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a b s t r a c t

A set S of vertices in a graph G is a k-tuple total dominating set, abbreviated kTDS, of G if
every vertex of G is adjacent to least k vertices in S. The minimum cardinality of a kTDS of
G is the k-tuple total domination number of G. For a graph to have a kTDS, its minimum
degree is at least k. When k = 1, a k-tuple total domination number is the well-studied
total domination number. When k = 2, a kTDS is called a double total dominating set and
the k-tuple total domination number is called the double total domination number. We
present properties of minimal kTDS and show that the problem of finding kTDSs in graphs
can be translated to the problem of finding k-transversals in hypergraphs. We investigate
the k-tuple total domination number for complete multipartite graphs. Upper bounds on
the k-tuple total domination number of general graphs are presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Domination in graphs is now well studied in graph theory and the literature on this subject has been surveyed and
detailed in the two books by Haynes, Hedetniemi, and Slater [7,8]. For a graph G = (V , E), the open neighborhood of a vertex
v ∈ V is N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood is N[v] = N(v) ∪ {v}. A set S ⊆ V is a dominating set if
each vertex in V \ S is adjacent to at least one vertex of S. Equivalently, S is a dominating set of G if for every vertex v ∈ V ,
|N[v]∩S| ≥ 1. The domination number γ (G) is theminimum cardinality of a dominating set. A set S ⊆ V is a total dominating
set if each vertex in V is adjacent to at least one vertex of S, while the minimum cardinality of a total dominating set is the
total domination number γt(G) of G.
In [6] Harary and Haynes defined a generalization of domination as follows: a subset S of V is a k-tuple dominating set of

G if for every vertex v ∈ V , |N[v] ∩ S| ≥ k, that is, v is in S and has at least k− 1 neighbors in S or v is in V − S and has at
least k neighbors in S. The k-tuple domination number γ×k(G) is the minimum cardinality of a k-tuple dominating set of G.
Clearly, γ (G) = γ×1(G) ≤ γ×k(G), while γt(G) ≤ γ×2(G). For a graph to have a k-tuple dominating set, its minimum degree
is at least k − 1. Hence for trees, k ≤ 2. A k-tuple dominating set where k = 2 is called a double dominating set (DDS). The
concept of k-tuple domination has been studied by several authors (see, for example, [4,5,9,10], and elsewhere).
In this paper, we study k-tuple total domination in graphs. A subset S of V is a k-tuple total dominating set ofG, abbreviated

kTDS, if for every vertex v ∈ V , |N(v) ∩ S| ≥ k, that is, S is a kTDS if every vertex has at least k neighbors in S. The k-tuple
total domination number γ×k,t(G) is the minimum cardinality of a kTDS of G. We remark that a 1-tuple total domination is
the well-studied total domination number. Thus, γt(G) = γ×1,t(G). For a graph to have a k-tuple total dominating set, its
minimum degree is at least k. Since every (k+ 1)-tuple total dominating set is also a k-tuple total dominating set, we note
that γ×(k+1),t(G) ≤ γ×k,t(G) for all graphs with minimum degree at least k. A kTDS of cardinality γ×k,t(G)we call a γ×k,t(G)-
set. When k = 2, a k-tuple total dominating set is called a double total dominating set, abbreviated DTDS, and the k-tuple
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total domination number is called the double total domination number. The redundancy involved in k-tuple total domination
makes it useful in many applications.
Let G = (V , E) be a graph and let S ⊆ V . For each k-element subset S ′ ⊆ S, we define the (S, k)-private neighborhood

of S ′, denoted by pnk(S ′, S), to be the set of all vertices v in G such that N(v) ∩ S = S ′ (possibly, v ∈ S). Further, we define
the open k-boundary of S, denoted by OBk(S), to be the set of all vertices v in G such that v ∈ pnk(S ′, S) for some k-element
subset S ′ ⊆ S.
Hypergraphs are systems of sets which are conceived as natural extensions of graphs. A hypergraph H = (V , E) is a finite

set V of elements, called vertices, together with a finite multiset E of arbitrary subsets of V , called edges. A transversal in H
is a subset S ⊆ V such that |S ∩ e| ≥ 1 for every edge e ∈ E, that is, the set S meets every edge in H . The transversal number
τ(H) of H is the minimum size of a transversal in H . A k-uniform hypergraph is a hypergraph in which every edge has size k.
Every (simple) graph is a 2-uniform hypergraph. Thus, graphs are special hypergraphs. For a graph G = (V , E), we denote
by HG the open neighborhood hypergraph of G, that is, HG = (V , C) is the hypergraph with the vertex set V and with the
edge set C consisting of the open neighborhoods of vertices of V in G.
For notation and graph theory terminologywe in general follow [7]. Specifically, letG = (V , E) be a graphwith the vertex

set V of order n and the edge set E. The minimum degree among the vertices of G is denoted by δ(G). A cycle on n vertices
is denoted by Cn, and a path on n vertices by Pn. A vertex of degree k is called a degree-k vertex.

2. Observations and preliminary results

We begin with the following trivial observation about the k-tuple total domination number of a graph. The proof follows
readily from the definitions and is omitted.

Observation 1. Let G be a graph of order n with δ(G) ≥ k, and let S be a kTDS in G.

(a) max{γ×k(G), k+ 1} ≤ γ×k,t(G) ≤ |V (G)|.
(b) If G is a spanning subgraph of a graph H, then γ×k,t(H) ≤ γ×k,t(G).
(c) If v is a degree-k vertex in G, then NG(x) ⊆ S.

A kTDS S in a graph G is aminimal kTDS if no proper subset of S is a kTDS in G. We next present necessary and sufficient
conditions for a kTDS to be minimal.

Theorem 2. Let G be a graph of order n with δ(G) ≥ k, and let S be a kTDS in G.

(a) The set S is a minimal kTDS if and only if S \ {x} is not a kTDS for every x ∈ S.
(b) If S is aminimal kTDS, then for each vertex x ∈ S, there exists a k-element subset Sx ⊆ S such that x ∈ Sx and |pnk(Sx, S)| ≥ 1.
(c) S is a minimal kTDS in G if and only if OBk(S) dominates S.

Proof. (a) If S is a minimal kTDS, then no proper subset of S is a kTDS of G. In particular, S \ {x} is not a kTDS for every x ∈ S.
Conversely, suppose S \ {x} is not a kTDS for every x ∈ S. For sake of contradiction, suppose that S is not a minimal kTDS.
Then, there exists a proper subset S ′ of S that is a kTDS of G. Let x ∈ S \ S ′ and let Sx = S \ {x}. Then, S ′ ⊆ Sx. If S ′ = Sx, then
Sx is a kTDS of G, a contradiction. Hence, S ′ ⊂ Sx. Since every superset of a kTDS in G is also a kTDS of G, the set Sx is a kTDS
of G, once again producing a contradiction. Hence, S is a minimal kTDS. This establishes part (a).
(b) Suppose that S is a minimal kTDS. Let x ∈ S. By part (a), S \ {x} is not a kTDS in G. Hence there exists a vertex v such

that |N(v) ∩ (S \ {x})| < k. However, |N(v) ∩ S| ≥ k. Consequently, |N(v) ∩ S| = k and x ∈ N(v). Let Sx = N(v) ∩ S. Then,
Sx is a k-element subset of S such that x ∈ Sx and v ∈ pnk(Sx, S). This establishes part (b).
(c) Suppose that S is a minimal kTDS. Let x ∈ S. By part (b), there exists a k-element subset Sx ⊆ S such that x ∈ Sx and

|pnk(Sx, S)| ≥ 1. Let v ∈ pnk(Sx, S) ⊆ OBk(S). Then, N(v)∩ S = Sx. In particular, xv is an edge of G, and so x is dominated by
the open k-boundary OBk(S) of S. Hence, OBk(S) dominates S. Conversely, suppose that OBk(S) dominates S. Let x ∈ S and
let v be a vertex in OBk(S) that dominates x. Thus, N(v) ∩ S = Sx for some k-element subset Sx ⊆ S and x ∈ Sx. But then v
contains fewer that k neighbors in the set S \ {x}, and so S \ {x} is not a kTDS of G. This is true for an arbitrary vertex x in S.
Thus, by part (a), S is a minimal kTDS. This establishes part (c). �

As observed in Observation 1(a), if G is a graph with δ(G) ≥ k, then γ×k,t(G) ≥ k+ 1. We next characterize graphs with
γ×k,t(G) = k+ 1. For this purpose, we define the k-join of a graph G to a graph H of order at least k to be the graph obtained
from the disjoint union of G and H by joining each vertex of G to at least k vertices of H . We denote the k-join of G to H by
G ◦k H .

Theorem 3. Let G be a graph with δ(G) ≥ k. Then, γ×k,t(G) = k+ 1 if and only if G = Kk+1 or G = F ◦k Kk+1 for some graph F .

Proof. If G = Kk+1 or G = F ◦k Kk+1 for some graph F , then V (Kk+1) is a kTDS of size k + 1, and so γ×k,t(G) ≤ k + 1.
Consequently, by Observation 1(a), γ×k,t(G) = k+ 1. Conversely, suppose that γ×k,t(G) = k+ 1. Let S be a γ×k,t(G)-set and
let G = (V , E). Then, |S| = k+ 1. Every vertex has at least k neighbors in S. In particular, every vertex in S is adjacent to all
other k vertices in S, and so G[S] = Kk+1. If |V | = k + 1, then G = Kk+1. If |V | > k + 1, then let F = G[V \ S]. Since every
vertex in V \ S has at least k neighbors in S in the graph G, we have that G = F ◦k Kk+1. �
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As an immediate consequence of Theorem 3, we have the following result.

Corollary 4. If G is a complete p-partite graph where p ≥ k+ 1, then γ×k,t(G) = k+ 1.

For an integer k ≥ 1, we define a k-transversal in a hypergraph H = (V , E) as a subset S ⊆ V such that |S ∩ e| ≥ k for
every edge e ∈ E, that is, every edge inH contains at least k vertices from the set S. We define the k-transversal number τk(H)
ofH to be theminimum cardinality of a k-transversal inH . Perhapsmuch of the recent interest in total domination in graphs
arises from the fact that total domination in graphs can be translated to the problem of finding transversals in hypergraphs.
We show next that the problem of finding k-tuple total dominating sets in graphs can be translated to the problem of finding
k-transversals in hypergraphs.

Theorem 5. If G is a graph with minimum degree at least k and HG is the open neighborhood hypergraph of G, then γ×k,t(G) =
τk(HG).

Proof. On the one hand, every kTDS in G contains at least k vertices from the open neighborhood of each vertex in G
and is therefore a k-transversal in HG. In particular, if S is a γ×k,t(G)-set, then S is a k-transversal in HG, and so τk(HG) ≤
|S| = γ×k,t(G). On the other hand, every k-transversal in HG contains at least k vertices from the open neighborhood of
each vertex of G, and is therefore a kTDS in G. In particular, if T is a τk(HG)-transversal, then T is a kTDS in G, and so
γ×k,t(G) ≤ |T | = τk(HG). Consequently, the k-transversal number of the open neighborhood hypergraph of a graph is
precisely the k-tuple total domination number of the graph. �

3. Complete multipartite graphs

In this section, we determine the k-tuple total domination number of a complete multipartite graph for k ≥ 2. By
Corollary 4, if G is a complete p-partite graph where p ≥ k+ 1, then γ×k,t(G) = k+ 1. Hence in this section we restrict our
attention to complete p-partite graphs where p ≤ k. We first determine the k-tuple total domination number of a complete
k-partite graph with minimum degree at least k.

Theorem 6. Let k ≥ 2 be an integer and let G = K(n1, n2, . . . , nk) be a complete k-partite graph where n1 ≤ n2 ≤ · · · ≤ nk. If∑k−1
i=1 ni ≥ k, then γ×k,t(G) = k+ 2.

Proof. Wenote that δ(G) ≥ k if and only if
∑k−1
i=1 ni ≥ k. Hence the condition

∑k−1
i=1 ni ≥ k guarantees that G has a kTDS.We

show that γ×k,t(G) = k+2. Let G have vertex partition V = (V1, V2, . . . , Vk), where |Vi| = ni for i = 1, 2, . . . , k. Our degree
condition

∑k−1
i=1 ni ≥ k implies that nk ≥ nk−1 ≥ 2. The set S consisting of two vertices from both sets Vk−1 and Vk, and

exactly one vertex from each of the remaining k−2 partite sets of G, forms a kDTS of G of size k+2, and so γ×k,t(G) ≤ k+2.
Hence it suffices for us to show that γ×k,t(G) ≥ k+ 2. Let D be a γ×k,t(G)-set. By Observation 1(a), |D| = γ×k,t(G) ≥ k+ 1.
By the Pigeonhole principle, |D ∩ Vr | ≥ 2 for some r , 1 ≤ r ≤ k. Since every vertex of Vr must be dominated by at least k
vertices of D \ Vr , we have that γ×k,t(G) = |D| ≥ |D \ Vr | + |D ∩ Vr | ≥ k+ 2, as desired. �

In view of Theorem 6, we assume in what follows that G is a complete p-partite graph where p ≤ k− 1.

Theorem 7. Let 2 ≤ p < k and let G = K(n1, n2, . . . , np) be a complete p-partite graph where dk/(p − 1)e ≤ n1 ≤ n2 ≤
· · · ≤ np. Then, γ×k,t(G) = dkp/(p− 1)e.

Proof. Let G have vertex partition V = (V1, V2, . . . , Vp), where |Vi| = ni for i = 1, 2, . . . , p. Let S be a γ×k,t(G)-set. For
i = 1, 2, . . . , p, let Si = S ∩ Vi and let |Si| = si. Then, |S| =

∑p
i=1 si. Since each vertex in the partite set Vi, 1 ≤ i ≤ p, is

dominated by at least k vertices in S \ Si, for each i = 1, 2, . . . , p we have that |S| − si ≥ k. Hence, summing over all i, we
have (p− 1)|S| ≥ kp, and so γ×k,t(G) = |S| ≥ dkp/(p− 1)e. It therefore suffices for us to show that there exists a kTDS of
G of size dkp/(p− 1)e.
If (p− 1) | k, then we choose k/(p− 1) vertices from each of the p partite sets to form a kTDS of G of size kp/(p− 1), as

desired. Hence wemay assume that (p− 1) - k. Thus, k = (p− 1) · bk/(p− 1)c+ r for some integer r where 1 ≤ r ≤ p− 2.
For i = 1, . . . , r + 1, let Di be a subset of Vi of size dk/(p− 1)e = bk/(p− 1)c + 1. For i = r + 2, . . . , p, let Di be a subset of
Vi of size bk/(p− 1)c. Let D =

⋃p
i=1 Di. Then

|D| = (r + 1)
(⌊

k
p− 1

⌋
+ 1

)
+ (p− r − 1)

⌊
k

p− 1

⌋
=

⌈
kp
p− 1

⌉
.

Further, every vertex inG is totally dominated by at least (p−r−1)bk/(p−1)c+r(bk/(p−1)c+1) = (p−1)·bk/(p−1)c+r =
k vertices in D. Hence, D is a kTDS of G of size dkp/(p− 1)e, as desired. �

We remark that if the lower bound n1 ≥ dk/(p − 1)e in the statement of Theorem 7 is relaxed to n1 ≥ bk/(p − 1)c,
then it is no longer necessarily true that γ×k,t(G) = dkp/(p− 1)e. For example, let p ≥ 4 and let k = (p− 1)`+ p− 2 for
some integer ` ≥ 1. Let G be a complete p-partite graph with p− 2 partite sets of size bk/(p− 1)c = ` and the remaining
two partite sets of size ` + p − 2. (Note that 4 ≤ p < k and G = K(n1, n2, . . . , np) is a complete p-partite graph where
bk/(p− 1)c ≤ n1 ≤ n2 ≤ · · · ≤ np.) Then, γ×k,t(G) = |V (G)| = p(`+ 1)+ p− 4 = dkp/(p− 1)e + p− 3 > dkp/(p− 1)e.
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4. Double total domination

In this section, we consider the 2-tuple total domination number, or, equivalently, the double total domination of a graph.
As remarked earlier, for a graph to have a double total dominating set, which we abbreviate by DTDS, its minimum degree
is at least 2. Both neighbors of every degree-2 vertex belong to every DTDS of the graph. In particular, we observe that
γ×2,t(Cn) = n. However even if we allow vertices of large degree, the presence of degree-2 vertices may force the double
total domination to be the order of the graph.

Theorem 8. If G is a graph of order n with a minimum degree 2 and a maximum degree at most n/2, then γ×2,t(G) = n.
Proof. Clearly, γ×2,t(G) ≤ n. That this bound is sharp may be seen as follows. Let G be a graph obtained from k ≥ 1 disjoint
paths P4 on four vertices by forming a clique on the 2k vertices of degree 1. Then, G is a graph of order n = 4kwith δ(G) = 2,
∆(G) = n/2 and with n/2 vertices of maximum degree. The neighbors of the degree-2 vertices in G partition the vertex set
V (G). Hence since both neighbors of every degree-2 vertex belong to every DTDS of the graph, we have that V (G) is the only
possible DTDS in G, and so γ×2,t(G) = n. �

We show next that if we restrict our attention to bipartite graphs in which the degree-2 vertices form one of the partite
sets, then the bound of Theorem 8 can be improved. For this purpose, we need the following lemma about domination in
bipartite graphswhich is a slight strengthening of a recent result due to Archdeacon et al. [1] (which itself is actually a special
case of a result in [2]).

Lemma 9 ([1]). Let δ ∈ {1, 2, 3} and let G be a bipartite graph with partite sets (X, Y ) whose vertices in Y are of degree at
least δ. Then there exists a set A ⊆ X of size at most |X ∪ Y |/(δ + 1) that dominates Y .

We are now in a position to present the following results.

Theorem 10. Let G be a bipartite graph of order n with a minimum degree 2. If the vertices of the minimum degree 2 form a
partite set of G, then γ×2,t(G) ≤ 9n/10.

Proof. Let G have partite sets (X, Y ) such that every vertex of degree 2 belongs to X . Thus the vertices in Y are of degree
at least 3. Then, n = |X | + |Y | and counting edges between X and Y , we have that 3|Y | ≤ 2|X | = 2(n − |Y |), whence
|Y | ≤ 2n/5. Every DTDS of Gmust contain every vertex in Y in order to double total dominate the set X . The vertices in Y
are double total dominated by a subset of vertices in X . By Lemma 9, there exists a set A ⊆ X of size at most |X ∪Y |/4 = n/4
that dominates Y . Let X1 = X \ A. Let Y2 be the set of vertices of Y that are adjacent to at least two vertices in A, and let
Y1 = Y \ Y2. If Y = Y2, then A ∪ Y is a DTDS of G, whence γ×2,t(G) ≤ |A| + |Y | ≤ n/4+ 2n/5 = 3n/4 < 9n/10. Hence we
may assume that Y1 6= ∅. Let G1 be the bipartite graph induced by the set X1 ∪ Y1. Since A dominates Y , every vertex in Y1 is
adjacent to exactly one vertex of A and therefore to at least two vertices of X1. By Lemma 9, there exists a set B ⊆ X1 of size at
most |X1 ∪ Y1|/3 ≤ (|X | − |A| + |Y |)/3 = (n− |A|)/3 that dominates Y1. Hence, every vertex in Y is double total dominated
by the set A∪ B, and so the set A∪ B∪ Y is a DTDS of G. We note that |A∪ B| = |A| + |B| ≤ |A| + (n− |A|)/3 = (n+ 2|A|)/3.
Hence since |A| ≤ n/4, we have that |A ∪ B| ≤ n/2. Therefore, γ×2,t(G) ≤ |A| + |B| + |Y | ≤ n/2+ 2n/5 = 9n/10. �

Theorem 11. If G is a cubic bipartite graph of order n, then γ×2,t(G) ≤ 8n/9.
Proof. Let G have partite sets (X, Y ). Let |X | = x and |Y | = y. Since G is a cubic graph, we have that x = y. Every regular
bipartite graph has a perfect matching. In particular, G has a perfect matchingM . Let F be the 2-regular graph obtained from
G by removing the edges of the perfect matchingM . Then, F consists of disjoint cycles.
Let C be a cycle in F and let XC = X ∩V (C) and YC = Y ∩V (C). Let C have length k. Since C has even length, either k = 4`

or k = 4`+ 2 for some integer ` ≥ 1. If k = 4`, then there exists a set AC of ` vertices in XC that dominates the 2` vertices
in YC . Note that in this case, the subgraph of F induced by the edges incident with these ` vertices in D is a disjoint union of
` copies of P3, where the central vertices of the P3s form the set AC . If k = 4`+ 2, then there exists a set AC of `+ 1 vertices
in XC that dominates the 2`+ 1 vertices in YC . Note that in this case, the subgraph of F induced by the edges incident with
the vertices in D is a disjoint union of a path P5 and ` copies of P3, where the second and fourth vertex on the P5 and the
central vertices of the P3s form the set AC . Let A be the union of the sets AC over all cycles C in the graph F and let H be the
subgraph of F induced by the edges incident with the vertices in D. Then, H = k1P3 ∪ k2P5 for some integers k1 and k2.
Note that A ⊂ X and |A| = k1 + 2k2. Further, the set A consists of the central vertices of the P3-components in H and

the second and fourth vertex in every P5-component in H . The set A dominates the set Y in H (and therefore in G), and so
y = 2k1 + 3k2. Let Y ′ be the set of central vertices from all the P5-components in H . Then, every vertex in Y ′ is dominated
by exactly two vertices of A in H , while every vertex in Y \ Y ′ is dominated by exactly one vertex of A in H . Thus, k2 vertices
of Y are dominated by exactly two vertices of A in H , while 2k1 + 2k2 vertices of Y are dominated by exactly one vertex of
A in H . If we now add to H the |A| = k1 + 2k2 edges of the perfect matchingM that are incident with vertices in A, we note
that resulting graph H ′ is a subgraph of G and that at most k1 + k2 vertices of Y are dominated by exactly one vertex of A in
H ′. Let Y1 denote the set of vertices of Y that are dominated by exactly one vertex of A in H ′. Then, |Y1| ≤ k1 + k2.
Let X1 = X \ A and let G1 be the (bipartite) subgraph of G induced by the sets X1 ∪ Y1. Since |X | = x = y = 2k1 + 3k2

while |A| = k1 + 2k2, we have that |X1| = |X | − |A| = k1 + k2. Every vertex in Y1 is adjacent to exactly two vertices of
X1. By Lemma 9, there exists a set B ⊆ X1 of size at most |X1 ∪ Y1|/3 ≤ 2(k1 + k2)/3 that dominates Y1. Hence, every
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vertex in Y is double total dominated by the set A ∪ B. We note that |A ∪ B| = |A| + |B| ≤ (k1 + 2k2) + 2(k1 + k2)/3 =
(5k1 + 8k2)/6 = 5(2k1 + 3k2)/6 + k2/6 = 5x/6 + k2/6. Since x = 2k1 + 3k2 ≥ 3k2, we have that k2 ≤ x/3, whence
|A∪ B| ≤ 5x/6+ x/18 = 8x/9. Hence we have shown that there exists a set in X of size at most 8x/9 that double dominates
the set Y in G. Similarly, there exists a set in Y of size at most 8y/9 that double dominates the set X in G. Combining these
sets produces a DTDS of G of size at most 8x/9+ 8y/9 = 8n/9, as desired. �

5. An upper bound

In this section, we present an upper bound for the k-tuple total domination number. Our proofs are along similar lines
to that presented by Cockayne and Thomason [3] for the k-tuple domination number.

Lemma 12. Let G be a graph of order n with a minimum degree δ ≥ k and let 0 ≤ p ≤ 1. Then,

γ×k,t(G) ≤

(
p+

k−1∑
i=0

(k− i)
(
δ

i

)
pi(1− p)δ−i

)
n.

Proof. Let G = (V , E). For each vertex v ∈ V , pick a set Nv consisting of δ neighbors of v. Hence if D is a subset of vertices
of G with |D ∩ Nv| ≥ k for every v ∈ V , then D is a kTDS of G. Form a random set X of the vertices of G by independently
placing each vertex into X with probability p. For i = 0, 1, . . . , k− 1, we then define the set Vi = {v ∈ V : |Nv ∩ X | = i} for
0 ≤ i ≤ k− 1. For each i = 0, 1, . . . , k− 1, form the set Xi by placing in it k− i vertices from the set Nv \ X for each v ∈ Vi.
Then, |Xi| ≤ (k− i)|Vi|. Now the set

D = X ∪

(
k−1⋃
i=0

Xi

)
is a kTDS of G. By the linearity of expectation,

E(|D|) ≤ E(|X |)+
k∑
i=0

E(|Xi|) ≤ E(|X |)+
k−1∑
i=0

(k− i)E(|Vi|). (1)

For each vertex v ∈ V , we have that P(v ∈ X) = p and P(v ∈ Vi) =
(
δ

i

)
pi(1− p)δ−i. Hence using the well-known fact that

for a random subsetM of a given finite set N ,

E(|M|) =
∑
n∈N

P(n ∈ M),

we have that

E(|X |) ≤ np and E(|Vi|) ≤
(
δ

i

)
pi(1− p)δ−in.

Thus, by Eq. (1), we have that

E(|D|) ≤ np+
k−1∑
i=0

(k− i)
(
δ

i

)
pi(1− p)δ−in.

The expectation being an average value, there is consequently a k-tuple total dominating set of G of cardinality at most
E(|D|). Hence, γ×k,t ≤ E(|D|), and the desired upper bound follows. �

We are now in a position to establish the following upper bound on the double total domination number.

Theorem 13. If G is a graph of order n with a minimum degree δ ≥ 2, then

γ×2,t ≤

(
ln(δ + 2)+ ln δ + 1

δ

)
n.

Proof. Since 1− x ≤ e−x for x ∈ R, Lemma 12 implies that

γ×2,t ≤
(
p+ (2+ pδ)(1− p)δ

)
n

≤
(
p+ (2+ pδ)e−pδ

)
n (since for x ∈ R, 1− x ≤ e−x)

≤
(
p+ (2+ δ)e−pδ

)
n (since p ≤ 1).

Setting p = (ln(δ + 2)+ ln δ)/δ, we obtain the desired upper bound. �

For k fixed and sufficiently large minimum degree δ, we have the following upper bound on the k-tuple total domination
number of a graph.
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Theorem 14. Let G is a graph of order n with a minimum degree δ. If k is fixed and δ is sufficiently large, then

γ×k,t ≤

(
ln δ + (k− 1+ o(1)) ln ln δ

δ

)
n.

Proof. Since 1− x ≤ e−x for x ∈ R, Lemma 12 implies that

γ×k,t ≤

(
p+

k−1∑
i=0

(k− i)
(
δ

i

)
pi(1− p)δ−i

)
n

≤

(
p+ k

k−1∑
i=0

(δp)ie−p(δ−i)
)
n

≤
(
p+ k2 (δp)k−1 e−p(δ−k+1)

)
n.

Now let ε > 0 be given and set

p =
(
ln δ + (k− 1+ ε) ln ln δ

δ − k+ 1

)
.

Then since

(δp)k−1 e−p(δ−k+1) = (1+ o(1))(ln δ)k−1δ−1(ln δ)−(k−1+ε) <
ε

δ

for sufficiently large δ, we have

γ×k,t ≤

(
p+

k2ε
δ

)
n.

Since this inequality holds for any given ε provided that δ is sufficiently large, we obtain the desired upper bound. �
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