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MATHEMATICS

ON FIBRE SPACES WITH CROSS-SECTIONS

BY

SZE-TSEN HU

(Communicated by Prof. H. FREUDENTHAL at the meeting of November 29, 1957)

1. Introduction

Throughout the present paper, we are concerned with a fibre space E
over a base space B with projection

p:E—B

in the sense of J.—P. SERRE, [3, p. 443]. Assume that there is a cross-
section
q: B—E,

that is to say, ¢ is a continuous map of B into £ such that the composition
pq is the identity map on B. As an immediate consequence, ¢ is a homeo-
morphism of B onto a subspace ¢(B) of . Hence we may identify B
with ¢(B) by means of ¢; then B becomes a subspace of £ and the cross-
section ¢ becomes the inclusion map. Furthermore, the projection p
becomes a retraction of £ onto B, and hence B is a closed subspace of £
provided that E is a Hausdorff space.

Let A be a subspace of B and let D=p(4) CE. Then BN D=A.
Thus we have

ACBCE, ACDCE.

Let A4, be a subspace of 4 and pick a point g, € 4, as the base point
for all homotopy groups involved in this paper. Denote by F the fibre
over the point a, that is to say,

F=p(a,) CD.
The purpose of this paper is to establish an exact sequence
a4
oy y(A, Ag) < 7 (B, Ay) < 7(B, Ag) X 70y(D, Ag) < m(4, Ag) < ...

where 4, @, p are homomorphisms defined as follows. Consider the follow-
ing diagram (see next page) where all homomorphisms other than the
boundary operators 9, d;, 9, are induced by inclusion maps. In § 2, we
shall prove that &, and k,, are isomorphisms. Then, the homomorphisms
4, ¢,y are given by the following formulae:

yu=(hyyu, hoyu™), uem,(A4, 4,),

(V1 Vg) = (M 401)(Mgy0,), vy € (B, 4y), v, € (D, Ay),
Aw =k}, w, w e m,(E, 4,).
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Observe the apparent similarity between this exact sequence and the
Mayer—Vietoris sequence of a proper triad in homology theory, [1, p. 39].

2. The tsomorphisms ky, and ko,
Consider the transfdrmations

Pu: 7(B) > 7(B), g m(B) — ()

induced by the projection p: E — B and the cross-section ¢: B > E
for each n=0. Since pg is the identity map on B, it follows that p,
carries m,(K) onto m,(B) and ¢, sends m,(B) into 7z,(E) in a one-to-one
fashion. Therefore, in case n=1, p, is an epimorphism and ¢, is a mono-
morphism. Then, from the exactness of the homotopy sequence

- * de T -
e, (B) i— 7y—1(B) < 7, (B, B) < m,(K) <q— 7, B) <

ofv the triplet (B, B, a,), [2, p- 493], we deduce that, for every ﬂg 1,
d4 sends m,(¥, B) into the neutral element of =z, ,(B) and r, carries
m,(E) onto m,(E, B). Let K, denote the kernel of p, in z,(E). Then,
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one can verify that r, sends K, onto =, (#, B) in a one-to-one fashion
for every n=1.
Next, consider the exact homotopy sequence

ds D« 8« ds D
s n'n(B) <~ nn(E) <~ nn(F) <~ nn+1(B) <~ ...

of the given fibering, [4, p. 91], where s,, is induced by the inclusion map.
It follows from the exactness of the sequence that s, sends 7,(F) onto
K, in a one-to-one fashion for each n=0.

In the following diagram of inclusion maps

o S
D «— . F > E
0 r
kl
(D, A4) —> (E, B)

we have rs=Fk,00. For each n=1, since s, sends x,(F) isomorphically
onto K, and r, sends K,-onto z,(E, B) in a one-to-one fashion, it follows
that rs, carries =, (F) onto n,(E, B) in a one-to-one fashion. Since D
is a fibre space over A with projection p|D and cross-section ¢|4, it
follows that p.o, carries =, (F) onto =,(D, A) in a one-to-one fashion
for each n=1. Since rs=kpo, we have k ,=r,s.(04x04). Therefore,
we have proved the following

Lemma 1. For each n=1; the induced transformation
kl* : nn(D’ A) - ﬂ,,,(E, B)
sends m,(D, A) onto n,(H, B) in a one-to-one fashion.

Now, let us turn to k,,. By the fibering theorem in homotopy theory,
[2, p. 495], the induced transformation

Py : (B, D) - m,(B, 4), n=1, .
of the projection p: (E, D) - (B, 4) sends n,(#, D) onto n,(B, A) in
one-to-one fashion. Since pk, is the identity map on (B, 4), we have
kyy =p5?'. Therefore, we have proved the following -

Lemma 2. For each n=1, the induced transformation
kz* : n'n(B’ A) g JT'n(-E'a D)

sends m,(B, A) onto m,(E, D) in a one-to-one fashion.

Thus, in case n>1, both k,, and k,, are isomorphisms. Then, the
construction of the sequence described in § 1 and the proof of its exactness
can be carried out just like those of the Mayer—Vietoris sequence except
one must take care of the fact that some groups in the present sequence
might fail to be abelian.
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3. Algebraic lemmas
Lemma 3. In the following diagram of groups and homomorphisms

N, N,

nl M Ve

&g %

L, L,
if the two diagonals are exact, the two triangles are commutative, and y,, v,
are isomorphisms, then we have the following conclusions :
(8.1) oy, xy are monomorphisms and By, B, are epimorphisms.
(8.2) M is the direct product of the images of x; and w,.
(3.3) B, carries Im(x,) tsomorphically onto Ny and B, carries Im(x,) iso-
morphically onto N,.
(3.4) If x;eIm(e,), then oyt Porcy =21 If x5 € Im(exy), then ogyrt Brote =Ty,
(3.5) If xeM, then x=(oyy;* Byx)(ogyr Brc)-

If all the groups are abelian, then this lemma reduces to a standard
one in algebraic topology, [1, p. 32]. The proof of this lemma is left to
the reader.

The following hexagonal lemma is an immediate consequence of Lemma 3
as in the abelian case, [1, p. 38].

Lemma 4. In the follmbing diagram of groups and homomorphisms

\
—

X

> =
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S
<«
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if all the diagonals are exact, all the triangles are commutative, and yy, y,
are isomorphisms, then for each w e L, we have .
dpyr t mw=(Syyz ! mew)L.

Remark. Thislemma remains valid if the hypothesis Im(cx,) = Ker(B,)
is weakened to Im(c,) C Ker(f,). In fact, it is this weakened hypothesis
that is needed to prove the conclusion.

4. Construction of the sequences

Firstly, we define for each n=1 a transformation
P nn(A’ Ao) g nn(B: Ao) X nn(Ds Ao)

by setting yu=(ky4u, hoyu™) for each u €=, (4, 4,).

If n=2 or Ay=a,, then =,(4, 4,) and the direct product z,(B, 4,) X
X 7,(D, 4,) are groups and p is a homomorphism.

Secondly, if n=2 or if n=1 with 4,=aq,, then =,(E, 4,) is a group
and, therefore, we may define a transformation

p: nn(Bﬂ AO) X ”M(Dy AO) - nn(E3 AO)

by setting @(vy, v5) = (M40, )(Ma4v,) for each v, € 7, (B, 4,) and v, € 7, (D, 4,)-
If n>2 or if n=2 with 4,=a,, then x,(E, 4,) is abelian and hence ¢
is a homomorphism.

Finally, if n=2 or if n=1 with 4,=a,, we may define a transformation.

A : nn(E’ Ao) - nn—l(A’ Ao)

by taking A=23%k5!lx. If n>2 or if n=2 with A0=a0, then 4 is a
homomorphism and

Aw =k byw = (k5! lpyw)™

for each w € x,(H, A,) since the lower hexagon of the diagram in §1
satisfies the hypothesis of Lemma 4.
Therefore, we have constructed the following sequence

A
(B, Ag) < o B, Ag) X 7D, Ag) < o4, Ag) < ...
a
oy (A, Ay) < 7 (B, Ay) < 7,(B, Ag) X 7,(D, Ag) < mo(A, Ag) < ...

which will be referred to as the relative sequence.
If Ay=a, then we have a longer sequence

ry(B) < 7y(B) X my(D) <- my(A) < () < ...
<= M y(A) < 7, (B) < m,(B) X my(D) < my(4) < ..

which will be referred to as the absolute sequence.
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5. - Exactness of the sequences

Theorem. The absolute sequence and the relative sequence are both exact.

The proof of this theorem is analogous to that of the exactness of the
Mayer—Vietoris sequence, [1, p. 40], except that the first three groups
might not be abelian and the first transformation ¢ is usually not a
homomorphism. Hence we leave the proof to the reader.

If we take 4 =a, in the absolute sequence, we obtain D=F and the
well-known isomorphism

7,(B) ~ 7,(B) X ,(F)

for every n=2, [4, p. 92]. On the other hand, if E is contractible to a
point, then we have

7u(4) ~ 7,(B) X m,(D)
for every n=1.
Similarly, if we take A=A4, in the relative sequence, we get
@: 7 (B, 4) X 7, (D, A) ~ m, (B, A)

for every n=3.

6. The first transformation @

In this final section, we are concerned with the first transformation ¢
in the relative sequence and that in the absolute sequence.
The following proposition is an obvious sequence of the definition of ¢.

Proposition 1. ¢:my(B, 4y) X (D, Ay) — mo(E, Ay) is a homomor-
phism if my(E, Ay) is abelian.

Proposition 2. ¢ carries my(B, 4y) X wo(D, 4,) onto my(E, 4y) if
m (4, 4,) consists of a single element.

Proof. Let w be an arbitrary element of m,(E, 4,). Since 7,(4, A4,)=0,
we have '
gkt gyt =0="2ok1! L

in the diagram of §1. By exactness of the homotopy sequences, there
exist elements z, € 7y(B, 4,) and z, € 7y(D, 4,) such that

Nys2q = kit losw, NosZy =Kt LW,
where n, : (B, 4,) C (B, 4) and n,: (D, 4,) C (D, 4) denote the inclusion
maps. By (3.5), we have
75w = (t13k5s" Jos) 50) (taskiy' frsfs)
= bzt Los)(lashery ysw)
= (G157 %21) (P25 M2523)
= (] 5M1521) (] M%)
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By exactness of the homotopy sequence of (E, 4, 4,), there is an element
u € my(A, A,) such that

Tyl = (My42y) 1 W (Mgyzo) 2.

If we let v,==2,-hy,u and v,=2z,, it follows that

P(v1, Vp) = (11301 ) (Mg sVp) = (M2 ) (4 4%) (Mg 425) = 0.

This completes the proof.
Similarly, we have the following propositions for the first ¢ in the
absolute sequence.

Proposition 3. ¢:m(B) X »y(D) - n(E) is a homomorphism if
7, (F) is abelian.

Proposition 4. ¢ carries 7 (B) X m,(D) onto n,(E) if A=a,.

Wayne State University,
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