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Abstract

We study the motion of a stochastic string in the background of a BTZ black hole. In the 1+1 dimensional
boundary theory this corresponds to a very heavy external particle (e.g., a quark), interacting with the
fields of a CFT at finite temperature, and describing Brownian motion. The equations of motion for a
string in the BTZ background can be solved exactly. Thus we can use holographic techniques to obtain the
Schwinger–Keldysh Green function for the boundary theory for the force acting on the quark. We write
down the generalized Langevin equation describing the motion of the external particle and calculate the
drag and the thermal mass shift. Interestingly we obtain dissipation even at zero temperature for this 1 + 1
system. Even so, this does not violate boost (Lorentz) invariance because the drag force on a constant
velocity quark continues to be zero. Furthermore since the Green function is exact, it is possible to write
down an effective membrane action, and thus a Langevin equation, located at a “stretched horizon” at an
arbitrary finite distance from the horizon.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

AdS/CFT correspondence [1–3,29] has been used quite successfully to study thermal prop-
erties such as the viscosity of N = 4 super Yang–Mills theory at finite temperature. Dissipation
and thermal fluctuation are two sides of the same coin as embodied in the famous fluctuation–
dissipation (FD) theorem. The study of fluctuations using holographic techniques has been done
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in several papers [4–7,9–11,13] and the fluctuation–dissipation theorem has been shown to hold.
Different techniques [4,5] have been used to address this issue. A very versatile technique is
in terms of Green functions. Son and Teaney [5] have used holographic techniques to calculate
Green functions to address these questions in the context of Brownian motion of a particle such
as a quark.

The fluctuation–dissipation theorem in the context of Brownian motion has been studied by
Kubo [17,18] and Mori [19,20] among others. Brownian motion can be described as a stochastic
process [21]. In some approximation it is Markovian. If we can assume that velocities at two in-
stants are not correlated, then it is a Markovian process when described in terms of position. Thus
one can define a probability P(x(t), t;x(t0), t0) as the conditional probability for the particle to
be in position x(t) at time t given that it was at x(t0) at time t0. One can also write a Fokker–
Planck equation for P(x(t), t;x(t0), t0). On the other hand if we want a finer description one can
use the velocity as the variable defining the Markovian process in terms of P(v(t), t;v(t0), t0).
This is a good approximation as long as the duration of a collision is very small, which is equiva-
lent to saying that acceleration at different instants is uncorrelated. The Fokker–Planck equation
in the velocity description is

∂P (v, t)

∂t
= − ∂

∂v
a1(v)P + a2

2

∂2P

∂v2
(1.1)

Here a1 = 〈�v〉
�t

and a2 = 〈(�v)2〉
�t

. Here �v is the change in velocity in time �t .
One can obtain these from the related Langevin equation:

mv̇ = −γ v + ξ(t) (1.2)

where ξ(t) is the random force that is responsible for the fluctuations, obeying 〈ξ(t)ξ(t ′)〉 =
Γ δ(t − t ′) and 〈ξ(t)〉 = 0. v(t0) = v0 is the initial condition. Thus a1 = 〈v(�t)−v0〉 = − γ

m
v0�t .

From the solution of the Langevin equation (taking t0 = 0):

v(t) = v0e
− γ

m
t + 1

m

t∫
0

e− γ
m

(t−t ′)ξ
(
t ′
)
dt ′ (1.3)

one can obtain a2 = Γ

m2 . Thus the Fokker–Planck equation becomes:

∂P (v, t)

∂t
= γ

m

∂

∂v
vP + Γ

2m2

∂2P

∂v2
(1.4)

Finally since we know that P(v) = e− mv2
2kT is a time independent solution of the Fokker–Planck

equation we get

Γ = 2γ kT (1.5)

This is the fluctuation–dissipation theorem in this context, because it relates Γ , the strength
of the fluctuation, to γ the strength of the dissipation.

The Langevin equation is much more convenient to work with. To the extent that it assumes
that time scales are larger than the microscopic time scale it must fail for very small time scales.
As Kubo has shown, stationarity should imply that

d 〈
v(t0)v(t0)

〉 = 0 = 〈
v̇(t0)v(t0)

〉

dt0
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Whereas (1.3) gives〈
v̇(t0)v(t0)

〉 = − γ

m

〈
v(t0)v(t0)

〉 �= 0

The random force ξ represents the effects of the interaction of other degrees of freedom on our
particle and the assumption that the correlation time is zero is unphysical. A proper microscopic
theory that incorporates these effects should not give this contradiction. Kubo has argued that one
can replace Γ δ(t − t ′) by a more general Γ (t − t ′) which is less singular than a delta function.
To see this we modify the Langevin equation to

mv̇ = −
t∫

t0

dt ′γ
(
t − t ′

)
v
(
t ′
) + ξ(t) (1.6)

As long as

lim
t→t0

t∫
t0

dt ′γ
(
t − t ′

)
v
(
t ′
) = 0, (1.7)

the aforementioned contradiction is avoided. Thus

γ (ω) =
∞∫

0

dteiωtγ (t)

acquires a non-trivial frequency dependence. With this it can be shown that

∞∫
0

dteiωt
〈
ξ(t0)ξ(t0 + t)

〉 = Γ (ω) = kT γ (ω) (1.8)

This is the fluctuation–dissipation theorem that replaces (2.18).1 In fact more generally
fluctuation–dissipation theorems can be stated in terms of properties of various two point corre-
lation functions. This is particularly clear in the Schwinger–Keldysh formalism. Son and Teaney
have shown how the Schwinger–Keldysh Green functions can be obtained holographically and
their holographic calculation gives such a frequency dependent correlation function for the noise
which satisfies the FD theorems. However if one expands in powers of frequency one cannot see
the softening of the delta function. One needs a more non-perturbative result.

In addition to obtaining a Langevin equation for the boundary theory at infinity, Son and
Teaney also obtained an effective membrane action and a Langevin equation, at a “stretched”
horizon close to the event horizon. However in AdS5 the equations cannot be solved exactly.
Thus the solution had to be worked out as a power series in the frequency. In this paper we do an
almost identical calculation for the case of the BTZ black hole in AdS3 where one can solve the
bulk equation of motion exactly. This was first shown in [4] where some exact correlators were
computed. We then use the techniques of [5] to obtain the Schwinger–Keldysh Green functions
exactly. We do indeed find the softening of the delta function that avoids the contradiction pointed
out by Kubo. It is interesting that internal consistency at the microscopic level is built into the

1 The factor of 2 has disappeared because in the Laplace transform the integral is from 0 to ∞ and not from −∞ to ∞.
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holographic formalism. (Of course the holographic result is in some sense the leading term in
a “strong coupling” expansion i.e., large N and large λ limits of the theory. Departures from
large N requires quantum or stringy corrections in the bulk, whereas departure from large λ

suggests ‘supergravity’ is not a good approximation and needs higher derivative corrections to
the gravitational theory. Therefore to ensure consistency at higher orders it may be that one has
to embed the boundary theory in a string theory.)

We also find the interesting phenomenon of dissipation at zero temperature. This is a little
puzzling because at zero temperature one expects the system to have Lorentz invariance and
boost invariance would say that a quark moving at a constant velocity cannot possibly feel any
drag force. One can indeed check in our case, that even though the Green function does have
a dissipative component at zero temperature, the frequency dependence is such that force on a
constant velocity quark does continue to be zero. Thus there is nothing unphysical about this.
Accelerating quarks can certainly experience dissipation by coupling to the massless degrees of
freedom in the conformal field theory – i.e. “radiation” [35–37]. Dissipation at zero temperature
has been reported in the literature earlier [35–46].

We are also able to place the membrane at an arbitrary location without a power series ex-
pansion and thus obtain a generalized Langevin equation at an arbitrary location. We believe this
may be useful in a holographic RG analysis of this system.

In the path integral approach to the Langevin equation it is manifest that both γ (ω) and Γ (ω)

are related to correlation functions of the noise. Γ is related to the symmetric two point function
and γ to the retarded two point function. The FD theorem is then a statement of a relation between
these two correlation functions and what we find is, as expected, consistent with this theorem.

This paper is organized as follows: Section 2 is a description of the Langevin equation and
its derivation using the Schwinger–Keldysh technique and is a review. In Section 3 the retarded
Green function is calculated using the usual AdS/CFT prescription. For the BTZ case the Green
function can be obtained exactly. This section contains one of the main results of this paper. The
Section 4 is mainly a review where we repeat the Son and Teaney derivation of the Schwinger–
Keldysh Green functions using holography. This is also then a verification of the FD theorem.
The main point of departure is that the various Green functions that make up the Schwinger–
Keldysh Green function are all known exactly in the BTZ case. Section 5 starts with a brief
review of the holographic RG as discussed in [50] and its relevance for our work. It also con-
tains the second main result of this paper in which, by calculating the bulk to bulk propagators
exactly, we obtain an effective “boundary” action but now with the boundary at an arbitrary lo-
cation. From the boundary perspective this is like an effective action at an arbitrary point along
the RG flow. In Section 6 different time scales relevant to Brownian motion have been discussed.
Section 7 contains some conclusions.

2. Langevin dynamics: a review

Here the Langevin dynamics [22] will be reviewed in brief. Suppose in a viscous medium a
very heavy (compared to the masses of the medium particles) particle is moving. Its dynamics
will be described by the Langevin equation2

Mkin
dv

dt
+ γ v = ξ(t) (2.1)

2 This is actually the small-frequency limit of the generalized Langevin equation (1.6). In Section 3 it will turn out that
one obtains the generalized Langevin equation (1.6) from holographic calculation rather than its local version (2.1).
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Fig. 1. Schwinger–Keldysh contour for systems in thermal equilibrium with temperature β−1.

with 〈
ξ(t)ξ

(
t ′
)〉 = Γ δ

(
t − t ′

) = 2kT γ δ
(
t − t ′

)
(2.2)

where γ v is the drag, ξ is the random noise and Mkin is the “renormalized mass” in the thermal
medium. Evidently Eq. (2.2) is a statement of fluctuation–dissipation theorem. At the ultimate
long time limit we can neglect inertial term in (2.1)

γ v = ξ (2.3)

and can define the diffusion coefficient as

D = T

γ
(2.4)

We will see later the dynamics on the stretched horizon (5.32) is identical to this overdamped
motion (2.3).

The aim of this section is to review how to derive Langevin equation from path integral for-
malism. There are many good references [23,24] for detail description of this derivation, we will
go through this quickly just to fix the notation we will use through out this article and we follow
mostly the steps sketched in [5]. We can define the partition function for a heavy particle in a
heat bath using a Schwinger–Keldysh contour (Fig. 1)

Z =
〈∫

[Dx1][Dx2]ei
∫

dt1M
0
Qẋ2

1 e
−i

∫
dt2M

0
Qẋ2

2 ei
∫

dt1φ1(t1)x1(t1)e−i
∫

dt2φ2(t2)x2(t2)

〉
bath

(2.5)

φ1, φ2 are the heat bath degrees of freedom which act like sources. x1, x2 are the fields “living”
on the two different sections 1 and 2 of the time contour. We will see later in the gravity side these
are the two types of field those “live” on the two boundaries, 1 and 2 of the full Kruskal diagram
(Fig. 2). Path integral along the vertical portion of the contour gives us average over the thermal
density matrix e−βH . And σ is a free parameter that can take any value. For this discussion we
can safely choose σ = 0 and later we will see that this choice is necessary for “ra formalism”
which is used extensively in real time thermal field theory literature [9,24–26].

For very heavy particle we can consider the forces on the particle is very small compared
to inertial term so we can expand it in second order, take the average over bath and make it an
exponentiate again to get

Z =
∫

[Dx1][Dx2]ei
∫

dt1M
0
Qẋ2

1 e
−i

∫
dt2M

0
Qẋ2

2 e− 1
2

∫
dtdt ′xs(t)[〈φ(t)φ(t ′)〉]ss′xs′ (t ′) (2.6)

Here the Green function takes a 2 × 2 matrix form as there are two type of fields and it is contour
ordered.[〈

φ(t)φ
(
t ′
)〉]

ss′ ≡ i

(
G11(t, t

′) −G12(t, t
′)

−G (t, t ′) G (t, t ′)

)
(2.7)
21 22
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Fig. 2. AdS space in Kruskal coordinates.

Notice that G11(t, t
′) is the usual time ordered Feynman Green function where as G22(t, t

′) is
anti-time ordered Green function.

In operator language, if we define

φ(t) = eiHtφ(0)e−iH t (2.8)

The different Green functions are defined as,

iG11
(
t, t ′

) = 〈
T φ(t)φ

(
t ′
)〉

(2.9)

iG22
(
t, t ′

) = 〈
T̃ φ(t)φ

(
t ′
)〉

(2.10)

iG12
(
t, t ′

) = 〈
φ
(
t ′
)
φ(t)

〉
(2.11)

iG21
(
t, t ′

) = 〈
φ(t)φ

(
t ′
)〉

(2.12)

The KMS relation Tr[e−βH φ(t)φ(0)] = Tr[e−βH φ(0)φ(t + iβ)] is easy to prove using cyclic-
ity of the trace and the definition (2.8). This implies for the Fourier transform

eβω

∞∫
−∞

dteiωt
〈
Tr

[
e−βH φ(0)φ(t)

]〉 = ∞∫
−∞

dteiωt Tr
[
e−βH φ(t)φ(0)

]
(2.13)

In addition to this if we add iG11 + iG22 we will get

iG11
(
t, t ′

) + iG22
(
t, t ′

) = 〈
T φ(t)φ

(
t ′
)〉 + 〈

T̃ φ(t)φ
(
t ′
)〉

= 〈
φ(t)φ

(
t ′
)〉{

θ
(
t − t ′

) + θ
(
t ′ − t

)}
+ 〈

φ
(
t ′
)
φ(t)

〉{
θ
(
t ′ − t

) + θ
(
t − t ′

)}
= iG12

(
t, t ′

) + iG21
(
t, t ′

)
(2.14)

Therefore we can write

G11 + G22 = G12 + G21 (2.15)
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Note that (2.15) is true only for σ = 0. We will see our Green functions will obey this relation.
Using (2.13) and (2.15) all these components of the matrix can be expressed in terms of any

one Green function, say retarded Green function

iGR(t) = θ(t)
〈[
φ(t),φ(0)

]〉
bath (2.16)

Thus for instance we can use

ImGR(ω) = − i

2

∞∫
−∞

dteiωt
〈[
φ(t),φ(0)

]〉 = − i(eβω − 1)

2

∞∫
−∞

dteiωt
〈
φ(0)φ(t)

〉
(2.17)

to write

ImGR(ω) = −i tanh

(
βω

2

)
Gsym(ω) (2.18)

where3 Gsym(ω) = 1
2

∫ ∞
−∞ dt〈{φ(t),φ(0)}〉eiωt .

Now we will introduce the previously advertised ra formalism. We have already taken σ = 0.
As we are working with very heavy quark the motion will be nearly classical. So, x1 ∼ x2.
Therefore we can use some sort of “centre of mass” coordinates for the particle and for the
forces too.

xr = x1 + x2

2
xa = x1 − x2 (2.19)

φr = φ1 + φ2

2
φa = φ1 − φ2 (2.20)

r and a here refer to retarded and advanced respectively and we should remember xa is a very
small quantity for quasi-classical description. Now substituting (2.19) and (2.20) into the parti-
tion function (2.6)

Z =
∫

[Dxr ][Dxa]e−i
∫

dtM0
Qxaẍr e−i

∫
dtdt ′[xa(t)iGR(t,t ′)xr (t

′)− 1
2 xa(t)Gsym(t,t ′)xa(t ′)] (2.21)

where the propagators

Gsym
(
t, t ′

) = 〈
φr(t)φr

(
t ′
)〉 = 1

2

〈{
φ(t),φ

(
t ′
)}〉

(2.22)

iGR

(
t, t ′

) = 〈
φr(t)φa

(
t ′
)〉 = θ

(
t − t ′

)〈[
φ(t),φ

(
t ′
)]〉

(2.23)

As we have argued earlier the different Green functions are not independent. In particular the
retarded and the symmetric Green functions are related.

iGsym(ω) = −(1 + 2nB) ImGR(ω) (2.24)

Here nB(ω) = e−βω

1−e−βω is the Bosonic occupation number. This is just a rewriting of (2.18).
This is a canonical statement of fluctuation–dissipation theorem. Later in this section we will

identify these two Green functions as γ (ω) and Γ (ω) of Eqs. (1.6) and (1.8). Now we can write
down the path integral in Fourier space

3 According to our definition Gsym(ω) is purely imaginary.
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Z =
∫

[Dxr ][Dxa] exp

(
−i

∫
dω

2π
xa(−ω)

[−M0
Qω2 + GR(ω)

]
xr(ω)

)
× e− 1

2

∫
dω
2π

xa(−ω)[iGsym(ω)]xa(ω) (2.25)

Now we introduce a new random variable which we call ξ in anticipation that it will turn out to
be the random noise, by defining

e− 1
2

∫
dω
2π

xa(−ω)[iGsym(ω)]xa(ω) =
∫

[Dξ ]ei
∫

xa(−ω)ξ(ω)e
− 1

2

∫ ξ(ω)ξ(−ω)
iGsym(ω)

dω
2π (2.26)

The partition function becomes

Z =
∫

[Dxr ][Dxa][Dξ ]e− 1
2

∫
dω
2π

ξ(ω)(−ω)
iGsym(ω)

× exp

(
−i

∫
dω

2π
xa(−ω)

[−M0
Qω2xr(ω) + GR(ω)xr(ω) − ξ(ω)

])
(2.27)

Integrate out xa(−ω) to get a delta function in ω-space

Z =
∫

[Dxr ][Dξ ]e− 1
2

∫
dω
2π

ξ(ω)(−ω)
iGsym(ω) δω

[−M0
Qω2xr(ω) + GR(ω)xr(ω) − ξ(ω)

]
(2.28)

This partition function is an average over the classical trajectories for the heavy particle under
the noise ξ .[−M0

Qω2 + GR(ω)
]
x(ω) = ξ(ω)

〈
ξ(−ω)ξ(ω)

〉 = iGsym(ω) (2.29)

Going back to time space we obtain the generalized Langevin equation

M0
Q

d2x(t)

dt2
+

t∫
−∞

dt ′GR

(
t, t ′

)
x
(
t ′
) = ξ(t)

〈
ξ(t)ξ

(
t ′
)〉 = iGsym

(
t, t ′

)
(2.30)

GR(t, t ′) is thus the same as γ (t − t ′) of Section 1 for the choice t0 = −∞ and iGsym(t, t ′) is
the same as Γ (t − t ′).

Now if the Green function is expanded for small frequencies the coefficient of ω2 (i.e., d2x(t)

dt2 )

adds to the mass of the particle and the coefficient of ω (i.e., dx(t)
dt

) will contributes as the drag
term

GR(ω) = −�Mω2 − iγ ω + . . . (2.31)

After taking into account the thermal mass correction we define the effective mass

Mkin(T ) = M0
Q + �M

Then the Langevin equation reads

Mkin
d2x

dt2
+ γ

dx

dt
= ξ (2.32)

with 〈
ξ(t)ξ

(
t ′
)〉 = Γ

(
t − t ′

)
(2.33)

These equations are identical to (2.1) and (2.2).
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3. Obtaining the generalized Langevin equation from holography

The Einstein–Hilbert action for AdS3 which has negative cosmological constant, −Λ = 1
L2 is

given by

IEH = 1

2π

∫
dt dr dx

√−g

[
R + 2

L2

]
+ IB ′dy (3.1)

In this units 16πG is same as 2π . And therefore, 8G = 1. Since G goes as length in 2 + 1
dimensions this defines a choice of length units.

We write down the action for a string stretching from the horizon (r = rh) towards the AdS
boundary and ending on the probe brane at r = rm, in background metric of AdS3 with a BTZ
black hole embedding. The BTZ metric is

ds2 = −
(

r̄2

L2
− 8GM

)
dt2 +

(
r̄2

L2
− 8GM

)−1

dr̄2 + r̄2

L2
dx2 (3.2)

Let’s write this background metric as

ds2 = r̄2

L2

[−f (br̄)dt2 + dx2] + L2dr̄2

f (br̄)r̄2
(3.3)

where r̄ is the canonical choice of coordinate with dimension of length, b is the inverse horizon
radius, L is the AdS radius. In our unit, rh = b−1 = √

8GML.
So, f (br̄) = 1− 8GML2

r2 . Thus f (r) = 1− 1
r2 and πT =

√
8GM
2L

=
√

2GM
L

defines the Hawking

temperature. b = 1
2πT L2 is an alternate expression for b, which can be taken to be the black hole

mass parameter.
Now we will write the same metric (3.3) with a dimensionless coordinate, r ≡ br̄

ds2 = (2πT )2L2[−r2f (r)dt2 + r2dx2] + L2dr2

r2f (r)
(3.4)

We want to study the small fluctuation of the string in this non-trivial background. The
Nambu–Goto action is

S = − 1

2πl2
s

∫
dτdσ

√−dethab (3.5)

Target space coordinates are,

Xμ ≡ (t, r, x)

And world sheet coordinates are,

σ0 = τ and σ1 = σ

Now we will choose (static gauge),

t = τ and r = σ

So,

x ≡ x(τ, σ ) = x(t, r)
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Induced metric,

hab = Gμν

dXμ

dσa

dXν

dσb

a, b = 0,1

Gμν is the target space metric which is AdS3–BH for present case.

h ≡ det(hab) =
∣∣∣∣Gμν

dXμ

dτ
dXν

dτ
Gμν

dXμ

dτ
dXν

dσ

Gμν
dXμ

dσ
dXν

dτ
Gμν

dXμ

dσ
dXν

dσ

∣∣∣∣
=

∣∣∣∣Gtt + Gxxẋ
2 Gxxẋx′

Gxxx
′ẋ Grr + Gxxx

′2
∣∣∣∣

h = −(2πT )2L4
[

1 + (2πT )2r4f (r)x′2 − ẋ2

f (r)

]
For small fluctuations x′ and ẋ are very small. So we can write

√−h = (2πT )L2

√
1 + (2πT )2r4f (r)x′2 − ẋ2

f (r)

≈ (2πT )L2
[

1 + 1

2
(2πT )2r4f (r)x′2 − 1

2

ẋ2

f (r)

]
Action for the small fluctuation of string world sheet

S = − (2πT )L2

2πl2
s

∫
dtdr

[
1 + 1

2
(2πT )2r4f (r)x′2 − 1

2

ẋ2

f (r)

]
Now define, mass per unit r

m ≡ (2πT )L2

2πl2
s

= √
λT ; defining

(
L

ls

)4

≡ λ (3.6)

And the local tension

T0(r) ≡ (2πT )3L2

2πl2
s

f r4 = 4
√

λπ2T 3f r4 = 4
√

λπ2T 3r2(r2 − 1
)

(3.7)

Then the action reduces to

S = −
∫

dtdr

[
m + 1

2
T0(∂rx)2 − m

2f
(∂tx)2

]
(3.8)

The equation of motion (EOM) can be obtained by varying the action (δS = 0),

0 = −m

f
∂2
t x + ∂r

(
T0(r)∂rx

)
(3.9)

Then the standard way is to write down the EOM in Fourier space

x(r, t) =
∫

dω

2π
eiωtfω(r)x0(ω)

x(r = rm, t) =
∫

dω
eiωtx0(ω) with fω(rm) = 1
2π



84 P. Banerjee, B. Sathiapalan / Nuclear Physics B 884 (2014) 74–105
Therefore the EOM in terms of the modes reduces to

w2

f
fω(r) + ∂r

[
f r4∂rfω(r)

] = 0 (3.10)

where we have defined w≡ ω/(2πT ).
For our case f (r) = 1 − 1

r2 , so the EOM reduces to

∂2
r fω + 2(2r2 − 1)

r(r2 − 1)
∂rfω + w2

(r2 − 1)2
fω = 0 (3.11)

This is an ordinary second order linear differential equation in r . This can be recast into asso-
ciated Legendre differential equation which one can solve exactly.4 The general solution to the
EOM will be

fω(r) = C1
P iw

1

r
+ C2

Qiw
1

r
(3.12)

where P
μ
λ and Q

μ
λ are associated Legendre functions and C1, C2 are two constants which will be

determined by two boundary conditions at the horizon (r = 1) and at the boundary (r → ∞) of
the AdS space. We will impose the following boundary conditions on the modes, fω to obtain the
retarded Green function as prescribed by Son and Starinets [27]. Actually this “prescription” has
been derived quite rigorously later by van Rees in [51] based on the dictionary of the Lorentzian
AdS/CFT as formulated in [52]. Furthermore the application of this formalism to holographic
Brownian motion is described in Appendix D of [53].

1. At the horizon to impose the ingoing wave boundary condition one has to pick the solution
P iw

1
r

(see Appendix A). So,

f R
ω (r) ∼ P iw

1

r

2. The other condition that it should satisfy at the “boundary” (rm, say, where rm 
 1) of the
AdS space is, r → rm, f R

ω (r) → 1.

f R
ω (r) = (1 + r)iw/2

(1 + rm)iw/2

(1 − r)−iw/2

(1 − rm)−iw/2

rm

r

2F1(−1,2;1 − iw; 1−r
2 )

2F1(−1,2;1 − iw; 1−rm
2 )

= (1 + r)iw/2

(1 + rm)iw/2

(1 − r)−iw/2

(1 − rm)−iw/2

rm

r

w+ ir

w+ irm
(3.13)

Now the retarded correlator GR(ω) is defined as

G0
R ≡ lim

r→rm
T0(r)f

R−ω(r)∂rf
R
ω (r) = −M0

Qω2 + GR(ω) (3.14)

M0
Q is zero temperature mass of the external particle and the term containing it comes from

the “divergent part” of the boundary limit (i.e., rm → ∞). Our goal here is to extract GR(ω)

and then some interesting physical quantities like viscous drag and mass shift form it.

4 The exact solution to this EOM for a stochastic string in BTZ background was obtained earlier by J. de Boer et al. in
[4] to calculate some exact correlators.
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rm is a regulator here. So to calculate the retarded correlator we should take the limit r → rm.
Taking this limit, from (3.13),

∂rf
R
ω (r)

∣∣
r→rm

= − w(rmw+ i)

rm(rm2 − 1)(rm − iw)
(3.15)

and using the fact that f R−ω(rm) = 1, we obtain

G0
R = T0(r)f

R−ω(r)∂rf
R
ω (r)

∣∣
r→rm

= −4
√

λπ2T 3 rmw(rmw+ i)(rm + iw)

(r2
m +w2)

(3.16)

= −4
√

λπ2T 3 rmw(rmw+ i)

(rm − iw)
(3.17)

Eq. (3.17) is an exact expression for the retarded force–force correlator for the boundary field
theory. Note also that it has a singularity only in the lower half ω-plane as required for a retarded
Green function. But it is written in terms of two dimensionless parameters r and w. To make
the scaling behavior of the boundary theory correlator more natural we use the corresponding
dimensionful parameters, namely ω = 2πTw, r̄m = 2πT L2rm.

Now we can introduce a mass scale μ ≡ r̄m
l2s

. Actually, as discussed in Section 5.1, μ can be

treated as a renormalization group (RG) scale for the dual field theory. Therefore we do not have
to push μ all the way to infinity.5 We would rather take the point of view that the parameters
of the field theory run with μ such a way that the physical quantities remain unchanged. So the
correlator reduces to

G0
R(ω) = −μω

(i
√

λ4π2T 2 + μω)

2π(μ − i
√

λω)
(3.18)

Now absorbing the divergent piece (the leading term in the large μ expansion which goes as
μω2) in the definition of the zero temperature mass of the Brownian particle and subtracting it
from G0

R we can define the retarded boundary Green function, GR

G0
R ≡ −M0

Qω2 + GR(ω) (3.19)

where,

M0
Q = μ

2π

= √
λT rm

=
√

λ

πL2
r̄m (3.20)

As mentioned above, M0
Q is nothing but the mass of the string stretching from r̄m to 0 in the zero

temperature limit. And,

5 There is also another physical reason why it shouldn’t be pushed all the way to the boundary. In such case the mass
of the heavy quark is infinite and there would be no Brownian motion.
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GR(ω) = − i
√

λμω(4π2T 2 + ω2)

2π(μ − i
√

λω)
(3.21)

= μω

2π

(ω2 + 4π2T 2)

(ω + i
μ√
λ
)

(3.22)

GR(ω) is clearly finite in the μ → ∞ limit.
Now expanding GR (3.21) in small frequencies, ω

GR(ω) ≈ 2λπT 2

μ
ω2 − i

(
2
√

λπT 2ω +
(√

λ

2π
− 2(

√
λ)3πT 2

μ2

)
ω3

)
(3.23)

Again we know when GR(ω) is expanded in small ω it takes the form

GR(ω) = −iγ ω − �Mω2 − iρω3 + . . . (3.24)

where γ and �M are the viscous drag and the thermal mass shift for the Brownian particle.
Whereas ρ is some higher order “drag coefficient” as it is known that the imaginary part of the
retarded Green function (Im GR(ω)) is responsible for dissipation.

Now comparing (3.23) and (3.24) we can identify

γ = 2
√

λπT 2 (3.25)

�M = −2λπT 2

μ
(3.26)

= −√
λT

1

rm
(3.27)

ρ =
√

λ

2π
− 2(

√
λ)3πT 2

μ2
(3.28)

Note that the particle’s rest mass at zero temperature, M0
Q (3.20) and its viscous drag, γ (3.25)

are identical to that of a quark in an N = 4 SYM plasma at finite temperature in 3+1 dimensions
[5,32–34]. But the thermal mass shift, �M is vanishingly small for large value of μ. We have
intentionally kept the O(r−1

m ) term to look at its leading behavior. �M has the correct dimension
since rm is a dimensionless quantity (rm = br̄m and b ∼ length−1 and r̄m ∼ length).

One can also compare this mass shift with that obtained by considering the change in mass of
a static string coming from the change in its length due to the presence of a horizon.

�M = −
r̄h∫

0

(Tension).
√−gdr̄

= − 1

2πl2
s

r̄h∫
0

√−gttgrrdr̄

= − r̄h

2πl2
s

= −T L2

l2
s

= −√
λT
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One sees that it is not quite the same as (3.26). In lower dimension systems the effect of
fluctuations could be much larger and could explain the discrepancy.

Notice that if we take the limit μ → ∞ (ultra-violet limit) and T → 0 we obtain

GR(ω) = −i

√
λ

2π
ω3 (3.29)

which doesn’t contain any dimensionful parameter other than ω and thus properly describes a
conformal field theory at UV fixed point.

We can now put T = 0 in (3.21) to get

GR(ω)|T =0 = μω3

2π(ω + i
μ√
λ
)

=
μω3(ω − i

μ√
λ
)

2π(ω2 + (
μ√
λ
)2)

(3.30)

The presence of an imaginary part in GR(ω) signifies dissipation. Thus an interesting result
we get from the expression (3.30) is a temperature independent dissipation.

• For low frequency regime (ω � μ) at zero temperature we recover (3.29) which shows the
diffusive behavior,

GR(ω)|T =0 ≈ −i

√
λ

2π
ω3 (3.31)

• If we consider the frequency range ω 
 μ6

GR(ω)|T =0 ≈ μω2

2π
− i

μ2ω

2
√

λπ
+ . . . (3.32)

We see a drag like term proportional to ω. This term strongly suggests that there must be
“drag” for the heavy particle even at zero temperature for this 1 + 1 d CFT.

At first sight this is puzzling because Lorentz invariance of a theory would say that a quark
moving with a constant velocity for all time, should not slow down – this would violate boost
invariance.7 In fact the drag force on a particle moving with a constant velocity turns out to be
zero as we see below. The drag force F(t) is given by (in frequency space)

F(ω) = GR(ω)x(ω)

For a particle moving at constant velocity x(t) = vt . This translates to

x(ω) = −ivδ′(ω)

Since GR(ω = 0) = G′
R(ω = 0) = 0, the force is zero. In more detail, since we have a distribution

δ′(ω), we should consider a smooth function f (ω) and evaluate the integral:∫
dωGR(ω)x(ω)f (ω) =

∫
dωGR(ω)

(−ivδ′(ω)
)
f (ω) = 0

on integrating by parts.

6 If we are to think of μ as an effective cutoff of the theory, then we should keep ω < μ. So this is only a formal limit.
7 A similar phenomenon has been observed for theories with hyperscaling violation [6,7]. Clearly these backgrounds

break Poincaré invariance. For these non-relativistic situations, energy and momentum are conserved but drain into the
soft infra-red modes of the theory [6,8]. Moreover, this mechanism of energy loss is present even at constant velocity of
the particle! Evidently this phenomenon is quite different from the one we are addressing in the present article.
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(One can trace this to (3.30) which says that GR(ω) starts off as ω3.)
The phenomena of zero temperature dissipation have been noticed in holography [35–40] and

many other contexts [41–46]. The physical mechanism that gives rise to energy loss at zero tem-
perature in the relativistic theories was first explained in [35], and then elaborated on in [36,37].
For accelerated quarks in the vacuum of a CFT, energy and momentum are radiated away by
emission of gluonic quanta (SYM fields), in analogy with the theory of radiation in classical
electrodynamics. This in turns leads to a Lienard-like formula for the rate of energy loss and a
generalized Lorentz–Dirac equation that captures the effects of radiation damping. The previ-
ous interpretation agrees with the fact that a quark moving with constant velocity does not feel
drag force and thus, does not radiate. Moreover, for the Langevin dynamics around accelerated
trajectories at zero temperature [12,13], it has also been seen that the stochastic motion of the
heavy probe is not due to collisions with the fluid constituents but rather arises due to the random
emission of gluonic radiation.8

We conclude this section with some more remarks on the zero temperature dissipation term:

• It is finite and cannot be renormalized away in the boundary theory by Hermitian counter
terms.

• There has been some discussion in the literature on zero temperature dissipation [41–46,
54]. [54] advocate renormalizing this term away by subtracting the contribution from pure
AdS which corresponds to a vacuum. While this is certainly a valid option, we do not feel
compelled to do this, because as we have seen in this 1 + 1 dimensional system there is no
violation of any physical principle such as Lorentz invariance. Also as the calculations of
radiation show, there is a compelling physical reason to expect that it should be there.

• We take the view point that μ is finite because it is to be interpreted as an RG scale. Also
as mentioned earlier, as μ → ∞ the particle becomes infinitely heavy. Otherwise there is
nothing pathological in our calculation even if μ is infinite.

• There are some 1 + 1 condensed matter systems [41–46]9 which exhibit such dissipation (or
decoherence) at absolute zero due to zero-point fluctuations.

4. Schwinger–Keldysh propagators from holography: a review

The first two subsections of this section are basically review of how to get Schwinger–Keldysh
propagators in the boundary field theories using extended Kruskal structure of the black hole.
This is written in terms of the retarded Green functions. Thus combining this with the results of
Section 3, we immediately obtain the exact Schwinger–Keldysh Green functions for our system.

4.1. Kruskal/Keldysh correspondence

Herzog and Son [28] derived Schwinger–Keldysh propagators from bulk calculation in AdS5–
Schwarzschild metric. They analytically continued [30,31] the modes of the scalar field from I
to II (see Fig. 2). During this procedure only the modes near the horizon are crucial. It is very
straight forward to see that their prescription goes through for AdS3–BTZ background too, as
modes near the horizon behave identically. The same method is also applicable to our system

8 This interpretation is further supported by studies of the radiation pattern of a heavy quark [14,15]. See [16] for a
review of all these topics.

9 The authors would like to thank G. Baskaran for pointing out these references.
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with string where modes are functions of frequency (ω) only. Their derivation involved symmet-
ric contour i.e., σ = β/2. As we want to express our result in ra formalism we will fix σ = 0 as
before. We just sketch the generic four step AdS/CFT procedure.

1. The EOM for the fluctuating string is solved subjected to the boundary conditions

lim
r→rm

x(ω, r1) = x0
1(ω) (4.1)

lim
r→rm

x(ω, r2) = x0
2(ω) (4.2)

Here r1, r2 are the radial coordinates in L and R regions respectively. Now the general solutions
in L and R are

x(ω, r1) = a(ω)fω(r1) + b(ω)f ∗
ω(r1) (4.3)

x(ω, r2) = c(ω)fω(r2) + d(ω)f ∗
ω(r2) (4.4)

2. We have four undetermined coefficients in (4.3) and (4.4) but have only two boundary con-
ditions namely (4.1) and (4.2). So to specify the solution uniquely we need other two constraints.
Imposing horizon boundary conditions we can eliminate two coefficients namely c(ω) and d(ω).
Near the horizon the ingoing and outgoing modes in the R region behave as

e−iωtfω(r1) ∼ e−i ω
2πT

log(V ) (4.5)

e−iωtf ∗
ω(r1) ∼ e+i ω

2πT
log(−U) (4.6)

Now following [28] we will analytically continue the solution from R (U < 0,V > 0) to L

(U > 0,V < 0) region such that the solution is analytic in lower V plane and upper U plane.10

fω(r1) → e−ω/2T fω(r2) (4.7)

f ∗
ω(r1) → e+ω/2T f ∗

ω(r2) (4.8)

Therefore the solution when analytically continued to L region becomes

x(ω, r2) = a(ω)e−ω/2T fω(r2) + b(ω)e+ω/2T f ∗
ω(r2) (4.9)

But as mentioned above this is a special case where the contour is symmetric i.e., σ = β/2. One
can generalize this result by starting with V → |V |e−iθ and −U → |U |e−i(2π−θ) and defining
σ ≡ θ

2πT
, then continuing analytically to get

fω(r1) → e−ωσ fω(r2) = fω(r2) (4.10)

f ∗
ω(r1) → e+ω/T e−ωσ f ∗

ω(r2) = e+ω/T f ∗
ω(r2) (4.11)

here we have taken σ = 0 as usual. So, the solution in L region reduces to

x(ω, r2) = a(ω)fω(r2) + b(ω)e+ω/T f ∗
ω(r2) (4.12)

Now imposing the boundary conditions (4.1), (4.2) into (4.3) and (4.12) we can solve for a(ω)

and b(ω)

10 This choice is motivated by the fact that in field theory Feynman Green function contains +ve energy modes for
t → ∞ and −ve energy modes for t → −∞. And the Green function (G11) for the field theory “living” on the boundary
of the R-region should be time ordered one like usual Feynman Green function, GF in Minkowski space.
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a(ω) = x0
1(ω)

{
1 + nB(ω)

} − x0
2(ω)nB(ω) (4.13)

b(ω) = x0
2(ω)nB(ω) − x0

1(ω)nB(ω) (4.14)

Now we have the solution fully specified by R and L region solutions (4.3) and (4.12) satisfying
necessary boundary conditions at the boundary and the horizon.

3. The next step is to plug this solution into the boundary action

Sb′dy = −T0(rm)

2

∫
r1

dω

2π
x1(−ω, r1)∂rx1(ω, r1)

+ T0(rm)

2

∫
r2

dω

2π
x2(−ω, r2)∂rx2(ω, r2) (4.15)

to get

iSb′dy = −1

2

∫
dω

2π
x0

1(−ω)
[
i ReG0

R − (1 + 2nB) ImG0
R

]
x0

1(ω)

+ x0
2(−ω)

[−i ReG0
R − (1 + 2nB) ImG0

R

]
x0

2(ω)

− x0
1(−ω)

[−2nB ImG0
R

]
x0

2(ω)

− x0
2(−ω)

[−2(1 + nB) ImG0
R

]
x0

1(ω) (4.16)

Here retarded Green function is defined as

G0
R(ω) ≡ T0(r)

f−ω(r)∂rfω

|fω(r)|2
∣∣∣∣
r=rm

(4.17)

(as r → ∞, |fω(r)|2 → 1. So the numerator is already normalized if the probe brane is very
close to the boundary).

4. The last step is to take functional derivative with respect to x0
1 and/or x0

2 which are acting
like two source terms for the boundary field theory to get the Schwinger–Keldysh propagators

Gab =
[

i ReG0
R − (1 + 2nB) ImG0

R −2nB ImG0
R

−2(1 + nB) ImG0
R −i ReG0

R − (1 + 2nB) ImG0
R

]
(4.18)

Gab is exactly known from the expressions of G0
R in (3.19) and (3.22).

Now we want to express our result in ra formalism. So we need to covert x1, x2 into xr, xa .
Then the relations between bulk and the boundary fields reduce to

xa(ω, r) = f ∗
ω(r)x0

a(ω) (4.19)

xr(ω, r) = fω(r)x0
r (ω) + i(1 + 2nB) Imfω(r)x0

a(ω) (4.20)

And the boundary action in this set up becomes

Sb′dy = −T0(rm)

2

∫
rm

dω

2π
xa(−ω, r)∂rxr (ω, r)

− T0(rm)

2

∫
dω

2π
xr(−ω, r)∂rxa(ω, r) (4.21)
rm
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Fig. 3. Visualizing the boundary stochastic motion of the heavy particle by integrating out all string degrees of freedom.

Plugging (4.19) and (4.20) into the boundary action as before we end up getting

iSb′dy = −i

∫
dω

2π
x0
a(−ω)

[
G0

R(ω)
]
x0
r (ω) − 1

2

∫
dω

2π
x0
a(−ω)

[
iGsym(ω)

]
x0
a(ω) (4.22)

4.2. Boundary stochastic motion

Now here we want to have the boundary stochastic motion of the string. The partition function
for the string can be written as

Z =
∫ [

Dx1Dx0
1

][
Dx2Dx0

2

]
eiS1−iS2 (4.23)

where Dx0
1 is a measure for temporal path of the string end point and Dx1 is a measure for

the bulk path integral for the body of the string in R-region of the full Kruskal plane (Fig. 3).
Similarly Dx0

1 and Dx1 are defined in L-region.

[
Dx0

1

] =
∏
t

dx0
1(t), [Dx1] =

∏
t,r

dx1(t, r) (4.24)

To obtain the effective action of the string end points we will integrate out all string coordi-
nates inside the bulk. If we do this path integral (over the terms contained in the bracket)

Z =
∫ [

Dx0
1

][
Dx0

2

] [Dx1][Dx2]eiS1−iS2︸ ︷︷ ︸
≡

∫ [
Dx0

1

][
Dx0

2

]
eiS0

eff (4.25)

We have absorbed the field independent determinant in the normalization of the path integral.
Now will use the results from previous section where we have already calculated the bound-
ary actions (4.15) and (4.21). As there is no “boundary” at the horizon there will be only two
boundary terms from the two boundaries of the Kruskal plane.
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S0
eff = −T0(rm)

2

∫
r1

dω

2π
x1(−ω, r1)∂rx1(ω, r1)

+ T0(rm)

2

∫
r2

dω

2π
x2(−ω, r2)∂rx2(ω, r2) (4.26)

Now we can easily write down the partition function for the string endpoints in ra formalism
from (4.22)

Z =
∫ [

Dx0
r

][
Dx0

a

]
eiS0

eff (4.27)

iS0
eff = −i

∫
dω

2π
x0
a(−ω)

[
G0

R(ω)
]
x0
r (ω) − 1

2

∫
dω

2π
x0
a(−ω)

[
iGsym(ω)

]
x0
a(ω) (4.28)

Notice that the effective partition function of the string end points (4.27) is exactly similar to
the Fourier space path integral (2.25). Therefore we can perform the same procedure of introduc-
ing a “noise”, ξ to obtain the following equations of motion obeyed by the string end points[−M0

Qω2 + GR(ω)
]
xr(ω) = ξ(ω)

〈
ξ(−ω)ξ(ω)

〉 = −(1 + 2nB) ImGR(ω) (4.29)

Here we have used the facts that

G0
R(ω) = −M0

Qω2 + GR(ω),

iGsym(ω) = −(1 + 2nB) ImGR(ω)

5. Effective action at general r: Brownian motion on stretched horizon

Since we have an exact solution one can hope to generalize the membrane paradigm by
locating the membrane at arbitrary r (r0, say). This would be in the spirit of a holographic
renormalization group (RG) [49,50] approach to the problem. This would then justify the state-
ment made in Section 3 that μ can be interpreted as an RG scale. This is done in this section. We
begin with a review of some basic ideas in holographic RG following [50].

5.1. Holographic renormalization group

A version of the holographic RG that is useful here was discussed in [50] and is reviewed in
this section. The main idea is to start with an action, which is the original bulk action supple-
mented by a boundary action at r = r0, that takes into account the effect of integrating out of
the bulk region r > r0.11 This region r > r0 in the bulk represents the high energy region of the
boundary field theory. The so-called “alternative quantization” [48] where the boundary value
of the bulk field φ is interpreted as the expectation value of a boundary single trace operator
rather than as a source for the boundary operator comes in handy in explaining the approach.
The boundary action obtained this way can also be interpreted as the generating functional for a
different boundary theory that is obtained by the so-called “standard quantization”. Furthermore
there is an RG flow from the first boundary action perturbed by a relevant deformation involving
double trace operators to the second boundary action.

11 In this subsection for compatibility with [50] we use r for the dimensional variable. This would be r̄ in other sections.
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Thus we begin with

S =
r0∫

0

drdDx
√−g

[
−1

2
∂Mφ∂NφgMN − V (φ)

]
+ SB [φ, r0] (5.1)

In Ref. [50] D is the space–time dimension of the boundary theory and φ fills all of AdS bulk.
However we can interpret D for our purposes as the dimension of a brane/string hanging down
from the boundary into the center with the other end going into the horizon of the black hole.
Thus in our case φ(x) = x(r, t), D = 1 and the action becomes

S =
r0∫

0

drdt
√−g

[
−1

2

(
∂tx(r, t)∂t x(r, t)gtt + ∂rx(r, t)∂rx(r, t)grr

) − V (x)

]

+ SB [x, r0] (5.2)

This can be compared with (3.8) and we see that it is exactly the same with V (x) = m, which
does not contribute to the equations of motion, and so can be ignored in this discussion.

For our purposes, since we are only interested in the two point function, we can think of the
boundary action as

SB [φ, r0] = 1

2

∫
r=r0

dDkφ(k)GR(k, r0)φ(−k) (5.3)

Specializing to our case this becomes:

SB [x, r0] = 1

2

∫
r=r0

dωx(ω)GR(ω, r0)x(−ω) (5.4)

The parameters of the boundary field theory action are collected here in GR(k, r0) and their
dependence on the RG scale r0 is indicated. When we vary φ we get the usual bulk equation and
also a (boundary) condition at the boundary r = r0. This depends on the boundary action and is:

GR(k, r0) = −√−ggrr ∂rφc(r0)

φc(r0)
(5.5)

Fixing the solution to the equation of motion, a second order differential equation in r , requires
specifying φ(r0) and ∂rφ(r0). If we specify φ(r0) and ∂rφ(r0), GR is fixed by this boundary
condition. In the alternative quantization GR is the coefficient of the quadratic term in the ef-
fective action of the boundary theory. On the other hand if we interpret SB(φ) as the generating
functional for the boundary theory, GR(k, r0) is the Green function of the boundary theory. This
is the interpretation that is relevant for us. The Green functions in the two cases are inverses of
each other.

One important point is that if the bulk equation of motion is linear, therefore scaling φ(r0) by
a number just scales the solution everywhere by the same number. Hence GR is not affected. But
this would not be true in a non-linear bulk theory. In Section 3 we have a linear approximation
to the equation for the string fluctuation. Thus there is no loss of generality in setting φ(r0) = 1.

In this approach one can write down an RG, [50], that says the total action (evaluated on
the solution) cannot depend on r0. As also shown in [50] the parameters of the boundary action
must vary such that the classical solution is reproduced. Thus solving the RG gives the classical
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solution. The converse is also true. It is easy to see [50] that if we use the exact classical solution
in the action, the RG becomes an identity, because it becomes equivalent to imposing (5.5).

The above formalism can be applied to our case where we use (5.2) and (5.4).

GR(ω, r0) = −√−ggrr ∂rxc(r0)

xc(r0)
(5.6)

with
√−ggrr = T0. This is the same as (3.14) except that we have not assumed any normalization

for the xc(r0).
As we change r0 to r ′

0, RG demands that one has to change the boundary condition on x and
the boundary action so that physical quantities are fixed. In our case since we know the exact
solution, we know the boundary condition at r ′

0: x(r ′
0) = xc(r

′
0) where xc is the exact classical

solution, which has an earlier prescribed boundary value at r0. We also know the new boundary
action. It is given by (5.3) where GR(r ′

0) is given by (5.5), where the RHS is evaluated at r ′
0.

(Actually for the situation in Section 3, the equation for x is linear, and as mentioned above we
can just continue to use x(r ′

0) = 1.) The functional form of the Green function does not change
– except that all explicit r0’s are replaced by r ′

0’s. Thus the parameter μ = r0
l2s

used in Section 3

can be understood as a renormalization scale.
Thus G0

R in our case is the correlation function for the random force i.e. we interpret the action
involving x as the generating functional for the boundary theory of the random force acting on
the quark.

Eq. (3.18) has a diffusive pole at −iμ√
λ

. This gives an exponential decay time scale for the
random force acting on the quark. Being a mass scale it is appropriately proportional to μ the
RG scale. From the point of view of the action for x (which is the coordinate of the quark in
addition to being the source for ξ ), this is a non-local quadratic term and cannot be renormalized
away by adding local counter terms. For the effective action for ξ the random force acting on
the quark, which involves the inverse Green function, this is a zero rather than a pole. However
being imaginary, it cannot be renormalized away by a hermitian counter term in the bare action,
and furthermore the powers of ω in the denominator would make the counterterm non local. This
leads us to conclude that this pole represents a physical effect in the low energy dynamics of the
quark.

5.2. Placing the membrane at arbitrary r

In the previous section we have integrated out all modes of the string to obtain the effective
action for the string end points and we end up getting a Langevin equation on the boundary.
Here our aim is to obtain such an effective action on a spatial slice at a general value of r (r0,
say). This requires determining the solution to the EOM (3.11) exactly which we have already
obtained (3.13). Then we will choose r0 very close to rh to get a Langevin equation on that
stretched horizon (a hypothetical membrane which we consider to be very close to the horizon
of the black hole).

For this purpose again we write the partition function of string in several parts

Z =
∫ [

Dx0
1Dx>

1 Dx
r0
1

][
Dx0

2Dx>
2 Dx

r0
2

][
Dx<

1 Dx<
2

]
eiS>

1 −iS>
2 eiS<

1 −iS<
2 (5.7)

As before Dx0
1 is a measure for temporal path of the string end point and Dx>

1 and Dx<
1 are the

measures for the bulk path integral for the body of the string outside and inside of the spatial slice
in R-region and Dx

r0 denotes the temporal path integral for the string end point on the spatial
1
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Fig. 4. Integrating out the string degrees of freedom inside a hypothetical “membrane” and push it very close to the
horizon (i.e., stretched horizon) to obtain a Langevin equation which is overdamped.

slice (see Fig. 4). Whereas S>
1 is the action outside the spatial slice and S<

1 is the action inside the
spatial slice. Same is true for L region. This time integrating out the region of the string inside
r = r0.

Z =
∫ [

Dx0
1Dx>

1 Dx
r0
1

][
Dx0

2Dx>
2 Dx

r0
2

]
eiS>

1 −iS>
2

[
Dx<

1

][
Dx<

2

]
eiS<

1 −iS<
2︸ ︷︷ ︸ (5.8)

=
∫ [

Dx0
1Dx>

1 Dx
r0
1

][
Dx0

2Dx>
2 Dx

r0
2

]
eiS>

1 −iS>
2 eiS

r0
eff (5.9)

Where S
r0
eff = the boundary action which passes through x

r0
1 (ω) and x

r0
2 (ω).

Notice here the stretched horizon at r = r0 is a boundary. And the older boundary conditions
are now applicable at r = r0. So the bulk fields, x<

1,2(r,ω) and the boundary fields, x
r0
1,2(ω) are

related by

x<
1

(
r1 = r0

1 ,ω
) = x

r0
1 (ω) (5.10)

x<
2

(
r2 = r0

2 ,ω
) = x

r0
2 (ω) (5.11)

And if we use the ra basis then the boundary conditions reduce to

x<
a (ω, r) = f ∗

ω(r)xr0
a (ω) (5.12)

x<
r (ω, r) = fω(r)xr0

r (ω) + i(1 + 2nB) Imfω(r)xr0
a (ω) (5.13)

Going through the same calculation as before and using the fact there is no “boundary” at the
horizon we end up getting the membrane effective action

S
r0
eff = −T0(r0)

2

∫
r0
1

dω

2π
x<

1 (−ω, r)∂rx
<
1 (ω, r)

+ T0(r0)

2

∫
r0
2

dω

2π
x<

2 (−ω, r)∂rx
<
2 (ω, r) (5.14)

Now if we use the ra-coordinates then using (5.12) and (5.13) we will have
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iSeff = −i

∫
dω

2π
xr0
a (−ω)

[
G

r0
R (ω)

]
xr0
r (ω) − 1

2

∫
dω

2π
xr0
a (−ω)

[
iGr0

sym(ω)
]
xr0
a (ω) (5.15)

The retarded propagator is defined such that it is normalized at the spatial slice. Now the
expression for retarded force–force correlator can be written down for any fixed value of r0.
Using the value of T0(r) from (3.7) and substituting the expression for fω(r) from (3.13)

G
r0
R (ω) ≡ T0(r)

f−ω(r)∂rfω

|fω(r)|2
∣∣∣∣
r=r0

= −
√

λπ2T 3

2

r0w(r0w+ i)

(r0 − iw)
(5.16)

= −μ0ω
(i

√
λπ2T 2 + μ0ω)

2π(μ0 − i
√

λω)
(5.17)

Eqs. (5.16) and (5.17) are exact expressions for the retarded propagator on the probe brane
which is placed at r = r0 and or equivalently when the field theory is probed at the energy scale
μ0 = r̄0

l2s
. It trivially reduces to the boundary propagator G0

R(ω) as in (3.16) when r0 → rm.

The other point we want to emphasis here is that the retarded Green function (3.22) which is
derived using holography incorporates the “softening of delta function” to avoid the contradiction
described in Section 1.

lim
t→t0

t∫
t0

dt ′γ
(
t ′
) = lim

t→t0

t∫
t0

dt ′
∞∫

−∞
dωe−iωt ′γ (ω) (5.18)

= − lim
t→t0

t∫
t0

dt ′
∞∫

−∞
dωe−iωt ′ μω

2π

(ω2 + π2T 2)

(ω + i
μ√
λ
)

(5.19)

One can perform the contour integral for ω to pick up the residue at ω = −i
μ√
λ

. So the
corresponding integral

lim
t→t0

t∫
t0

dt ′2πie
− μ√

λ
t ′ μ(−i

μ√
λ
)

2π

((
−i

μ√
λ

)2

+ π2T 2
)

→ 0 (5.20)

This shows that our Green function (5.17) is consistent with (1.7).
From (5.9) it is evident that after we integrate out the string coordinates inside r = r0 we have

partition functions of two haves of the Kruskal plane and which are coupled by the membrane
effective action, S

r0
eff. Now will be shown (and already been mentioned) that a part (Gr0

sym) of
this “coupling” introduces thermal noise. It can be done following exactly same procedure of

invoking a horizon noise for the second part of eiS
r0
eff in the partition function

e− 1
2

∫
dω
2π

x
r0
a (−ω)[iGr0

sym(ω)]xr0
a (ω) =

∫ [
Dξ r0

]
ei

∫
x

r0
a (−ω)ξr0 (ω)e

− 1
2

∫ ξr0 (ω)ξr0 (−ω)

iG
r0
sym(ω) (5.21)

with, 〈
ξ r0(−ω)ξr0(ω)

〉 = iGr0
sym(ω) = −(1 + 2nB) ImG

r0(ω) (5.22)
R
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We have computed the contribution coming from the boundary action namely S
r0
eff. Now in order

to calculate the partition function (5.9) we need to look at the bulk contributions. In ra basis this
bulk action reduces to

iS>
1 − iS>

2 = −i

∫
dω

2π
dr

[
T0(r)∂rx

>
a (−ω, r)∂rx

>
r (ω, r) − mω2x>

r (ω, r)x>
a (−ω, r)

f

]

= −i

∫
dω

2π
x>
a (−ω, r)

[
T0(r)∂rx

>
r (ω, r)

]∣∣r=rm
r=r0

− i

∫
dω

2π
drx>

a (−ω, r)

[
−∂r

(
T0(r)∂rx

>
r (ω, r)

) − mω2x>
r (ω, r)

f

]
(5.23)

From (5.15), (5.21) and (5.23) we can finally write

iS>
1 − iS>

2 + iS
r0
eff

= −i

∫
rm

dω

2π
x0
a(−ω, r)

[
T0(rm)∂rx

>
r (ω, r)

]

− i

∫
r0

dω

2π
xr0
a (−ω, r)

[−T0(r0)∂rx
>
r (ω, r) + G

r0
R (ω)xr0

r (ω) − ξ r0(ω)
]

− i

∫
dω

2π
drx>

a (−ω, r)

[
−∂r

(
T0(r)∂rx

>
r (ω, r)

) − mω2x>
r (ω, r)

f

]
(5.24)

The path integral reduces to

Z =
∫ [

Dx0
r Dx>

r Dxr0
r

][
Dξ r0

]
e
− 1

2

∫ ξr0 (ω)ξr0 (−ω)

−(1+2nB )ImG
r0
R

(ω)
[
Dx0

aDx>
a Dxr0

a

]
eiS>

1 −iS>
2 +iS

r0
eff︸ ︷︷ ︸

=
∫ [

Dx0
r Dx>

r Dxr0
r

][
Dξ r0

]
e
− 1

2

∫ ξr0 (ω)ξr0 (−ω)

−(1+2nB )ImG
r0
R

(ω) δω

[−T0(rm)∂rx
>
r (ω, r)

]
r=rm

× δω

[
−∂r

(
T0(r)∂rx

>
r (ω, r)

) − mω2x>
r (ω, r)

f

]
× δω

[−T0(r0)∂rx
>
r (ω, r) + G

r0
R (ω)xr0

r (ω) − ξ r0(ω)
]
r=r0

(5.25)

We have integrated over the terms inside the bracket viz, [Dx0
a ], [Dx>

a ] and [Dx
r0
a ]. This path

integral (5.25) leads to three equations for boundary end point, the horizon end point and the
body of the string.

I. The boundary end point dynamics is governed by the deterministic equation which just tells
us this end point is free

T0(rm)∂rx
>
r (ω, r) = 0 (5.26)

II. The body of the string, as expected, satisfies the equation of motion[
∂r

(
T0(r)∂rx

>
r (ω, r)

) + mω2x>
r (ω, r)

f

]
= 0 (5.27)

III. And the end point on the r = r0 membrane obeys the stochastic equation of motion

T0(r0)∂rx
>(ω, r) + ξ r0(ω) = G

r0(ω)xr0
r (ω) (5.28)
r R



98 P. Banerjee, B. Sathiapalan / Nuclear Physics B 884 (2014) 74–105
with, 〈
ξ r0(−ω)ξr0(ω)

〉 = −(1 + 2nB) ImG
r0
R (ω) (5.29)

This is the Langevin dynamics describing the endpoint of the string living on the membrane
at r = r0.

So far in this section everything was for arbitrary r0. Now for the sake of completeness we
follow Son and Teaney [5] again to re-derive the overdamped motion on the stretched horizon and
also the boundary FD equation for AdS3–BH which is identical to their (AdS5–BH) calculation.
For that purpose we want to move this membrane very close to the horizon i.e., r0 = 1 + ε; ε is
very small (see Fig. 4). Putting this value of r0 into (5.16) one obtains retarded Green function
on the stretched horizon

Gh
R(ω) = − lim

ε→0

√
λπ2T 3

2

[
i(1 + 2ε)(w+w3)

1 + 2ε +w2
+ 2εw2

1 + 2ε +w2

]
∼ −iγ ω (5.30)

Here we have assumed that frequency is very small i.e., w � 1. The other point to notice is the
“inertial term” is suppressed by an extra factor of ε. And as ε → 0 the mass of the string end
point on the stretched horizon,

Mh
Q ≡ 2ε

1 + 2ε

√
λT 2

2
→ 0 (5.31)

(Expanding the real part of Gh
R(ω) in ε we get correction to mass, �M ∼O(ε2).)

Therefore from (5.28) and (5.30) one obtains the Langevin equation on the stretched horizon

T0(rh)∂rx
>
r (ω, r) + ξh(ω) = −iωγ xh

r (ω) (5.32)

with, 〈
ξh(−ω)ξh(ω)

〉 = (1 + 2nB)γω (5.33)

This is the overdamped motion of the horizon end point as discussed in [5], where the first term
signifies the pulling of the end point by the string outside the horizon. Vanishing of Mh

Q (5.31) is
the reason behind getting an overdamped Langevin dynamics.

Our next task is to investigate how the fluctuations on this membrane is transmitted to the
boundary through the string dynamics such that the boundary end point satisfies a Langevin
equation (4.29). In other words, we wish to have a relationship between ξh and ξ0 and using
this we want to show the fluctuation–dissipation for boundary fluctuations, ξ0. To proceed let’s
consider the behavior of the solution near the AdS boundary

x(ω, r) = x0(ω)fω(r) + ξ0(ω)

[
Imfω(r)

− ImGR(ω)

]
(5.34)

where fω(r) is non-normalizable and Imfω(r) is a normalizable mode. − ImGR(ω) is just a
normalization such that ξ0(ω) can be recognized as the boundary fluctuation. Now if substitute
this (5.34) into the equation describing boundary dynamics (5.26) we obtain expected Brownian
equation for the boundary end point[−M0

Qω2 + GR(ω)
]
x0(ω) = ξ0(ω) (5.35)

To get the fluctuation–dissipation relation for ξ0 we use
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−iωγ = T0(rh)
f−ω(rh)∂rfω(rh)

|fω(rh)|2 (5.36)

to re-write the equation at the stretched horizon dynamics (5.32) as

ξ0(ω)

− ImGR(ω)
T0(rh)

[
fω(rh)∂r Imfω − Imfω(rh)∂rfω(rh)

] + fω(rh)ξ
h(ω) = 0 (5.37)

But the term in the square bracket is the Wronskian (B.3) of the two solutions and using
T0(r)W(r) = + ImGR(ω) (B.4) we have desired relation

ξ0(ω) = fω(rh)ξ
h(ω) (5.38)

For the AdS3–BH system we are considering we can exactly calculate fω(rh) from (3.13) and
Eq. (5.38) reduces to

ξ0(ω) =
(

1 − i
ω

πT

)
ξh(ω) (5.39)

Once we have obtained this relation (5.38) we can use the horizon fluctuation–dissipation
theorem (5.33) and (5.36) to get〈

ξ0(−ω)ξ0(ω)
〉 = −(1 + 2nB) ImGR(ω) (5.40)

This is the statement of boundary fluctuation–dissipation theorem.

6. Different time scales

Brownian motion is usually characterized mainly by two time scales [18]: relaxation time (tr)
and collision time (tc). Apart from these two there is another time scale called mean free path
time (tmfp). These different time scales come very naturally in kinetic theory of fluids. But in
the holographic context when one considers classical gravity in the bulk the dual field theory is
inevitably strongly coupled. In the same spirit the fluid that contains the quark in present context
is strongly coupled. As a consequence, as we will see in this section, all those intuitive notions
from kinetic theory don’t go through in this case of holographic Brownian motion. First of all we
will define the different time scales mentioned above.

• The relaxation time is a time scale which separates ballistic regime where the Brownian
particle moves inertially (displacement ∼ time) from diffusive regime where it undergoes a
random walk (displacement ∼ √

time). This is the time taken by the system to thermalize. In
the small frequency regime (3.24) (using (3.20)) we can write the Langevin equation (2.29)
as [

− μ

2π
ω2 − iγ ω + . . .

]
x(ω) = ξ(ω) (6.1)

One obtains usual ballistic motion when the inertial term dominates over the diffusive term
i.e., μ

2π
ω2 
 γω. Evidently one gets one characteristic frequency when these two terms are

of equal strength.

ω ∼ γ

μ
≈

√
λT 2

Mkin

Consequently the corresponding time scale (relaxation time)
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tr ∼ Mkin√
λT 2

(6.2)

• The collision time is defined as a time scale over which random noise is correlated or in other
words it’s the time elapsed in a single collision. It measures how much γ (t − t ′) deviates from
δ(t − t ′). From (3.22) we obtain

γ (t) ≡ GR(t) = μ2

√
λ

(
−μ2

λ
+ 4π2T 2

)
e
− μ√

λ
t

(6.3)

In (6.3)
√

λ
μ

naturally comes out to be a time scale. This is the ‘memory time’ which fixes the

width of γ (t). Hence it determines the duration of collision (tc).12

tc =
√

λ

μ
≈

√
λ

Mkin
(6.4)

From (6.2) and (6.4)

tr
tc

∼
(

Mkin√
λT

)2

(6.5)

For ‘dilute’ fluid one expects tr 
 tc. But from (6.5) it is clear that for strongly coupled fluids
for which λ 
 1 this relation is not necessarily true.

• The mean free path time is the time elapsed between two consecutive collisions of the Brow-
nian particle. As argued in [4] to obtain tmfp one needs to compute the 4-point correlation
function. Therefore it will be suppressed by a factor of 1√

λ
compared to tc.

tmfp ∼ 1√
λ

tc ≈ 1

Mkin
(6.6)

Again from (6.6) and (6.4) tmfp 
 tc does not necessarily hold for λ 
 1.

7. Conclusions

We have studied the Brownian diffusion of a particle in one dimension using the holographic
techniques. The holographic dual is a BTZ black hole with a string. We have used the Green
function techniques of Son and Teaney [5]. Since the differential equation can be solved exactly
we find an exact Green function and an exact (generalized) Langevin equation.

Some interesting features:

• We show that the exact generalized Langevin equation, which is valid on short time scales
also, does not suffer from the inconsistency that is associated with the usual Langevin equa-
tion that has a delta function for the drag term.

12 One can observe that this is the pole of the retarded Green function at ω = −i
μ√
λ

that fixes the collision time scale.

Here we have used Dirichlet boundary condition (standard quantization) (3.13) on the string modes at the boundary.
On the other hand, if one uses Neumann boundary condition (alternative quantization), presumably one would get the
retarded Green function, G̃R = G−1

R
(see Appendix A of [50]). These two different boundary conditions describe two

completely different dual CFTs. Therefore, for the latter CFT the corresponding time scale is determined by the zero of
our Green function GR(ω) i.e., ω = −i2πT and thus tc ∼ 1

T
. For example, in [4] Neumann boundary condition is used

and the collision time, tc ∼ 1 .

T
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• We also find that the temperature dependent mass correction is zero (in the limit that the UV
cutoff is taken to infinity) unlike in the higher dimensional cases.

• There is also a temperature independent dissipation at all frequencies. At high frequencies
it is a drag term. This does not violate Lorentz invariance as the force on a quark moving
with constant velocity for all time continues to be zero. This has already been studied in
higher dimensional systems and is due to radiation [35–40]. It is noteworthy that a tempera-
ture independent dissipation in one dimension has also been noted in the condensed matter
literature [41–46].

• Once again because an exact Green function is available, the “stretched horizon” can in fact
be placed at an arbitrary radius and an effective action obtained.

It would be interesting to study the holographic RG interpretation [49,50] in this case. It
would also be interesting to study the same problem using a charged BTZ black hole, thereby
introducing a chemical potential. The phenomenon of zero temperature dissipation and drag is
fascinating and it would be interesting to explore this further using holographic techniques.

Note added

After this work was completed we came across a paper [47] that deals with very similar issues.
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Appendix A. Associated Legendre differential equation and its solutions

The associated Legendre differential equation is a generalization of the Legendre differential
equation and is given by

d

dz

[(
1 − z2)dy

dz

]
+

[
λ(λ + 1) + μ2

1 − z2

]
y = 0 (A.1)

which can be written

(
1 − z2)y′′ − 2zy′ +

[
λ(λ + 1) − μ2

1 − z2

]
y = 0 (A.2)

P
μ
λ and Q

μ
λ are the two linearly independent solutions to the associated Legendre D.E. The so-

lutions P
μ
λ to this equation are called the associated Legendre polynomials (if λ is an integer), or

associated Legendre functions of the first kind (if is not an integer). Similarly, Q
μ
λ is a Legendre

function of the second kind. These functions may actually be defined for general complex pa-
rameters and argument. In particular they can be expressed in terms of hypergeometric functions
and gamma functions

P
μ
λ (z) = 1

[
1 + z

]μ/2

2F1

(
−λ,λ + 1;1 − μ; 1 − z

)
(A.3)
Γ (1 − μ) 1 − z 2
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Q
μ
λ (z) =

√
πΓ (λ + μ + 1)

2λ+1Γ (λ + 3/2)

1

zλ+μ+1

(
1 − z2)μ

2

× 2F1

(
λ + μ + 1

2
,
λ + μ + 2

2
;λ + 3

2
; 1

z2

)
(A.4)

For the EOM of the string (3.11) the general solution will be

fω(r) = C1
P iw

1

r
+ C2

Qiw
1

r
(A.5)

From above expressions (A.3) and (A.4) we get,

P iw
1 (r) = 1

Γ (1 − iw)

[
1 + r

1 − r

]iw/2

2F1

(
−1,2;1 − iw; 1 − r

2

)

Qiw
1 (r) =

√
πΓ (2 + iw)

4Γ (5/2)

1

r(2+iw)

(
1 − r2) iw

2
2F1

(
2 + iw

2
,

3 + iw

2
; 5

2
; 1

r2

)
Near the horizon f (r) = 1 − 1

r2 → 0 i.e., r → 1. So the dominant behavior of the solution
near the horizon will be of the form,

fω(r) ∼ (r − 1)±α

From above two solutions it is evident that
P iw

1 (r)

r
∼ (1 − r)−iw/2 and

Qiw
1 (r)

r
∼ (1 − r)iw/2.

Now,

e−iωt .(1 − r)−iw/2 ∼ e−iω{t+ 1
2πT

ln(r−1)}

Notice that near the horizon r → 1, ln(r − 1) goes more and more negative. Now to keep the
phase fixed t must increase. That means this wave moves towards the horizon with increment

of time. So,
P iw

1
r

∼ (1 − r)−iw/2 is the desired incoming wave solution. And by the same to-

ken
Qiw

1
r

∼ (1 − r)iw/2 is the outgoing wave solution. To get retarded propagator one has to

choose
P iw

1
r

.

Appendix B. Retarded bulk to bulk correlators

If we have retarded Green function in the boundary theory we can always construct other
Green functions. As we know the solution to the string EOM exactly we can build the exact
retarded bulk-to-bulk correlator, Gret(ω, r, r̃) which is in-falling at the horizon and normalizable
at the boundary. In Section 3 we had fω(r) as a solution to the wave equation (3.10) and so was
f ∗

ω(r). As it was a linear differential equation any linear combination of them e.g., Imfω(r) =
fω(r)−f ∗

ω(r)

2i
is also a solution. But we had chosen them such that fω(r) and f ∗

ω(r) → 1 as r → ∞.
Therefore Imfω(r) is a normalizable solution to that wave equation (3.10). Thus the retarded
bulk-to-bulk correlator is defined as

Gret(ω, r, r̃) = Imfω(r)fω(r̃)θ(r, r̃) + fω(r) Imfω(r̃)θ(r̃, r)

T0(r̃)Wret(r̃)
(B.1)

Wret(r̃) ≡ Imf ′ (r̃)fω(r̃) − f ′ (r̃) Imfω(r̃) (B.2)
ω ω
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Now from Eq. (3.13) (taking rm → ∞) we obtain the Wronskian as

Wret(r̃) = w3 +w

r̃2 − r̃4
(B.3)

The interesting thing to notice that the Wronskian depends on r̃ in such a way that T0(r̃) =√
λπ2T 3

2 r̃2(r̃2 − 1) cancels that r̃-dependence. Therefore the denominator of (B.1)

T0(r̃)Wret(r̃) = −1

2
π2

√
λT 3(w3 +w

) = + ImGR(ω) (B.4)

becomes independent of r̃ .
Now we can write (B.1) as

Gret(ω, r, r̃) ≡ G+
ret(ω, r, r̃)θ(r, r̃) + G−

ret(ω, r, r̃)θ(r̃, r) (B.5)

And finally using (3.13) and (B.4) we obtain

G+
ret(ω, r, r̃) = (

1 − r2)− iω
2πT

(
1 + r̃

1 − r̃

) iω
2πT

(πr̃T − iω)e− ω
T

× (ω + iπrT )(1 + r)
iω
πT + eω/T (1 − r)

iω
πT (ω − iπrT )

π
√

λrr̃T 2ω(π2T 2 + ω2)
(B.6)

G−
ret(ω, r, r̃) = (

1 − r̃2)− iω
2πT

(
1 + r

1 − r

) iω
2πT

(πrT − iω)e− ω
T

× (ω + iπ r̃T )(1 + r̃)
iω
πT + eω/T (1 − r̃)

iω
πT (ω − iπ r̃T )

π
√

λrr̃T 2ω(π2T 2 + ω2)
(B.7)
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