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l. Introduction 

Throughout the present paper, we are concerned with a fibre space E 
over a base space B with projection 

p:E--+B 

in the sense of J.-P. SERRE, [3, p. 443]. Assume that there is a cross­
section 

q: B--+ E, 

that is to say, q is a continuous map of B into E such that the composition 
pq is the identity map on B. As an immediate consequence, q is a homeo­
morphism of B onto a subspace q(B) of E. Hence we may identify B 
with q(B) by means of q; then B becomes a subspace of E and the cross­
section q becomes the inclusion map. Furthermore, the projection p 
becomes a retraction of E onto B, and hence B is a closed subspace of E 
provided that E is a Hausdorff space. 

Let A be a subspace of B an\flet D=p-1(A) C E. Then B fl D=A. 
Thus we have 

A C BCE, A CDCE. 

Let A 0 be a subspace of A and pick a point a0 E A0 as the base point 
for all homotopy groups involved in this paper. Denote by F the fibre 
over the point a0 , that is to say, 

F=p-1(a0) CD. 

The purpose of this paper is to establish an exact sequence 
Ll rp 'I' 

... +- n.,_1(A, A0 ) +- n,;(E, A0 ) +- n.,(JJ, A0)X n.,(D, A 0) +- n.,(A, A0) +- ... 

where Ll, rp, 1fJ are homomorphisms defined as follows. Consider the follow­
ing diagram (see next page) where all homomorphisms other than the 
boundary operators ll, llvll2 are induced by inclusion maps. In § 2, we 
shall prove that k1* and kp,* are isomorphisms. Then, the homomorphisms 
L1, rp, 1fJ are given by the following formulae: · 

1fJU=(h1*u, h2*u-t), u En.,(A,A0), 

cp(v1, v2) = (~*v1)(m2*v2), v1 E= n,.(B, A 0 ), v2 E nn(D, A 0), 

. Llw= o2k;}ll*w, w E n,.(E, Aot 
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nn (E, B) 

n,.(E.A) 

~ 
~ "•(B,A) 

Observe the apparent similarity between this exact sequehce and the 
Mayer-Vietoris sequence of a proper triad in homology theory, [1, p. 39]. 

2. The isomorphisms Is* and k2* 
Consider the transformations 

p*: n11(E) -+ n,(B), q*: n,.(B) -+ n .. (E) 

induced by the projection p : E -+ B and the cross.section q : B-+ E 
for each n ~ 0. Since pq is the identity map on B, it follows . that p* 
carries n .. (E) onto n .. (B) and q* sends n .. (B) into n11(E) in a one·to·one 
fashion. Therefore, in case n~ 1, p* is an epimorphism and q* is a mono· 
morphism. 'Dhen, from the exactness of the homotopy. sequence 

q. "3. r,.. q • 

. . . ~ n .. _1(E) +- n,_1(B) +- n .. (E, B) +- n .. (E) +- n .. B) +- . , . 

of the triplet (E, B, a0), [2, p. 493], we deduce that, for every n~ 1, 
o* sends n .. (E, B) into the neutral element of n,._1(B) and r* carries 
n .. (E) onto n .. (E, B). Let K,. denote the kernel ofp* in n .. (Jp_}. Thep, 
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one can verify that r* sends K., onto 7e.,(E, B) in a one-to-one fashion 
for every n ~ 1. . 

Next, consider the exact homotopy sequence 
~ ~ ~ ~ ~ 

... +- 7e.,(B) +- 1t.,(E) +- 7e.,(F) +- 7&.,+1(B) +- ... 

of the given :fibering, [4, p. 91], where s* is induced by the inclusion map. 
It follows from the exactness· of the sequence that s* sends 1t.,(F) onto 
K., in a one-to-one fashion for each n~O. 

In the following diagram of inclusion maps 

a s 
D< F >E 

el 
kl 1' 

(D,A) (E,B) 

we have rs=~(!a. For each n~ 1, since s* sends 7e.,(F) isomorphically 
onto K., and r* sends K.,-onto 1t~(E, B) in a one-to-one fashion, it follows 
that r *s* carries 7e.,(F) onto 7e.,(E, B) in a one-to-one fashion. Since D 
is a fibre space over A with projection pJD and cross-section qJA, it 
follows that e*a* carries 1t.,(F) onto 1t.,(D, A) in a one-to-one fashion 
for each n~ 1. Since rs=~(!a, we have ~.=r*s*({?*a*)-1• Therefore, 
we have proved the following 

Lemma 1. For each n;;;;; 1; the induced transformation 

~*: 7e.,(D, A)~ 7e.,(E, B) 

sends 'lf;.,(D, A) onto 1t.,(E, B) in a one-to-one fashion. 
Now, let us turn to k2*. By the fibering theorem in homotopy theory, 

[2, p. 495], the induced transformation 

p*: 7e.,(E, D) ~ 7e.,(B, A), n;;;;; 1, 

of the projection p: (E, D)~ (B, A) sends 7e.,(E, D) onto 7e.,(B, A) in a 
one-to-one fashion. Since pk2 is the identity map on (B, A), we have 
Tc2.=p;1• Therefore, we have proved the following -

Lemma 2. For each n~1, the induced transformation 

k2*: 7&.,(B, A)~ 7&.,(E, D) 

sends 7e.,(B, A) onto 7e.,(E, D) in a one-to-one fashion. · 
Thus, in case n> 1, both ~* and k2* are isomorphisms. Then, the 

construction of the sequence described in § 1 and the proof of its exactness 
can. be carried out just like those of the Mayer-Vietoris sequence except 
one must take care of the fact that some groups in the present sequence 
might fail to be abelian. 
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3. Algebraic ~emmas 
Lemma 3. In the following diagram of growpB and homomorphi&m8 

Na Nt 

/. .~ 
Yt M 

Ls / ~ Lt 

if the two diagonals are exact, the two triangles are commutative, and y1, y2 

are isomorphi&m8, then we have the following co~usions: 

(3.1) ~. £X2 are monomorphi&m8 and {31, /)2 are epimorphisms. 

(3.2) M is the direct product of the images of ~ and lXa· 

(3.3) {31 carries Im(~X2) isomorphically onto N 1 and {32 carries Im(~) iso­
morphically onto N2• 

(3.4) If x1 eim(~X1), then ~Y21 f3aX1 =x1• If x2 E Im(tXa), then tXaY1 1 {31x2 =x2• 

(3.5) If x EM, tkf-n x= (~X1y:L 1 f3aX)(~X2Y:L 1 /)1x). 

If all the groups are abelian, then this lemma reduces to a standard 
one in algebraic topology, [1, p. 32]. The proof of this lemma is left to 
the reader. 

The following hexagonal lemma is an immediate consequence of Lemma 3 
as in the abelian case, [1, p. 38]. 

Lemma 4. In the following diagram of groups and homomorphi~ 

Lo 

~Xo 

M 

Po 
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if all the diagonals are exact, all the triangles are commutative, and Yv y2 

are isomorphisms, then for each wE £ 0 we have 

b2yl11hW=(bly211J2W)-1. 

Rem~rk. This lemma remains valid if the hypothesis Im(rx0 )=Ker(f30) 

is weakened to Im(rx0 ) C Ker(/30 ). In fact, it is this weakened hypothesis 
that is needed to prove the conclusion. 

4. Construction of the sequences 

Firstly, we define for each n ~ 1 a transformation 

by setting 1pu~ (~*u, h2*u-1) for each u E n.,(A, A0). 

If n~2 or A0 =a0, then n.,(A, A0) and the direct product n.,(B, A0 ) X 
X n.,(D, A0) are groups and "P is a homomorphism. 

Secondly, if n~2 or if n=l with A0 =a0, then n.,(E, A0 ) is a group 
and, therefore, we may define a transformation 

by setting cp(vv v2) = (m1*v1)(m2*v2) for each v1 E n.,(B, A0) and v2 E n.,(D, A0). 

If n > 2 or if n = 2 with A0 = a0, then n.,(E, A0 ) is abelian and hence cp 
is a homomorphism. 

Finally, if n ~ 2 or if n = 1 with A0 = a0, we may define a transformation. 

Ll : n.,(E, A0)-+ n.,_1(A, A0 ) 

by taking Ll = o2k!ll1*. If n > 2 or if n = 2 with A0 = a0, then Ll is a 
homomorphism and 

for each wE n.,(E, A0) since the lower hexagon of the diagram m § 1 
satisfies the hypothesis of Lemma 4. 

Therefore, we have constructed the following sequence 

which will be referred to as the relative sequence. 
If A0 =a0, then we have a longer sequence 

'P 1/1 Ll 
n1(E) +-- n1(B) X n1(D) +-- n1(A) +-- n2(E) +-- ..• 

Ll 'P tp 

... +-- n~_1(A) +-- n.,(E) +-- n.,(B) X n.,(D) +-- n.,(A) +- ... 

which will be referred to as the absolute sequence. 
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5. Exactness of the sequences 

Theorem. The absolute sequence and the relative sequence are both exact. 
The proof of this theorem is analogous to that of the exactness of the 

Mayer-Vietoris sequence, [1, p. 40], except that the first three groups 
might not be abelian and the first transformation g; is usually not a 
homomorphism. Hence we leave the proof to the reader. 

If we take A= a0 in the absolute sequence, we obtain D = F and the 
well-known isomorphism 

:nn(E) F::! :nn(B) X :nn(F) 

for every :n ~ 2, [ 4, p. 92]. On the other hand, if E is contractible to a 
point, then we have 

for every n ~ 1. · 

Similarly, if we take A =A0 in the relative sequence, we get 

for every n ~ 3. 

6. The first transformation g; 

In this final section, we are concerned with the first transformation g; 
in the relative sequence and that in the absolute sequence. 

The following proposition is an obvious sequence of the definition of g;. 

Proposition 1. g;::n2(B,A0)X :n2(D,A0)-+:n2(E,A0) is a homomor­
phism if :n2(E, A 0 ) is abelian. 

Proposition 2. g; carries :n2(B, A0) X :n2(D, A0 ) onto :n2(E, A0 ) if 
:n1(A, A0 ) consists of a single element. 

Proof. Let w be an arbitrary element of :n2(E, A0). Since :n1(A, A0)=0, 
we have 

in the diagram of § 1. By exactness of the homotopy sequences, there 
exist elements z1 E :n2(B, A0) and z2 E :n2(D, A0) such that 

where n1 : (B, A0 ) C (B, A) and n2 : (D, A0 ) C (D, A) denote the inclusion 
maps. By (3.5), we have 

j*w= (il*k2l i2*j*w)(i2*k!l i1*j*w) 

= (i1*k2ll2*w)(i2*k:;ll1*w) 

= (i1*~*~)(i2*n2*~) 
= (j*~*~)(j*m2*z2). 
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By exactness of the homotopy sequence of (E, A, A0), there is an element 
u €' 1l2(A, A0) such that 

i*u= ('mt*Z:t)-1 w (m2*z2)-1• 

If we let v1 =Z:J. -~*u and v2 =Zz, it follows that 

<p(v1, v2) = ('mt*v1)(m2*v2) = ('mt*Z:t)(i*u)(m2*Zz) = w. 

This completes the proof. 
Similarly, we have the following propositions for the first <p in the 

absolute sequence. 

Proposition 3. <p: 1l1(B) X 1lJ.(D)-+ 1l1(E) is a homomorphism if 
1t'1(E) is abelian. 

Proposition 4. <p carries 1l1(B) X 1l1(D) onto 1l1(E) if A=a0• 
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