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Null surfaces act as one-way membranes, blocking information from those observers who do not cross 
them (e.g., in the black hole and the Rindler spacetimes) and these observers associate an entropy (and 
temperature) with the null surface. The black hole entropy can be computed from the central charge 
of an appropriately defined, local, Virasoro algebra on the horizon. We show that one can extend these 
ideas to a general class of null surfaces, all of which possess a Virasoro algebra and a central charge, 
leading to an entropy density (i.e., per unit area) which is just (1/4). All the previously known results 
of associating entropy with horizons arise as special cases of this very general property of null surfaces 
demonstrated here and we believe this work represents the derivation of the entropy-area law in the 
most general context. The implications are discussed.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is well known that one can associate thermodynamic vari-
ables like entropy (S) and temperature (T ) with null surfaces, that 
are perceived to be one-way membranes, by the class of observers 
who do not cross them (see e.g., Chapter 8 of [1]). For example, 
observers at constant spatial coordinates located at r > 2M in the 
Schwarzschild metric will associate a temperature T = (1/8π M)

with the black hole horizon [2–5] at r = 2M . Similarly, an observer 
at constant spatial coordinates at x > 0 in a Rindler spacetime 
(with the metric ds2 = −g2x2dt2 + dx2) will associate a temper-
ature T = (g/2π) with the Rindler horizon [6,7], at x = 0. Both 
these observers will associate an entropy density (entropy per unit 
area) of (1/4) with the respective horizons. (In fact, the near hori-
zon metric of the Schwarzschild black hole can be reduced to the 
form of the Rindler metric; this itself suggests that, as long as 
physical phenomena are reasonably local, we should get similar 
results in these two cases.) The freely falling observers in either 
spacetime will not perceive the relevant null surface (r = 2M in 
the black hole case and x = 0 in the Rindler case) as endowed with 
thermodynamic properties, because these observers will eventually 
cross these null surfaces; therefore, these null surfaces do not act 
as one-way membranes for these observers, see [8–10] and also 
references therein.
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For a broad class of, rather generic, null surfaces in an arbitrary 
spacetime, one can introduce a set of observers who do not cross 
these null surfaces and perceive them as one-way membranes. It 
seems reasonable to assume that physics should be local and the 
behavior in a local region around an event should depend only on 
the geometrical properties around that event. It is also widely ac-
cepted that black hole horizon has an entropy density of 1/4 per 
unit area. An observer close the horizon will see that the met-
ric is well approximated by Rindler metric and locality requires a 
patch of this Rindler metric to have the entropy density 1/4. It is, 
therefore, important to investigate whether, in such a general con-
text, these observers will associate thermodynamic variables with 
such a generic null surface. Earlier work has shown that there exist 
several deep connections between the properties of null surfaces 
and gravitational dynamics which suggest that this could be true 
[8,9]. If so, then we can obtain a unified picture of the connection 
between thermodynamics and null surfaces, with all the previously 
known cases being reduced to just special cases of this result.

In this work, we will show that this is indeed the case. We 
will demonstrate that one can associate a very natural Virasoro 
algebra (e.g. [11]) with a general class of null surfaces. This Vira-
soro algebra has a central charge which, through Cardy’s formula 
[12,13], leads to the entropy of the null surface. The explicit cal-
culation shows that the entropy per unit area is (1/4) which is 
consistent with the standard results for black hole horizons, cos-
mological horizons etc.

This work is based on the approach pioneered by Carlip [14,
15] who first proved similar results in the specific case of a black 
hole horizon (see also [16]) and the covariant phase space method 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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(see [17] for a recent review and references therein). To obtain the 
general result of this paper, we add certain new ingredients and 
modify this approach suitably. We shall set c = 1 = G throughout 
and will work with the mostly positive signature of the metric.

2. The formalism

It is known that the Bekenstein entropy can be derived just by 
exploiting the near horizon conformal properties [14–16,18–22]. 
This procedure imposes some suitable fall-off conditions on the 
metric near the horizon and investigates the symmetries that 
preserve those fall-off conditions. The algebra of the conserved 
charges corresponding to these symmetries turns out to be a Vira-
soro algebra with a central extension. Then, using Cardy’s formula 
[12,13], we can compute the entropy of the spacetime from the 
central extension. The result agrees with the standard expression 
for entropy, viz., one-quarter per unit area. (For a review of this ap-
proach and references, see, e.g., [15].) Thus the entropy of a black 
hole spacetime can be determined purely from the local symme-
tries at its boundary, i.e., at the event horizon. We shall make these 
ideas more explicit in the sequel.

A new ingredient was added to this approach couple of years 
back which further emphasized the local nature of this procedure. 
In this approach [23–26], one uses diffeomorphism invariance of 
the Gibbons–Hawking–York surface term in the gravitational ac-
tion, along with the near horizon’s symmetries, to obtain the Vira-
soro algebra and the entropy. We will be using this formalism in 
what follows.

It is well known that [1]: (i) the Hilbert action does not possess 
a valid functional derivative with respect to the metric and (ii) this 
situation can be remedied by adding a suitable counter-term to 
the action. This counter-term contains the integral of the extrinsic 
curvature K = −∇a Na over the boundary, which has an induced 
metric hab and normal to the surface being Na . The boundary inte-
gral could be converted to a volume integral via the Gauss theorem 
(with any suitable extension of Na away from the boundary):∫
Boundary

√
−h d3x K =

∫ √−g d4x∇a(K Na(xμ)). (1)

The invariance of this boundary term under the diffeomorphisms 
gives rise to a conserved Noether charge. In particular, the Noether 
charge corresponding to coordinate transformations, related to the 
local symmetries near the horizon, allows one to define a natu-
ral Virasoro algebra on the event horizon. The central extension of 
this Virasoro algebra leads to the correct entropy through Cardy’s 
formula. This formalism was later successfully extended to cosmo-
logical black holes [27] and black hole spacetimes endowed with 
cosmological event horizons [28].

In this context we would like to point out that the counter-
term as introduced above is by no means unique [29–33]. However, 
it is well known that many counter-terms differ only by terms 
that do not involve normal derivatives on the boundary. In other 
words, all the possible counter-terms must contain the same nor-
mal derivative terms, since that is the criterion that a counter-term 
must satisfy [34]. Hence the leading order contributions from the 
counter-terms on the null surface would be the same as that ob-
tained from K

√|h|, leading to similar conclusions.
The previous works we cited above, deal essentially with sta-

tionary black hole spacetimes having a Killing vector field which 
becomes null on the horizon. Our aim is to extend this procedure 
to a generic null surface which, of course, will not be a Killing 
horizon. We shall consider a general null surface and describe it 
in terms of some suitable null coordinates, called the Gaussian 
null coordinates (see e.g., [35,36]), defined locally in the vicinity 
of the surface, and use the spacetime geometry near that sur-
face. Such surfaces, as we shall see below, are much more general
than the Killing horizons. We shall then use the surface term for-
malism [23–26] mentioned above to find the conserved charges 
corresponding to the local symmetry of the null surface geome-
try. We will show that, for a wide class of null surfaces, satisfying 
rather mild physical requirements, we can define a natural Vira-
soro algebra. The central extension of this algebra will lead to the 
entropy.

The rest of the letter is organized as follows. In the next section 
we outline the essential technical tools required for our analysis. 
We derive the Virasoro algebra and the expression for the entropy 
in Sec. 4. Finally we end with a summary and outlook of our result.

3. The geometry

The most general geometry in the local neighborhood of a null 
surface can be described using the Gaussian Null Coordinates (see 
e.g., Ref. [35,36] and references therein), in which the metric takes 
the form:

ds2 = −2xαdu2 − 2dudx − 2xβidudxi + qijdxidx j, (2)

where xi (i = 1, 2) are the coordinates on a spatial 2-dimensional 
surface. This surface is transported along the vectors along u and x. 
Since gxx = 0, the vector along x (≡ ∂x) is null. The vector ∂u be-
comes null on x = 0. The six functions α, βi and qij are assumed 
to be non-vanishing and well behaved but are arbitrary otherwise. 
They contain the 10 − 4 = 6 functional degrees of freedom of the 
metric, showing that no generality has been lost by this coordi-
nate choice. It is easy to check that the normal to the null surface, 
∇a(2αx), is also a null vector on x = 0, with its norm vanishing as 
O(x).

We will now impose the following conditions on the metric: On 
the null surface, x = 0, the functions α and qij are assumed to be 
independent of u and one of the coordinates, say, x1 and it is pe-
riodic. We stress that we impose no conditions on the spacetime 
away from the null surface and no conditions on βi anywhere. (If 
one thinks of x1 as analogous to an angular coordinate and u as 
analogous to time coordinate, our condition has a superficial sim-
ilarity to stationarity and axisymmetry on x = 0. It can be shown, 
however, that the null surface with these conditions is not a Killing 
horizon and that our geometry is much more general; a proof is 
provided in the Appendix A of this letter.)

4. The entropy

We shall briefly outline the derivation of the Virasoro algebra 
and the entropy, omitting algebraic details, which are similar to 
those in previous works and can be found in, e.g. [24]. If ζ a is 
a vector field that generates diffeomorphism, the invariance of the 
boundary term of the action, gives a conserved (∇a Ja = 0) Noether 
current J a = ∇b Jab with:

J ab[ζ ] = K

8π
(ζ a Nb − ζ b Na) (3)

Note that the Noether potential introduced above has some ambi-
guities. For example, one can add any second rank antisymmetric 
tensor to the above equation, which would not affect the conserva-
tion of the Noether current anyway, but would render the Noether 
charges ambiguous [37–39]. However in the context of Rindler or 
Killing horizons it is well known that the correct Noether potential 
corresponds to the one presented in Eq. (3), as explicitly shown 
in [24] (see also [37]). Consequently, in this work, we will take the 
Noether potential to be given by the same expression in order to 
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have the appropriate Rindler/Killing limit of our later calculations. 
Certainly, this is not the unique way to do so, but definitely seems 
to be a very reasonable one. Given the Noether potential, corre-
sponding Noether charge is given by:

Q [ζ ] = 1

2

∫
d�a Ja = 1

2

∫
dqab Jab (4)

where � is some suitable hypersurface and the last integral is over 
the 2-surface on the boundary, which, for our case, would be the 
spatial 2-surface with metric qab in Eq. (2). The area element on 
that surface is given by dqab = √

q (Na Mb − Nb Ma)d2xi , where Na

and Ma are respectively the unit spacelike and timelike normals to 
it. We take them to be:

Na =
(

1√
2xα

,
√

2xα,
xβ i

√
2xα

)

Ma =
(

1√
2xα

,0,0,0

)
(5)

so that:

K = −∇a Na = −√
α/2x +O(x) (6)

The Lie bracket algebra of the Noether charges is given by:

[Q [ζm], Q [ζn]] := 1

2

∫
dqab(ζ

a
m J b[ζn] − ζ a

n J b[ζm]) (7)

We now have to choose appropriate diffeomorphism generators 
{ζm}, such that we preserve the near null surface geometry of 
Eq. (2). Since the essential feature of the null surface we want to 
capture, viz., the blocking of the information is solely determined 
by guu , gux and gxx , we need to pick up only those vector fields 
which acts as an isometries on these metric components at x = 0. 
Setting $ζ gab = ζ c∂c gab + gc(a∂b)ζ

c = 0 for these components, we 
find that

ζ a ≡ {F (u, xi),−xF ′(u, xi),0,0} (8)

where a prime denotes differentiation with respect to u. We have 
set all transverse components of ζ a to zero, because all such com-
ponents give vanishing contribution, when substituted into Eq. (4)
and Eq. (7).

The Noether charge as presented in Eq. (4) actually corresponds 
to the charge associated with the varied metric, characterized 
by ζ a . One can argue the integrability of the charges [40], as 
the charge variation essentially depends linearly on the function 
F (u, xi), which being a scalar function, leads to commuting varia-
tions guaranteeing the integrability of the charges.

Following the standard procedure, we next find a set of vector 
fields which obey an infinite dimensional discrete Lie algebra on a 
circle on or around x = 0. In order to do this, we expand the fields 
as ζ = � Amζm , where m are integers and ζm ’s are regarded as the 
mode functions. The desired Lie bracket algebra is then

[ζm, ζn] = −i(m − n)ζm+n (9)

An obvious choice is ζm ≡ F (u, xi) = �−1eim(�u+pi xi) , where � is an 
arbitrary constant. We substitute this expression into Eq. (4) and 
Eq. (7). Our assumption that neither α nor 

√
q depend upon the 

u, x1 on the null surface and imposing periodicity of 2π on x1, 
gives us the conserved charges

Q m = 1

8π�

∫
d2x

√
qαδm,0 (10)

and their algebra
[Q m, Q n] = − i

8π�

∫
d2x

√
qα(m − n)δm+n,0

− i�m3

16π

∫
d2x

√
q

α
δm+n,0 (11)

This is clearly a Virasoro algebra with a central extension, and 
looks very similar to the one we get for the Killing horizons [23]
considered earlier in the literature. However, here α is not a con-
stant, so cannot be pulled out of the integration unlike in the 
case when the null surface is a Killing horizon. However we can 
work with the densities and easily obtain an expression for en-
tropy density. We once again emphasize that the above derivation 
of the Virasoro algebra depends crucially on the fact that the co-
dimension two surface at x = 0 is compact (i.e., the 2π periodicity 
of x1 above), for otherwise the indices on the functions determin-
ing the diffeomorphism generating vector field ζ a would not be 
integer and hence the algebra would not exist. (Note, however, that 
even when this surface is not compact, one can do this by impos-
ing periodic boundary conditions at a given length scale, which 
will render it effectively compact. In the spirit of local analysis 
we are performing there will always be some suitable background 
length scale which can be used for this purpose.) Finally, Q 0 and 
the central charge C for Eq. (4) and Eq. (7) are given by

Q 0 = 1

8π�

∫
d2x

√
qα, C = 3�

4π

∫
d2x

√
q

α
(12)

We now wish to apply Cardy’s formula [12,13] to obtain the en-
tropy density of our null surface. To do this note that a small area 
element 
A ≡ d2x will contribute 
Q 0 ≡ Q0 
A (to Q 0) and an 
amount 
C ≡ C
A to the central charge where Q0 = √

qα/(8π�)

and C = 3�
√

q/(4πα) are the integrands in Eq. (12). Using Cardy’s 
formula, we associate with this area element 
A the entropy


S = 2π

√
C
AQ0 
A

6
=

√
q

4

A (13)

The crucial square root in Cardy’s formula allows us to interpret 
the resulting expression in terms of an entropy density:

s ≡ 
S


A
=

√
CQ0

6
=

√
q

4
(14)

Since we are considering a very general situation, we do not have 
a result equivalent to the constancy of α, (which is the analogue 
of surface gravity) on the null surface. Nevertheless, it is interest-
ing that if we apply the Cardy formula to the contribution from 
each area element, we can work with local densities and obtain 
the expected result. We find that even though the temperature as-
sociated with the null surface is not a constant, we still obtain an 
appropriate entropy density. (We will comment on this fact right 
at the end.)

5. Summary and outlook

We believe this result is important and provides a key “missing 
link” in the study of null surfaces vis-a-vis gravitational thermody-
namics. This is mainly due to the following facts:

1. As pointed out earlier in references [23,24], the degrees of 
freedom associated with the entropy of null surfaces (includ-
ing event horizons) are observer dependent. (This should have 
been obvious from the fact that freely falling and stationary 
observers will attribute different thermodynamic properties to 
the black hole horizon.) The diffeomorphisms, relevant to the 
observer who perceives a null surface as a horizon, are those 
which preserve the near horizon geometry. These are a subset 
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of all possible diffeomorphisms. Therefore, such an observer 
cannot eliminate all the gauge degrees of freedom by using all 
possible diffeomorphism. This results in the transmutation of 
some gauge degrees of freedom to physical degrees of free-
dom, as far as this particular class of observers is concerned. 
This links up the observer dependence of horizon thermody-
namics to the structural features of the diffeomorphism.

2. Our derivation is remarkably local. It seem reasonable that all 
physics, including thermodynamics of horizons, should have a 
proper local description because, operationally, all the relevant 
measurements will be local. The locality in our derivation is 
based on three facts: (i) We consider diffeomorphisms near 
the horizon and use only the structural features of the met-
ric near and on the horizon. (ii) We use the behavior of the 
boundary term in the action under diffeomorphism with the 
boundary being the relevant null surface. Again, no bulk con-
struction is required. (iii) We show that a local version of 
the Cardy formula does give the correct answer. (iv) It should 
be stressed that our result is completely independent of the 
asymptotic structure of the spacetime.

3. We have shown that when a null surface is perceived to be 
a one-way membrane by a particular congruence of observers, 
they will associate an entropy with it. This directly links in-
accessibility of information with entropy, which is gratifying. 
Moreover, the result holds for a very wide class of null sur-
faces and also can be generalized to arbitrary spacetime di-
mensions, in a straightforward manner. We only needed to 
make minimal conditions on the metric, that too only on the 
null surface. The spacetime is completely arbitrary away from the 
null surface.

4. All the previous results known in the literature in the context 
of black holes, cosmology, non-inertial frames etc. become just 
special cases of this very general result. Such a unified per-
spective will be useful in further investigations.

Incidentally, the analysis will not go through if, on the null 
surface, α depends on u. In that case, we find that the Virasoro al-
gebra is not closed. The full expression demonstrating this is rather 
involved, but this is even true if we just retain terms linear in ∂uα, 
where we obtain the commutator:

[Q m, Q n] = − i

8π�

∫
d2x

√
q

(
α − ∂uα

α

)
(m − n)δm+n,0

− im3�

16π

∫
d2x

√
q

α

(
1 − ∂uα

2α2

)
δm+n,0 (15)

while the Noether charge is given by Eq. (10) with α replaced by 
α − (∂uα/2α). (Note the factor 1/2 which causes the problem.) 
Hence part of the algebra containing the charges does not close 
unless we set ∂uα = 0 on the null surface. It is not clear whether 
this is fundamental restriction of merely a limitation of this ap-
proach.

At this outset, let us point out two important issues that one 
should keep in mind. The first one corresponds to the usage and 
validity of Cardy’s formula. In particular, having a Virasoro algebra 
does not a priori ensure the validity of Cardy’s formula, a property 
of the two-dimensional Conformal Field Theory. Further, it requires 
a set of reasonable physical conditions: (a) Unitarity, (b) Modular 
Invariance and (c) Discrete Spectrum and it does not seem to be 
valid for small central charges [41]. This issue is more general than 
those addressed in this paper and we hope to return to it in a fu-
ture work. Secondly, even though works well for the near extremal 
cases (i.e., α is nonvanishing but otherwise arbitrarily small), our 
method is not adapted for exactly extremal null surfaces (α = 0). 
For this, some other techniques must be devised, e.g. [42,43]. We, 
however, believe that there is a lot to be learnt from the structure 
of generic, non-extremal, case and our approach is well-suited for 
it.

We emphasize that the present work provides a paradigm shift
from the existing literature [14] – by generalizing the formalism 
to an arbitrary null surface. The conventional Killing horizons are 
only subsets of this much more general construction and hence all
the previous results are certain special cases of our current pro-
posal. In fact, in many physical situations, a Killing horizon will 
be an idealized concept. The null surfaces considered here are sig-
nificantly more general (e.g., we are allowing non-constant surface 
gravity) and hence is closer to the realistic situations. Thus our 
work not only provides the most general framework to date to derive 
the entropy-area relation, and also probably reveals some deeper 
connection between the entropy/information, area and null sur-
faces in a much broader context in gravitational physics.

Finally we want to comment on the remarkable robustness of 
Cardy’s formula in this context. The relation between the Virasoro 
algebra and the entropy (through Cardy formula) was originally 
derived in the context of flat spacetime physics [12,13]. It is not 
obvious that the result should generalize to curved spacetime and 
black hole horizons, which was a bit of a surprise in Carlip’s ap-
proach [14]. (This is possibly related to local nature of the result 
and the fact that, in the local inertial frame, we can use the spe-
cial relativistic physics.) In obtaining the entropy density in Eq. (13)
for an arbitrary null surface, we have extended the applicability of 
Cardy formula even further. As we have shown, if one works with 
the densities C and Q0 corresponding to C and Q 0, we can repro-
duce the entropy density correctly. It is important to understand 
why this approach works and whether it can be derived from a 
more local procedure. This might, in turn, throw more light on the 
applicability of Cardy’s formula in the context of curved geometry. 
These issues are under investigation.
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Appendix A

For the sake of completeness, we show that the null surface we 
are dealing with is not a Killing horizon.

Let us first see when this null surface can correspond to a 
Killing horizon. If we set βi = 0, α = const., take qij to be indepen-
dent of u and define a timelike coordinate t as u = t − 1/2α ln x, 
then this metric takes the familiar Rindler form, appropriate for a 
Killing horizon. The vector field ∂t is then a Killing vector and be-
comes null on the horizon (x = 0) and the constant α is identified 
as the surface gravity.

We shall pick up a subclass of Eq. (2), by restricting these 
functions for our purpose, while still relaxing the Killing horizon 
conditions, as follows. We assume that on the null surface x = 0, 
both α and qij are independent of u and one of the xi ’s, say x1. 
We leave the functions βi arbitrary. We do not assume any specific 
functional forms of the metric functions for our current purpose.

The Lie derivative of the metric functions with respect to the 
vector field ∂u simply reads,

L∂u gab = ∂u gab. (16)

From Eq. (2), and our imposed restrictions, the right hand side van-
ishes at least as O(x), as x → 0. Thus the coordinate vector field 



S. Chakraborty et al. / Physics Letters B 763 (2016) 347–351 351
∂u becomes Killing as x → 0. However, it is certainly not orthogo-
nal to spacelike hypersurfaces, as is evident from the metric. Does 
there exist some other vector field that is hypersurface orthogonal 
and simultaneously becomes Killing and null on x = 0? In order to 
see this, we define two new basis vector fields for the ‘u − x’ part 
of the metric,

ũa = ∂a
u + (xβ1/q11)∂

a
x1 + (xβ2/q22)∂

a
x2

x̃a = ∂a
x − (1/2xα)̃ua (17)

where we have used a orthogonal coordinate basis for the spatial 
metric qijdxidx j , for calculational convenience only. It is easy to see 
that we now have an orthogonal basis for the spacetime Eq. (2): 
(̃ua, ̃xa, ∂a

x1
, ∂a

x2
), where the first two are not necessarily coordi-

nate vector fields. The norms of ũa and x̃a are respectively given 
by, −2αx + O(x2) and (2αx)−1. In this basis, the metric can be 
reexpressed as

gab = −(2αx)−1ũaũb + (2αx)̃xãxb + qab (18)

The above metric certainly looks formally the same as that of near 
a Killing horizon. The vector field ũa is manifestly hypersurface 
orthogonal. Moreover, since we have seen that ∂u becomes Killing 
as x → 0, from the expression of ũa , the first of Eq. (17), we may 
expect it to become Killing there, as well. However, this is not the 
case, as can be seen below.

If any vector field va is Killing, we must have $v gab = ∇a vb +
∇b va = 0, for all the components of the metric. For ũa , we find 
almost all components vanish on x = 0 as O(x) except

Lũ gab|a=x,b=i = βi (19)

Since βi ’s are arbitrary, it is evident that ũa is not a Killing vec-
tor field and hence the null surface x = 0 is not a Killing horizon. 
Accordingly [44], α will not be a constant on that null surface (in 
particular, it would depend upon the transverse spatial coordinate, 
x2, on x = 0). Since ũa is manifestly hypersurface orthogonal and 
null on x = 0, and as can be checked that the normal vector field 
∇a(2αx) is null on x = 0, it is clear that this null surface can act 
as a one way membrane.
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