next result shows 

that most of these measures are R-complete in certain inner models of V. 

Corollary 4.17 (ZF + AD). Assume (O+)K(R) <ICC 0 where K is a measurable car- 
dinal. Then there is a p-model L[p](R) of ZF + AD + DC with critical point X. 

Proof. This follows as in the proof of Theorem 4.16. 0 

Theorem 4.18. Assume ZF + AD + %Y C R [X @ K(R)]. Then [Wt (dagger) exists. 

Proof. Assume ZF + AD + 3x C R [X $ K(R)]. By Theorem 4.16, there exists a p- 

model L[,u]( R) with critical point K such that (@+)‘l~l(n) < K < 0 and L[,u]( R) + ZF + 

AD + DC. As in the proof of Lemma 4.1, it follows from work of Kechris [lo] that 

there exists a measurable cardinal 2 with measure v such that (O+ )Ll~l(R) < K < 1-c 0. 

Let A be Q-generic over L[p](R), where Q is the standard partial order that produces 

(under DC) a generic enumeration of all the reals in length 01. Again, we note that A 
is essentially a subset of 01. Let v=L[p](R)[A]. Since L[p](R) k DC, the proof of 

Theorem 1 .l 1 applies and shows that 
(1) ~UPIW = [w”, 

(2) 01 
UPI = OF 

(3) UPI@) =&w? 
(4) @UPlW = & 

(5) (@+)L[pl(w) = a3y, 

(6) v /= ZFC + GCH, 

(7) HODL’P1(“) = HOD! 

Let Y? = HODV. Note that v = L[p](R)[A] =&][A], A c COG and that Q] C HODV. 

Thus, by Lemma 1.14,7 is a generic extension of Y? and one can compute HO&tP1(“); 

that is, there is a Boolean Algebra 9? = (B, <s) where B<o3’ is an ordinal, and there 

is a G which is g-generic over J? such that 

(i) v = X[G], 

(ii) 7? =L[p](P) for some P & (@+)L[pl(RB) = cu3y. 
Let N = L[p, v](P). Note that N b ZFC and that Y? = L[p](P) is an inner model of N. 

Since v E N and N + “v is a measure on il”, one can assume that v is a normal measure 

on 2 in N and, by absoluteness, one can show that N is iterable by v. Since L[p](P) 
is I-maximal (see Definition 2.1 l), it follows that (X, v) is good on ;1 by an argument 

analogous to the proof of Lemma 2.13 (using Lemma 2.5). Therefore, one can form 

the weak iteration of (2, v). Each weak iterate of (2, v) can be embedded into an 

iterate of (N, v). Thus, (X, v) is weakly iterable. Let 

v[G] = {X C 1: X E L[p](P)[G] A 3Y E Q@](P) (Y E v A Y 2X)) 

be the generic expansion of v. Lemmas 3.1 and 3.3 imply that 

(L[,a](P)[G], v[G]) is weakly iterable. (*I 



D. W. Cunningham I Annals of Pure and Applied Logic 92 (1998) 161-210 209 

Let G = v[G] n L[,u]([~). Note that v n k C_ it C_ v[G] and that $ E V. Since (*) im- 

plies that (L[p]( R), $) is weakly iterable, it follows that Rt exists (see Lemma 13.19 

of [4]). 0 

Corollary 4.19 (ZF + AD). Assume OK(IW) ~0. Then Rt (dagger) exists. 

Proof. If OKtW) < 0, then XC R [X $K( R)]. Theorem 4.18 implies that Rt exists. q - 

Corollary 4.20. Suppose that L[p]( R) is a p-model of ZF + DC. Then there exists a 
P c ( @+)L’rl(R) such that HOti”“ = L[p](P). 

Proof. This follows as in the proof of Theorem 4.18. 0 

The theory ZF + AD + X C R [X 4 K(R)] implies many of the results in this paper. 

Thus, our next theorem shows that all of these results are also implied by the theory 

ZF + AD + -DCn. 

Theorem 4.21. Assume ZF + AD + -DCn. Then 37 C R [X $4 K(R)]. 

Proof. Theorem 5.14 of [l] shows that ZF + AD + K(R) k DC. So the assumption 

ZF + AD + ~DCR implies that there is a set of reals X not in K(R). El 

In particular, Theorems 4.4, 4.18 and 4.21 imply our final two results. 

Theorem 4.22. Assume ZF + AD + ~DCR. Then there is an inner model of ZF + DC + 

AD + 3~ > 0 [K is measurable]. 

Theorem 4.23. Assume ZF + AD + 7DCn. Then iW+ exists. 

Just as [w’ gives rise to iterable real premice (see Lemma 5.2 of [l]), Rt gives 

rise to iterable “double” real premice, that is, a real premouse with two measures. The 

theory of double real mice will not be developed here, but the theory is similar to 

that of single real mice and can be used to show that Rt has a quasi-scale, assuming 

that L[p](R) j= AD (compare this with the remark following Corollary 4.9 of [l]). 

Assuming ZF + AD + TDCR, it follows that L(Rt) k ZF + AD + DC. Thus, L(Rt) is 

another fine-structural inner model of determinacy. Hence, the “bootstrapping process”, 

identified in the introduction, continues. 
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