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1. INTRODUCTION 

Information about a semigroup can often be gleaned from its partial 
algebra of idempotents. 

For example, the idempotents of an inverse semigroup form a semilat- 
tice. All isomorphisms between principal ideals of a semilattice E form the 
Munn inverse semigroup T,, which contains the fundamental image of 
every inverse semigroup whose idempotents form the semilattice E 
[ll, 123. Thus semilattices give rise to all fundamental inverse semigroups. 

Successful efforts have been made to generalize the Munn construction 
to the wider class of regular semigroups [ 1,6-9, 13, 141. Nambooripad 
achieved this using the concept of a regular biordered set. The biordered set 
of a semigroup S means simply the partial algebra consisting of the set 
E = E(S) of idempotents of S with multiplication restricted to 

D,= ((e,f)EExE[ ef = e or ef=for fe=e or fe=f>. 

Thus the product of two idempotents is defined in this partial algebra if 
and only if one is a right or left zero of the other. The biorder on a 
semigroup S refers to the quasi-orders + and =- defined on E(S) by, for e 
and f in E(S), 

and 

e-+f if and only if fe = e, 

e-f if and only if ef = e. 

If the semigroup is inverse then the idempotents commute, so that these 
quasi-orders coincide, forming a semilattice. Nambooripad defines an 
abstract biordered set to be a partial algebra satisfying certain axioms (see 
below). A biordered set in which every sandwich set (for the definition see 

581 
0021-8693185 S3.00 

Copyrif&t Q 1985 by Academic Press, Inc. 
All rights al reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82709413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


582 D.EASDOWN 

[14] or [4]) is non-empty is called regular. Nambooripad shows that 
regular biordered sets abstractly characterize all biordered sets of regular 
semigroups ( [ 141, and see also [4]), and moreover uses them as a basis 
for his own generalization of the Munn inverse semigroup [13, 141. 

The purpose of this paper is to show that the abstract definition of a 
biordered set characterizes biordered sets of arbitrary semigroups. 
Generalizations of the Munn semigroup beyond the class of regular 
semigroups are explored in a further paper of the author [S]. 

Given a biordered set E, we construct a semigroup S by taking the free 
semigroup on E factored out by all the relations holding in E. We show E 
is isomorphic to the biordered set of S, so that all biordered sets arise as 
biordered sets of semigroups. In so doing we produce the freest semigroup 
with biordered set E, which Pastijn [15] has studied, when it is already 
known that E comes from some semigroup. 

2. PRELIMINARIES 

The letters 9, 9, W, and H will always denote Green’s relations on a 
semigroup, and may be subscripted to distinguish semigroups. Standard 
terminology and basic results about semigroups and Green’s relations, as 
given in [2] or [lo], will be used without comment. All terminology 
involving biordered sets is included in this section. 

Let E be a set with a partial multiplication with domain D, c E x E. If 
(e, f ) E D, then the product of e and f will be denoted by e * f: Define 
relations + and - each contained in E x E by 

e-+f ifandonlyif(f,e)ED,andf+e=e 

and 

e-f ifandonlyif(e,f)ED,ande*f=e. 

Call E a biordered set if E satisfies the following, for e, f, g E E: 

WI The relations + and - are reflexive and transitive 
and D,= + v =-u(-+ v =--‘. 

Wl) 

ef 
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(B21)* 

0322) 

(B22)* 

(B31) 

(B31)* 

(~32) 

(B32)* 

e+fae -f 

Xr 
fe 

e =>f*e-g*e 

/\ 
f-i 

e +e*f+e*g 

f -g 

e+f+ga(e*g)*f=e*f 

e-f+ gaf*(g*e)=f*e 

e a(g*f)*e=(g*e)*(f*e) 

f -g 

e =>e*(f*g)=(e*f)*(e*g) 

f -g 

(B4) f+e+g and f*e+g*e 

- (3f’E:E) e and 

A 
f’ -g 

(B4)* f + e 4 g and e*f+e*g 

a(3f’EE) e and 

f’*e=f *e. 

e*f’=e*f. 

Note (B4) and (B4)* appear differently here from the corresponding 
axioms given originally in [14]. However, by [14, Proposition 2.41, the 
complete set of axioms here is equivalent to the axioms for a biordered set 
given in [14]. 
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If E and F are biordered sets and 8: E + F is a mapping then 8 is called a 
morphism if for e, f E E 

(e,f )EDE=-(ekfl)EDF and (e*f)O=eQ*jB 

Call 0 an isomorphism if 8 is a bijection and both 0 and 8-l are morphisms. 
We call F a biordered subset of a biordered set E if PC E, F is a partial sub- 
algebra of E, in the sense that D,= D,n (Fx F), and F satisfies the bior- 
dered set axioms with respect to the restrictions of -+ and =- to F. 

THEOREM 2.1 [ 14, 1.11. Let S be a semigroup and E(S) the set of idem- 
potents of S. Then E(S) f orms a biordered set by restricting the semigroup 
multiplication to 

DECSl={(e,f)~E(S)xE(S)Ief=eoref=f orfe=eorfe=f}. 

Henceforth we call E(S), equipped with the above partial product, the 
biordered set of S. The aim of this paper is to show that every biordered set 
arises as the biordered set of some semigroup. 

Let E be a biordered set, so M and ti are equivalence relations on E. 
Let L[R] denote an arbitrary member of E/- [E/w], and for e E E let 
L,[R,] denote the M [++I-class containing e. Denote the full transfor- 
mation semigroup on a set X by F(X), and the dual transformation 
semigroup by S*(X). If Amy then u* denotes the corresponding 
element of S*(X). Put X=E/-u(w) and Y=E/+-+u(co}, where co 
is a new symbol. Define 

0) p: E --+ 9’(X) by, for e E E, 

PC: L-Lx, if x+e for some xeL 

HCQ otherwise 

(ii) 

OOHCC 

1: E-f(Y) by, for e E E, 

1,: Rc* R,, ifx*eforsomexER 

Ha3 otherwise 

(iii) 

ml-Pm 

q&E-+9-(X)xy*(Y) by, for eEE 

ewh= (ib, L3. 

THEOREM 2.2 [3, Theorem 23. If E is a biordered set, and q5 is dejked 
as above, then Eq5 is a biordered subset of E(S(X) x y*(Y)) and 4: E--t E4 
is an isomorphism. 
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LEMMA 2.3 ([4, Lemma 41, Due to T. E. Hall). Let E be a biordered 
set.ZfaEE((EqS))and$,9a9q5,forsomex,yEE, thenaEE#. 

3. BIORDERED SETS COME FROM SEMIGROUPS 

Suppose throughout this section that E is a biordered set. Let F[F’] 
denote the free semigroup [monoid] on the set E. Elements of E[F’] will 
be called letters [words]. Throughout e, f, g, x, y, and z [u, u, and w], 
with or without subscripts and/or superscripts, will denote letters [words]. 
The length of a word U, denoted by I(U), is the number of letters in U. 

Multiplication within F’ will be denoted by juxtaposition, so if 
(f, g) E D, then the expression fg is a word of length two whilst the 
expression f * g is a single letter. 

Call v a subword of w  if w  = uuu for some (possibly empty) words u and 
u’. We say the words wl,..., w, cover w  if there exists subwords w;,..., wk of 
Wl ,,‘., w,, respectively, such that w  = w; . . . wk. 

Define a relation cr on F by 

a= ((fg>f * g) I (f, g)ED& 

and let 6# denote the smallest congruence containing Q. Elementary 
o-transitions will be denoted by T with or without subscripts, and if T 
transforms w  into w’ then we write T: w  H w’. Hence, for some u, u, f, and 
g, T is always of the form 

or 
uf * gv H ufgv. 

Call T of type (1) if f--f g or f * g, whence f c-f f * g, and of type (2) if 
f+gorf-g,whenceg-f*g. 

Our aim in what follows is to show E is isomorphic to E(F/a#). 

LEMMA 3.1. Zf fi ,..., f,, g, ,..., g, are letters such that a”( fi a.- f,)= 
a#(g,-** gJ then 4f,-4h=d,I--&,. 

Proof. This follows since 4 is a morphism, by Theorem 2.2, and using a 
simple induction on the number of elementary a-transitions used to trans- 
form the word fi 1. . f, into the word g, . *. g,. 

The following was communicated privately to the author by T. E. Hall: 

LEMMA 3.2. Suppose a#(w) is an idempotent of F/a# such that 
a#(~) 9a#(e) for some letter e. Then a”(w) contains some letter. 
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Proof: Let w=e,...e,. We can find fi ,..., f,, g, ,..., g, such that 
o”(f,...f,) is an inverse of a#(g,*..g,), ~#(w)=(~#(f,...f~g~...g,), 
and a”(e) = o#(g, ... g,f, . ..f.). By Lemma 3.1 then #,, ... 4,, is idem- 
potent and q5e = b,, . ‘. c$~,,, qJfi . . . #fn. In particular L,p, # co, so 

LP,l . . . pg, # CO. Hence 

xi --$ g1 for some x1 E L, 

x2 + g2 for some XE L,,.g, 

xm+gnl for some x,EL,~-,*~,-,. 

Put S= F/o#. By repeated use of Green’s lemma we have 

a#(x,*g,)~sa#(eg,...g,)=a#(g,...g,)~s,a#(w). 

By Lemma 3.1, putting x=x, * g,, 

4x~<E&L,~-~enr. 

Dually there exists y such that a#(y)Ye,o#(w) and q4y9CE4j#e,.*.q5eN, 
Hence by Lemma 2.3 there exists z such that 4, = q5,, . . . q5,,, so 

4, - b-+4y. 

Thus, since 4 -’ is a morphism by Theorem 2.2, 

so that a”(x) J?~o#(z) &a#(y). Thus a”(z) sscr#(w), so a#(~) = c#(w), 
since both are idempotents, which proves the lemma. 

THEOREM 3.3. The biordered set E is isomorphic to E(F/a#), the bior- 
dered set of F/o #, and any idempotent-generated semigroup T such that 
E = E(T) is a homomorphic image of F/a #. 

Proof: Let ye: E + E(F/o#) be the mapping which sends each e to 
a”(e). We show q is a biordered set isomorphism onto E(F/a#). That Ev 
is a biordered subset of E(F/a# ) and q is a biordered set isomorphism onto 
Eq follow by Theorem 2.2 and Lemma 3.1. It remains therefore to show 
Eq = E(F/a”). 

Suppose in what follows that a#(e, . . . e,) is an idempotent. We need to 
find some e such that ax(el *. . en)=ox(e). However, by Lemma 3.2 it is 
sufficient to find e such that 

a#(el . . . e,) %#(e). (1) 
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Since a#(er.** e,) is idempotent we have e,.**e,o#(e,.-.e,)“, so there 
is a sequence of words w  r ,..., w,,, and transitions Tk: wk H wk + 1 for k = 1 to 
N- 1, where wr=e,**.e, and ~~=(e,...e,)“. 

The main idea in what follows is to cover wk, for k = 1 to N, by sub- 
words wk,..., w; (defined below), such that each o”(wi) lies in some $&class 
of an element of Eq. 

By an inductive definition we can locate particular subwords by noting 
positions of letters, from 1 up to I( wk). Define, for i = 1 to n, ai, = flf = yi = i. 
For each i, make the following definition, inductive in the subscripts: 

if T,: ufguwuf* gu 

where Z(u) > & - 1 

or Tk: uf* gowufgu 

where I(u) > fit 

or Z(u)=&-1 and T, is of type (1) 

if Tk: ufgvwuf *go 

where 1(u) < 86 - 2 

if Tk: uf * gut-+ufgu 

where I(u) < /3: - 2 

or Z(u)=fii-1 and Tk is not of type (1) 

if Tk: ufgv H uf * gv 

where I(u) > ai - 1 

or l(u) = ai - 2, ai < pi, and 

Tk is not of type (2) 

or T,: uf * gv H ufgv 

where Z(u) > ai - 1 

if Tk: ufguwuf * go 

where Z(u) < ai - 3 

or Z(u) = aI, - 2 and either 

ai = j3t or Tk is of type (2) 

if Tk: uf * gvwufgv 

where Z(u) < ai - 2 
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I  I  

Yk+l= Yk 

y;- 1 

y;+ 1 

if Tk: UfgVHUf *gV 

where I( U) z yi 

or l(u) = y; - 1 and either 

yt=& or Tk is of type (1) 

Or Tk: Uf * gV H Z&V 

where l(u) B y6 

if Tk:UfgVHUf *gV 

where I(U) 9 yb - 2 

or l(u)=yi- 1, &-c yf, and 

Tk is not of type (1) 

if Tk: Uf * glJHUfgV 

where l(u) d yk - 1. 

For integers i and j where i < j, let [i, j] denote all integers from i up to 
j. From the above definitions it is immediate that, for k = 1 to N, 

p:<p:< ..’ <p; 

and for each i= 1 to n, 

Further, for each k, 

cl, I( = (j [a:, &I. 

Let ei denote the pith letter of wk and let wi denote the subword of wk 
obtained by deleting all letters to the left of the a:th letter and to the right 
of the yith letter. The previous observations show that each wk is covered 
by the subwords wk,..., w;. 

In particular wN is covered by wk,..., w;. We now claim that 

for some i, e, . . . e, is a subword of wb. (2) 

Suppose (2) is false. Then wh does not cover e, .‘. e,. Make the inductive 
hypothesis that wh ,..., wk do not cover (e, *a. e,)‘. Then since w$+ i does not 
cover e, . . * e, we have wf ,..., WC ’ do not cover (e, . . . e,#+ ‘. By induction 
wfy,..., w; do not cover wN, contradicting the previous paragraph. Hence 
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(2) must be true. (The reader may note that (2) is even more immediate if 
our original choice for wN had been (e, . . . e,Jzn or a higher power.) 

Each wi can be written in the form 
wi = ui ,i "i 

k k k k 

for some (possibly empty) words U: and vi. We now prove, for each i and 
k 

o”(et) W a#(eluk) (3) 

and 

o”(e:) 9 a#(ubek). (4) 

We prove (3) by induction on k. For k = 1 we have wi = ei for each i, so (3) 
holds. Suppose (3) holds for k; we show (3) holds for k + 1. The only cases 
for Tk we need consider are the following: 

(a) I - 
u’ufe$.d + u’uf * eivv’ 

Wf 4+1 

(b) u’fejp’ + u’f * ejp’ 
U 1 , 
W:, w:+1 

(c) - I 
duei fvv’ --f duei * fvv’ 

W6 4+1 

(d) - I 
due: fv + duet * fv 

Wf w:+1 

W - u’uei yfgv’ --f 

WI 

of type (1) 

not of type (1) 

(f) & - due’ vv’ + dufgvv’ where e: = f * g. 

Wf i 
wk+l 

Cases (a) and (b): et+ 1 = f * eh and uf;+ , = u, so (3) follows for k + 1 
since 99 is a left congruence. 

Case(c): ei+,=eh*f and u~+~=u. Hence ~X(e~+lvt+l)= 
a”(eifu) W a#(e:), so also o”(et) W o”(ebf) = g”(eh+ 1), yielding the 
required result. 

481/96/2-I8 
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Case (d): (3) follows immediately for k + 1 since U; + , is the empty 
word. 

Case(e): If Tk is not of type (1) then rzr#(e~+,u~+,)= 
a#(eic) 9 e”(ei)=rr#(et+,). If Tk is of type (1) then ftff* g, so 
o”(e~+lu~+,)=a#(e~uf*g)Wo~(e~uf)~cr-#(e~)=ci#(e~+,). 

Case(f): If Tk is of type (1) then e;,+,=f and e:+lclei so 
a”(et+lu~+,)=a#(f*gu)9a#(e~)9i’a”(e~+,). If Tk is not of type (1) 
then ei + , =g and ef,, = ei, so a#(e~+,u~+,)=o#(gu)=a#(ge~u)9 
a”(ge:)=a#(g)=a’(eh+,). 

Thus (3) follows by induction. The proof of (4) is similar. 
By (2), for some i, j, k, a, and B we have 

$ =e,... 
N I en(el . . . eJa el *..e,(e, ...en)Be,...e, 

(where w” denotes the empty word). 
Hence 

that is, 

From (3) and (4) we have 

a#(uhek) 9 a”(ei,) 9 c”(ekuL), 

so that 

a#(u,ea) W a#(u,eku,) = a”(w,), 

that is, 

a”(wh) 9 a#(ek). 

Hence 

a#(el a-.e,) 9 a#(ei,), 

which gives (1) by putting e = e;. 
This proves that E and E(F/lo# ) are isomorphic. If also E = E(T) for 

some idempotent-generated semigroup T, then T = F/z for some con- 
gruence t=a, so z3ax, which proves the last statement of the theorem. 



BIORDERED SETS 591 

REFERENCES 

1. A. H. CLI~O~D, The fundamental representation of a regular semigroup, Semigroup 
Forum 10 (1975), 84-92. 

2. A. H. CL~FFIXD AND G. B. PRESTON, “The Algebraic Theory of Semigroups,” Math. Sur- 
veys No. 7, Vol. I, Amer. Math. Sot., Providence, RI., 1961. 

3. D. EASDOWN, Biordered sets are biordered subsets of idempotents of semigroups, J. 
Ausfrul. Math. Sot. 37 (1984), 258-268. 

4. D. EASDOWN, A new proof that regular biordered sets come from regular semigroups, 
Proc. Roy. Sot. Edinburgh %A (1984), 109116. 

5. D. EASDOWN, Fundamental semigroups and biordered sets, in preparation. 
6. P. A. GRILLET, The structure of regular semigroups. I. A representation, Semigroup Forum 

8 (1974), 177-183. 
7. P. A. GRILLET, The structure of regular semigroups. II. Cross-connections, Semigroup 

Forum 8 (1974), 254-259. 
8. P. A. GRILLET, The structure of regular semigroups. III. The reduced case, Semigroup 

Forum 8 (1974), 260-265. 
9. T. E. HALL, On regular semigroups, J. Algebra 24 (1973), l-23. 

10. J. M. HOWIE, “An Introduction to Semigroup Theory,” Academic Press, New York/Lon- 
don, 1976. 

11. W. D. MUNN, Uniform semilattices and bisimple inverse semigroups, Quart. J. Math. 
Oxford Ser. 17 (1966), 151-159. 

12. W. D. MUNN, Fundamental inverse semigroups, Quart. J. Math. Oxford Ser. 21 (1970), 
152-170. 

13. K. D. D. NAMBOORIPAD, Structure of regular semigroups. I. Fundamental regular 
semigroups, Semigroup Forum 9 (1975), 354363. 

14. K. S. S. NAMBOORIPAD, Structure of regular semigroups, I, Mem. Amer. Math. Sot. 224 
(1979). 

15. F. PASTIJN, The biorder on the partial groupoid of idempotents of a semigroup, J. Algebra 
65 (1980), 147-187. 


