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1. Introduction

Our objective in this paper is to find the sparsest solutions of a linear system Az = y. Here we think of the fixed vector y
as an incomplete set of m linear measurements taken of a signal x ∈ R

N , thus it is represented as y = Ax for some m × N
matrix A. Since the number m of measurements is smaller than the dimension N of the signal space – typically, much
smaller – the linear system Az = y has many solutions, among which we wish to single out the sparsest ones, i.e. the
solutions of Az = y with a minimal number of nonzero components. Following the tradition, we write ‖z‖0 for the number
of nonzero components of a vector z, and we rephrase the problem as

minimize
z∈RN

‖z‖0 subject to Az = y. (P0)

One can easily observe that a solution z of (P0) is guaranteed to be unique as soon as 2‖z‖0 < spark(A), where spark(A) �
rank(A) + 1 is the smallest integer σ for which σ columns of A are linearly dependent, see [8]. Uniqueness can also
be characterized in terms of the Restricted Isometry Constants δk of the matrix A. We recall that these are the smallest
constants 0 < δk � 1 for which the matrix A satisfies the Restricted Isometry Property of order k, that is

(1 − δk)‖z‖2
2 � ‖Az‖2

2 � (1 + δk)‖z‖2
2 whenever ‖z‖0 � k. (1)

It is then easy to observe that any s-sparse vector x is recovered via the minimization (P0) in which y = Ax if and only if
the strict inequality δ2s < 1 holds, see e.g. [4].

However appealing (P0) might seem, it remains an NP-problem [11] that cannot be solved in practice. Nonetheless,
assuming certain conditions on the matrix A, alternative strategies to find sparsest solutions have been put forward, such
as orthogonal greedy algorithms or basis pursuit. The latter replaces the problem (P0) by the �1-minimization

minimize
z∈RN

‖z‖1 subject to Az = y. (P1)
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Candès and Tao [5] showed for instance that any s-sparse vector is exactly recovered via the minimization (P1) as soon as
δ3s + 3δ4s < 2. Note that a condition involving only δ2s would seem more natural, in view of the previous considerations.
Candès provided just that in [2] when he established exact recovery of s-sparse vectors via �1-minimization under the
condition

δ2s <
√

2 − 1 ≈ 0.4142. (2)

We shall now adopt a strategy that lies between the minimizations (P0) and (P1). Namely, we consider, for some 0 <

q � 1, the minimization

minimize
z∈RN

‖z‖q subject to Az = y. (Pq)

This is by no means a brand new approach. Gribonval and Nielsen, see e.g. [10], studied the �q-minimization in terms of
Coherence. Chartrand [7] studied it in terms of Restricted Isometry Constants. He stated that s-sparse vectors can be exactly
recovered by solving (Pq) under the assumption that δas + bδ(a+1)s < b − 1 holds for some b > 1 and a := bq/(2−q) . He then
claimed that exact recovery of s-sparse vectors can be obtained from the solution of (Pq) for some q > 0 small enough,
provided that δ2s+1 < 1. There was a minor imprecision in his arguments, as he neglected the fact that as must be an
integer when he chose the number a under the requirement 1 < a < 1 + 1/s. A correct justification would be to define
a := 1 + 1/s, so that the sufficient condition δas + bδ(a+1)s < b − 1, where b := a(2−q)/q > 1, becomes feasible for q > 0 small
enough as long as δ2s+1 < 1.

Let us describe our contribution to the question while explaining the organization of the paper. In Section 2, we discuss
exact recovery from perfect data via �q-minimization. In particular, we derive from Theorem 2.1 a sufficient condition
slightly weaker than (2), as well as another version of Chartrand’s result. Theorem 2.1 actually follows from the more
general Theorem 3.1, which is stated and proved in Section 3. This theorem deals with the more realistic situation of a
measurement y = Ax + e containing a perturbation vector e with ‖e‖2 � ϑ for some fixed amount ϑ � 0. This framework
is exactly the one introduced by Candès, Romberg, and Tao in [3] for the case q = 1. Next, in Section 4, we propose a
numerical algorithm to approximate the minimization (Pq). We then discuss convergence issues and prove that the output
of the algorithm is not merely an approximation, but is in fact exact. Finally, we compare in Section 5 our �q-algorithm
with four existing methods: the orthogonal greedy algorithm, see e.g. [13], the regularized orthogonal matching pursuit, see
[12], the �1-minimization, and the reweighted �1-minimization, see [6]. The last two, as well as our �q-algorithm, use the
�1-magic software available on Candès’ web page. It comes as a small surprise that the �q-method performs best.

2. Exact recovery via �q-minimization

Our main theorem is similar in flavor to many previous ones – in fact, its proof is inspired by theirs – except that we
avoid Restricted Isometry Constants, as we felt that the nonhomogeneity of the Restricted Isometry Property (1) contradicted
the consistency of the problem with respect to measurement amplification, or in other words, that it was in conflict with
the equivalence of all the linear systems (c A)z = cy, c ∈ R. Instead, we introduce αk, βk � 0 to be the best constants in the
inequalities

αk‖z‖2 � ‖Az‖2 � βk‖z‖2, ‖z‖0 � k.

Our results are to be stated in terms of a quantity invariant under the change A ← c A, namely

γ2s := β2s
2

α2s
2

� 1.

The quantity γ2s can be made arbitrarily close to 1 by taking the entries of A to be e.g. independent realizations of Gaussian
random variables of mean zero and identical variance, provided that m � c · s log(N/s), where c is a constant depending on
γ2s −1. We refer the reader to [1] for a precise statement and a simple proof based on concentration of measure inequalities.

We start by illustrating Theorem 3.1 in the special case of s-sparse vectors that are measured with infinite precision,
which means that both the error σs(x)q of best s-term approximation to x with respect to the �q-quasinorm and the
relative measurement error θ are equal to zero.

Theorem 2.1. Given 0 < q � 1, if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/q−1/2

for some integer t � s, (3)

then every s-sparse vector is exactly recovered by solving (Pq).

Let us remark that, in practice, we do not solve (Pq) but an approximated problem, which still yields exact solutions.
There are two special instances of the above result that are worth pointing out. The first one corresponds to the choices
t = s and q = 1.
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Corollary 2.1. Under the assumption that

γ2s < 4
√

2 − 3 ≈ 2.6569, (4)

every s-sparse vector is exactly recovered by solving (P1).

This slightly improves Candès’ condition (2), since the constant γ2s is expressed in terms of the Restricted Isometry
Constant δ2s as

γ2s = 1 + δ2s

1 − δ2s
,

hence the condition (4) becomes δ2s < 2(3 − √
2 )/7 ≈ 0.4531.

The second special instance we are pointing out corresponds to the choice t = s + 1. In this case, condition (3) reads

γ2s+2 < 1 + 4(
√

2 − 1)

(
1 + 1

s

)1/q−1/2

.

The right-hand side of this inequality tends to infinity as q approaches zero. The following result is then straightforward.

Corollary 2.2. Under the assumption that

γ2s+2 < +∞,

every s-sparse vector is exactly recovered by solving (Pq) for some q > 0 small enough.

Let us note that the condition γ2s+2 < +∞ is equivalent to the condition δ2s+2 < 1. This result is almost optimal, since
it says that if one could recover every (s + 1)-sparse vector via the theoretical program (P0), then one can actually recover
every s-sparse vector via the program (Pq) for some q > 0.

Theorem 2.1 is an immediate consequence of Theorem 3.1 to be given in the next section, hence we do not provide
a separate proof. Let us nonetheless comment briefly on this potential proof, as it helps to elucidate the structure of the
main proof. Let us consider first a vector v in the null-space of A and an index set S with |S| � s. The vector vS , i.e. the
vector which equals v on S and vanishes on the complement S of S in {1, . . . , N}, has the same image under A as the
vector −vS . Since vS is s-sparse, the anticipated result implies ‖vS‖q < ‖vS‖q , unless vS = vS , i.e. v = 0. This necessary
condition turns out to be sufficient, too. It is established in Step 1 of the main proof using the assumption on γ2t . Then,
using the �q-minimization in Step 2, we establish a reverse inequality ‖vS‖q � ‖vS‖q for the support S of the vector x and
for v := x−x∗ , where x∗ is a solution of (Pq). Clearly, the two inequalities imply that v = 0, or equivalently that any solution
x∗ of (Pq) equals the original vector x, as expected.

3. Approximate recovery from imperfect data

We now consider the situation where the measurements y are moderately flawed, i.e. we suppose

‖Ax − y‖2 � β2s · θ.

Note that θ represents a relative error between accurate and inaccurate measurements, so that it makes the previous bound
invariant under the change A ← c A, y ← cy. This differs slightly from the formulation of [3] for q = 1, where the absolute
error was considered. Of course, the choice of the homogeneous constant β2s is somewhat arbitrary, it is merely dictated
by the nice estimates (5) and (6). In order to approximately recover the original vector x ∈ R

N from the knowledge of y, we
shall solve the minimization

minimize
z∈RN

‖z‖q subject to ‖Az − y‖2 � β2s · θ. (Pq,θ )

Before anything else, let us make sure that this minimization is solvable.

Lemma 3.1. A solution of (Pq,θ ) exists for any 0 < q � 1 and any θ � 0.

Proof. Let κ be the value of the minimum in (Pq,θ ). It is straightforward to see that (Pq,θ ) is equivalent to, say, the mini-
mization

minimize
z∈RN

‖z‖q subject to ‖z‖q � 2κ and ‖Az − y‖2 � β2s · θ.

Because the set {z ∈ R
N : ‖z‖q � 2κ , ‖Az − y‖2 � β2s · θ} is compact and because the �q-quasinorm is a continuous function,

we can conclude that a minimizer exists. �
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We are now in a position to state the main theoretical result of the paper. In what follows, the quantity σs(x)q denotes
the error of best s-term approximation to x with respect to the �q-quasinorm, that is

σs(x)q := inf‖z‖0�s
‖x − z‖q.

Theorem 3.1. Given 0 < q � 1, if condition (3) holds, i.e. if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/q−1/2

for some integer t � s,

then a solution x∗ of (Pq,θ ) approximate the original vector x with errors

‖x − x∗‖q � C1 · σs(x)q + D1 · s1/q−1/2 · θ, (5)

‖x − x∗‖2 � C2 · σs(x)q

t1/q−1/2
+ D2 · θ. (6)

The constants C1 , C2 , D1 , and D2 depend only on q, γ2t , and the ratio s/t.

Proof. The proof involves some properties of the �q-quasinorm which must be recalled. Namely, for any vectors u and v in
R

n , one has

‖u‖1 � ‖u‖q, ‖u‖q � n1/q−1/2 ‖u‖2, ‖u + v‖q
q � ‖u‖q

q + ‖v‖q
q. (7)

Step 1: Consequence of the assumption on γ2tγ2tγ2t .
We consider an arbitrary index set S =: S0 with |S| � s. Let v be a vector in R

N , which will often – but not always – be
an element of the null-space of A. For instance, we will take v := x − x∗ in Step 2. We partition the complement of S in
{1, . . . , N} as S = S1 ∪ S2 ∪ · · ·, where

S1 := {indices of the t largest absolute-value components of v in S},
S2 := {indices of the next t largest absolute-value components of v in S},

.

.

.

We first observe that

‖vS0‖2
2 + ‖vS1‖2

2 = ‖vS0 + vS1‖2
2 � 1

α2
2t

∥∥A(vS0 + vS1 )
∥∥2

2 (8)

= 1

α2
2t

〈
A(v − vS2 − vS3 − · · ·), A(vS0 + vS1 )

〉
(9)

= 1

α2
2t

〈
Av, A(vS0 + vS1 )

〉 + 1

α2
2t

∑
k�2

[〈
A(−vSk ), AvS0

〉 + 〈
A(−vSk ), AvS1

〉]
. (10)

Let us renormalize the vectors −vSk and vS0 so that their �2-norms equal one by setting uk := −vSk /‖vSk ‖2 and u0 :=
vS0/‖vS0‖2. We then obtain

〈A(−vSk ), AvS0 〉
‖vSk ‖2 ‖vS0‖2

= 〈Auk, Au0〉 = 1

4

[∥∥A(uk + u0)
∥∥2

2 − ∥∥A(uk − u0)
∥∥2

2

]
� 1

4

[
β2

2t‖uk + u0‖2
2 − α2

2t‖uk − u0‖2
2

] = 1

2

[
β2

2t − α2
2t

]
.

With a similar argument with S1 in place of S0, we can derive

〈
A(−vSk ), AvS0

〉 + 〈
A(−vSk ), AvS1

〉
�

β2
2t − α2

2t

2
‖vSk ‖2

[‖vS0‖2 + ‖vS1‖2
]
. (11)

Besides, we have〈
Av, A(vS0 + vS1 )

〉
� ‖Av‖2 · ∥∥A(vS0 + vS1 )

∥∥
2 � ‖Av‖2 · β2t

[‖vS0‖2 + ‖vS1‖2
]
. (12)

Substituting the inequalities (11) and (12) into (10), we have

‖vS0‖2
2 + ‖vS1‖2

2 �
(

γ2t

β2t
‖Av‖2 + γ2t − 1

2

∑
‖vSk ‖2

)[‖vS0‖2 + ‖vS1‖2
]
.

k�2
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With c := γ2t/β2t · ‖Av‖2, d := (γ2t − 1)/2, and Σ := ∑
k�2 ‖vSk ‖2, this reads[

‖vS0‖2 − c + dΣ

2

]2

+
[
‖vS1‖2 − c + dΣ

2

]2

� (c + dΣ)2

2
.

The above inequality easily implies

‖vS0‖2 � c + dΣ

2
+ c + dΣ√

2
= (1 + √

2 )

2
· (c + dΣ). (13)

By Hölder’s inequality mentioned in (7), we get

‖vS0‖q � s1/q−1/2 ‖vS0‖2 � 1 + √
2

2
· (c + dΣ) · s1/q−1/2. (14)

It now remains to bound Σ . Given an integer k � 2, let us consider i ∈ Sk and j ∈ Sk−1. From the inequality |vi | � |v j |
raised to the power q, we derive that |vi |q � t−1‖vSk−1‖q

q by averaging over j. In turn, this yields the inequality ‖vSk ‖2
2 �

t1−2/q‖vSk−1‖2
q by raising to the power 2/q and summing over i. It follows that

Σ =
∑
k�2

‖vSk ‖2 � t1/2−1/q
∑
k�1

‖vSk ‖q � t1/2−1/q
[∑

k�1

‖vSk ‖q
q

]1/q

= t1/2−1/q‖vS‖q.

Combining the above inequality with (14), we obtain the partial conclusion:

‖vS‖q � λ

2β2t
· ‖Av‖2 · s1/q−1/2 + μ · ‖vS‖q, v ∈ R

N , |S| � s, (15)

where the constants λ and μ are given by

λ := (1 + √
2 )γ2t and μ := 1

4
(1 + √

2 )(γ2t − 1)

(
s

t

)1/q−1/2

. (16)

Note that the assumption on γ2t translates into the inequality μ < 1.

Step 2: Consequence of the �q�q�q-minimization.
Now let S be specified as the set of indices of the s largest absolute-value components of x, and let v be specified as

v := x − x∗ . Because x∗ is a minimizer of (Pq,θ ), we have

‖x‖q
q � ‖x∗‖q

q, i.e. ‖xS‖q
q + ‖xS‖q

q �
∥∥x∗

S

∥∥q
q + ∥∥x∗

S

∥∥q
q.

By the triangular inequality mentioned in (7), we obtain

‖xS‖q
q + ‖xS‖q

q � ‖xS‖q
q − ‖vS‖q

q + ‖vS‖q
q − ‖xS‖q

q.

Rearranging the latter yields the inequality

‖vS‖q
q � 2‖xS‖q

q + ‖vS‖q
q = 2σs(x)

q
q + ‖vS‖q

q. (17)

Step 3: Error estimates.
We now take into account the bound

‖Av‖2 = ‖Ax − Ax∗‖2 � ‖Ax − y‖2 + ‖Ax∗ − y‖2 � β2s · θ + β2s · θ � 2β2t · θ.

For the �q-error, we combine the estimates (15) and (17) to get

‖vS‖q
q � 2σs(x)

q
q + λq · s1−q/2 · θq + μq · ‖vS‖q

q.

As a consequence of μ < 1, we now obtain

‖vS‖q
q � 2

1 − μq
· σs(x)

q
q + λq

1 − μq
· s1−q/2 · θq.

Using the estimate (15) once more, we can derive that

‖v‖q = [‖vS‖q
q + ‖vS‖q

q
]1/q �

[
(1 + μq) · ‖vS‖q

q + λq · s1−q/2 · θq]1/q

�
[

2 (1 + μq)

1 − μq
· σs(x)

q
q + 2λq

1 − μq
· s1−q/2 · θq

]1/q

� 21/q−1
[

21/q(1 + μq)1/q

q 1/q
· σs(x)q + 21/qλ

q 1/q
· s1/q−1/2 · θ

]
,

(1 − μ ) (1 − μ )
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where we have made use of the inequality [aq + bq]1/q � 21/q−1[a + b] for a,b � 0. The estimate (5) follows with

C1 := 22/q−1(1 + μq)1/q

(1 − μq)1/q
and D1 := 22/q−1λ

(1 − μq)1/q
.

As for the �2-error, we remark that the bound (13) also holds for ‖vS1‖2 in place of ‖vS0‖2 to obtain

‖v‖2 =
[∑

k�0

‖vSk ‖2
2

]1/2

�
∑
k�0

‖vSk ‖2 � (1 + √
2 ) · (c + dΣ) + Σ � ν · Σ + 2λ · θ,

where ν := (λ + 1 − √
2 )/2. Then, in view of the bound

Σ � t1/2−1/q‖vS‖q � t1/2−1/q · 21/q−1 ·
[

21/q

(1 − μq)1/q
· σs(x)q + λ

(1 − μq)1/q
· s1/q−1/2 · θ

]
,

we may finally conclude that

‖v‖2 � 22/q−1 ν

(1 − μq)1/q
· σs(x)q

t1/q−1/2
+

[
21/q−1λν

(1 − μq)1/q
·
(

s

t

)1/q−1/2

+ 2λ

]
θ.

This leads to the estimate (6) with

C2 := 22/q−2(λ + 1 − √
2 )

(1 − μq)1/q
and D2 := 21/q−2λ(λ + 1 − √

2 )

(1 − μq)1/q
+ 2λ.

The reader is invited to verify that the constants C1, D1, C2, and D2 depend only on q, γ2t , and the ratio s/t . However, they
grow exponentially fast when q tends to zero. �
4. Description of the algorithm

We assume from now on that x is an s-sparse vector. The minimization problem (Pq) suggested to recover x is nonconvex,
so it needs to be approximated. We propose in this section an algorithm to compute a minimizer of the approximated
problem, for which we give an informal but detailed justification.

We shall proceed iteratively, starting from a vector z0 satisfying Az0 = y, which is a reasonable guess for x, and con-
structing a sequence (zn) recursively by defining zn+1 as a solution of the minimization problem

minimize
z∈RN

N∑
i=1

|zi |
(|zn,i | + εn)1−q

subject to Az = y. (18)

Here, the sequence (εn) is a nonincreasing sequence of positive numbers. It might be prescribed from the start or defined
during the iterative process. In practice, we will take limn→∞ εn = 0 to facilitate the use of Proposition 4.2. However, we
also allow the case limn→∞ εn > 0 in order not to exclude constant sequences (εn) from the theory. We point out that the
scheme is easy to implement, since each step reduces to an �1-minimization problem (P1) relatively to the renormalized
matrix

An := A × Diag
[(|zn,i | + εn

)1−q]
.

We shall now concentrate on convergence issues. We start with the following lemma.

Proposition 4.1. For any nonincreasing sequence (εn) of positive numbers and for any initial vector z0 satisfying Az0 = y, the sequence
(zn) defined by (18) admits a convergent subsequence.

Proof. Using the monotonicity of the sequence (εn), Hölder’s inequality, and the minimality property of zn+1, we may write

N∑
i=1

(|zn+1,i | + εn+1
)q �

N∑
i=1

(|zn+1,i | + εn)q

(|zn,i | + εn)q(1−q)
· (|zn,i | + εn

)q(1−q)

�
[

N∑
i=1

|zn+1,i | + εn

(|zn,i | + εn)1−q

]q[ N∑
i=1

(|zn,i | + εn
)q

]1−q

�
[

N∑ |zn,i | + εn

(|zn,i | + εn)1−q

]q[ N∑(|zn,i | + εn
)q

]1−q

,

i=1 i=1
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that is to say

N∑
i=1

(|zn+1,i | + εn+1
)q �

N∑
i=1

(|zn,i | + εn
)q

. (19)

In particular, we obtain

‖zn‖∞ � ‖zn‖q �
[

N∑
i=1

(|zn,i | + εn
)q

]1/q

�
[

N∑
i=1

(|z0,i | + ε0
)q

]1/q

.

The boundedness of (zn) implies the existence of a convergent subsequence. �
Unfortunately, the convergence of the whole sequence (zn) could not be established rigorously. However, several points

beside the numerical experiments of Section 5 hint at its convergence to the original s-sparse vector x. First, with ε :=
limn→∞ εn and in view of the inequality (19), it is reasonable to expect that any cluster point of the sequence (zn) is a
minimizer of

minimize
z∈RN

N∑
i=1

(|zi | + ε
)q

subject to Az = y, (Pq,ε )

at least under appropriate conditions on z0 – this question is further discussed in the remark at the end of this section. In
the case of a constant sequence (εn), for instance, if z0 is chosen as a minimizer of (Pq,ε ), then zn is also a minimizer of
(Pq,ε ) for every n � 0. Then, as we shall see in Proposition 4.3, when ε > 0 is small enough, any minimizer of (Pq,ε ) turns
out to be the vector x itself, provided that condition (3) is fulfilled. Thus, under condition (3) and the appropriate conditions
on z0, we can expect x to be a cluster point of the sequence (zn). This implies, by virtue of the forthcoming Proposition 4.2,
that zn is actually equal to x for n large enough. Proposition 4.2 is noteworthy: it states that the algorithm (18) recovers
the vector x exactly, not just approximately. The proof is based on the following lemma, of independent interest.

Lemma 4.1. Given an s-sparse vector x supported on a set S, and given a weight vector w ∈ R
N+ , if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/2

· mini∈S wi

maxi∈S wi
for some integer t � s, (20)

then the vector x is exactly recovered by the minimization

minimize
z∈RN

N∑
i=1

|zi |
wi

subject to Az = y. (Pw )

Proof. Consider the weighted �1-norm defined by

‖z‖w :=
N∑

i=1

|zi |
wi

, z ∈ R
N .

Let z̄ be a minimizer of (Pw ). Our objective is to show that v := x − z̄ equals zero. We shall follow the proof of Theorem 3.1.
First, if S denotes the support of x, we can reproduce Step 2 to get

‖vS‖w � ‖vS‖w . (21)

On the other hand, since v ∈ ker A, an estimate analogous to (13) reads

‖vS‖2 � 1 + √
2

4
(γ2t − 1) ·

∑
k�2

‖vTk ‖2, (22)

where we have partitioned S as T1 ∪ T2 ∪ · · · with

T1 := {indices of the t largest values of |vi |/wi in S},
T2 := {indices of the next t largest values of |vi |/wi in S},

.

.

.

Let us observe that

‖vS‖w =
∑ |vi |

wi
�

[∑ 1

w2

]1/2[∑
v2

i

]1/2

� 1

mini∈S wi
· s1/2 · ‖vS‖2. (23)
i∈S i∈S i i∈S
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The inequalities (23) and (22) therefore imply

‖vS‖w � 1

mini∈S wi
· 1 + √

2

4
(γ2t − 1) · s1/2

∑
k�2

‖vTk ‖2. (24)

Now, given an integer k � 2, let us consider i ∈ Tk and j ∈ Tk−1. From the inequality |vi |/wi � |v j |/w j , we derive that |vi | �
wi · t−1‖vTk−1‖w by averaging over j. In turn, this yields the inequality ‖vTk ‖2

2 � [∑i∈Tk
w2

i ] · t−2‖vTk−1‖2
w � maxi∈S w2

i ·
t−1‖vTk−1‖2

w by squaring and summing over i. It follows that∑
k�2

‖vTk ‖2 � max
i∈S

wi · t−1/2
∑
k�2

‖vTk−1‖w � max
i∈S

wi · t−1/2‖vS‖w . (25)

In view of (24) and (25), we obtain

‖vS‖w �
maxi∈S wi

mini∈S wi
· 1 + √

2

4
(γ2t − 1)

(
s

t

)1/2

· ‖vS‖w =: μ̄ · ‖vS‖w . (26)

The estimates (21) and (26) together imply the conclusion v = 0, provided that μ̄ < 1, which simply reduces to condi-
tion (20). �
Proposition 4.2. Given 0 < q < 1 and the original s-sparse vector x, there exists η > 0 such that, if

εn < η and ‖zn − x‖∞ < η for some n, (27)

then one has

zk = x for all k > n.

The constant η depends only on q, x, and γ2s .

Proof. Let us denote by S the support of the vector x and by ξ the positive number defined by ξ := mini∈S |xi |. We take η
small enough so that

γ2s − 1 < 4(
√

2 − 1)

(
ξ − η

2η

)1−q

.

The vector zn+1 is obtained from the minimization (Pw ) where wi := (|zn,i | + εn)1−q . We observe that

|zn,i | + εn

{� |xi | − |zn,i − xi | + εn � ξ − η, i ∈ S,

� |xi | + |zn,i − xi | + εn � 2η, i ∈ S.

We deduce that

mini∈S wi

maxi∈S wi
�

(
ξ − η

2η

)1−q

.

Therefore, condition (20) is fulfilled with t = s, and Lemma 4.1 implies that zn+1 = x. The conditions of (27) are now
obviously satisfied for n + 1 instead of n, which implies that zn+2 = x. It follows by immediate induction that zk = x for all
k > n. �

To continue this section, we now justify that the minimization (Pq,ε ) also guarantees exact recovery when ε > 0 is small
enough. First, we isolate the following lemma.

Lemma 4.2. Given 0 < q � 1 and an s-sparse vector x, if condition (3) holds, i.e. if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/q−1/2

for some integer t � s,

then for any vector z satisfying Az = y, one has

‖z − x‖q
q � C

[‖z‖q
q − ‖x‖q

q
]
,

for some constant C depending only on q, γ2t , and the ratio s/t.

Proof. Let us set v := z − x, and let S denote the support of x. We recall that, since v ∈ ker A, the estimate (15) yields

‖vS‖q � μ · ‖vS‖q, μ := 1
(1 + √

2 )(γ2t − 1)

(
s
)1/q−1/2

. (28)

4 t
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According to condition (3), we have μ < 1. Let us now observe that

‖vS‖q
q = ‖zS‖q

q = ‖z‖q
q − ‖zS‖q

q � ‖z‖q
q − (‖xS‖q

q − ‖vS‖q
q
) = ‖vS‖q

q + [‖z‖q
q − ‖x‖q

q
]
.

Then, using (28), we derive

‖vS‖q
q � μq‖vS‖q

q + [‖z‖q
q − ‖x‖q

q
]
, i.e. ‖vS‖q

q � 1

1 − μq

[‖z‖q
q − ‖x‖q

q
]
.

Using (28) once more, we obtain

‖v‖q
q = ‖vS‖q

q + ‖vS‖q
q � (1 + μq)‖vS‖q

q � 1 + μq

1 − μq

[‖z‖q
q − ‖x‖q

q
]
.

This is the expected inequality, with C := (1 + μq)/(1 − μq). �
Proposition 4.3. Given 0 < q < 1 and the original s-sparse vector x, if condition (3) holds, i.e. if

γ2t − 1 < 4(
√

2 − 1)

(
t

s

)1/q−1/2

for some integer t � s,

then there exists ζ > 0 such that, for any nonnegative ε less than ζ , the vector x is exactly recovered by solving (Pq,ε ). The constant ζ

depends only on N, q, x, γ2t , and the ratio s/t.

Proof. Let zε be a minimizer of (Pq,ε ). We have

‖zε‖q
q − ‖x‖q

q =
N∑

i=1

|zε,i|q −
N∑

i=1

|xi |q �
N∑

i=1

(|zε,i| + ε
)q −

(
N∑

i=1

(|xi | + ε
)q −

N∑
i=1

εq

)
� Nεq. (29)

We define ζ := (C N)−1/qη, where η is the constant of Proposition 4.2. Given ε < ζ , we have ε < η, and, in view of (29), we
also have

‖zε − x‖∞ � ‖zε − x‖q � C1/q[‖zε‖q
q − ‖x‖q

q
]1/q � (C N)1/qε < η.

Therefore, according to Proposition 4.2, we infer that zk = x for all k � 1, where the sequence (zn) is defined by the
iteration (18) with z0 = zε and εn = ε for all n. On the other hand, for a vector z satisfying Az = y, the inequalities

N∑
i=1

(|zε,i| + ε
)q �

N∑
i=1

(|zi | + ε
)q �

[
N∑

i=1

|zi | + ε

(|zε,i| + ε)1−q

]q[ N∑
i=1

(|zε,i| + ε
)q

]1−q

yield the lower bound

N∑
i=1

|zi | + ε

(|zε,i| + ε)1−q
�

N∑
i=1

(|zε,i| + ε
)q

.

This means that we can chose z1 = zε as a minimizer in (18) when n = 0. Since we have also proved that z1 = x, we
conclude that zε = x, as desired. �

We conclude this section with an auxiliary discussion on convergence issues.

Remark. In our rough explanation of the convergence of the sequence (zn) towards the original s-sparse vector x, we
insisted on certain appropriate conditions on the initial vector z0. We highlight here that the convergence towards x cannot
be achieved without such conditions. Indeed, let us consider the 1-sparse vector x and the 3 × 4 matrix A defined by

x := [1,0,0,0], A :=
[ 1 0 0 −1

0 1 0 −1
0 0 1 −1

]
.

Note that the null-space of A is spanned by [1,1,1,1] . Thus, any vector z satisfying Az = Ax is of the form

z = [1 + t, t, t, t], t ∈ R.

In this case, the minimization (Pq) reads

minimize |1 + t|q + 3|t|q.

t∈R
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It is easy to check that, for 0 < q � 1, the minimum is achieved for t = 0, i.e. for z = x, so that the vector x is recovered
by �q-minimization – for q > 0 small enough, this was guaranteed by the fact that δ3 < 1. However, if we start the iterative
scheme at z0 = [0,−1,−1,−1] , the minimization (18) reads

minimize
t∈R

|1 + t|
ε1−q

+ 3
|t|

(1 + ε)1−q
.

It is easy to check that, if ε > 1/(31/(1−q) − 1), the minimum is achieved for t = 0, so that z1 = x. But if ε < 1/(31/(1−q) − 1),
the minimum is achieved for t = −1, so that z1 = z0. In this case, we obtain zn = z0 for all n, by immediate induction.
Therefore, the sequence (zn) does not converge to x independently of the choice of z0. It should also be noticed that, even
though the vector [0,−1,−1,−1] is the limit of a sequence (zn), it is not a local minimizer of (Pq,ε ) when q is close to 1
and ε close to 0.

5. Numerical experiments

We compare in this section the algorithm described in Section 4 with four other existing algorithms, namely the orthog-
onal greedy algorithm (OGA, see [13]), the regularized orthogonal matching pursuit (ROMP, see [12]), the �1-minimization
(L1), and the reweighted �1-minimization (RWL1, see [6]).

There are many greedy algorithms available in the literature, see e.g. [9,14–16], but that we find the orthogonal greedy
algorithm of [13] more efficient due to two of its features: one is to select multiple columns from A during each greedy
iteration and the other is to use an iterative computational algorithm to find the best approximation in each greedy compu-
tation. We thank Alex Petukhov for providing us with his MATLAB code. The MATLAB codes for the regularized orthogonal
matching pursuit and for the �1-minimization can be found online. As for the code associated to the �q-method of this
paper, it is available on the authors’ web pages.

We point out that the reweighted �1-minimization discussed in [6], which came to our attention while we were testing
this scheme, is the special instance of the algorithm (18) with

q = 0, εn = ε, z0 = minimizer of (P1).

Thus, as the approximation of the original problem (P0), one would intuitively expect that, among the approximations of
the problems (Pq), the reweighted �1-minimization is the best option to recover sparse vectors. This is not the case, though,
and there appears to be some advantages in letting the parameter q vary, as demonstrated by the numerical experiments
below.

In our first experiment, we justify the values attributed by default to the number of iterations n, the exponent q, and the
sequence (εk) in our �q-algorithm. The choice is based on the computations summarized in Figs. 1, 2, and 3. Here, we have

Fig. 1. Frequency of success vs. number of iterations n.
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Fig. 2. Frequency of success vs. exponent q.

Fig. 3. Frequency of success vs. sparsity s.

selected N = 512 and m = 128. For each sparsity level s between 40 and 64, we have picked 150 pairs of s-sparse vector x
and matrix A at random. This means that the support of the vector x is chosen as the first s values of a random permutation
of {1, . . . , N}, and that the entries of x on its support, as well as the entries of A, are independent identically distributed
Gaussian random variables with zero mean and unit variance. Then, for each pair (x, A), using only the partial information
y = Ax, we have tried to recover x as the vector zn produced by the iterative scheme (18) started at the minimizer z0 of (P1).
This was done for several values of the parameters n, q, and (εk). The recovery was considered a success if ‖x−zn‖2 < 10−3.
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Fig. 4. Comparison of the five algorithms for sparse vectors with arbitrary entries.

In Fig. 1, the frequency of success appears stationary after a relatively small number of iterations. Figs. 2 and 3 suggest
that a sequence (εk) decreasing too fast does not improve the efficiency of the computations. Let us mention that the
constant sequence defined by εk = 1/2 will not be used, as the value of the constant should depend on the expected
amplitude of the vector x. Fig. 2 also shows that the choice q = 0 is not unequivocally the best choice for a single q. Based
on these considerations, our preferred values for the parameters are

• number of iteration: n = 10,

• ε-sequence: εk = 1

k + 2
,

• exponents: q ∈ {0,0.05,0.1,0.2}.

Let us point out that our �q-algorithm allows several choices for q, including q = 0, and that the sparsest output produced
from these choices is eventually retained. In this way, it is no surprise that the �q-method performs at least as well as
the reweighted �1-minimization. It is surprising, however, that it does perform better, even by a small margin. This im-
provement is obtained at a default cost of 4 times a 10-iteration reweighted �1-minimization, i.e. at a cost of 40 times an
�1-minimization.

In our last experiment, we present an extensive comparison of the algorithms previously mentioned. We used 100
random pairs (x, A) for this test, with N = 512 and m = 128. For each pair, we run each of the five algorithms to obtain
a vector x̃, and we have strengthened the condition for successful recovery to ‖x − x̃‖∞ < 10−5. In the reweighted �1-
minimization, we have taken n = 20 and εk = 1/10, while in the �q-algorithm, we have taken n = 20, εk = 1/2k , and
q = 0, q = 0.1, q = 0.2, . . . , q = 0.9 successively. In fact, not all these values of q were necessarily used. The knowledge of
the original vector x was indeed exploited in this particular experiment to stop the program at the first occurrence of a
successful recovery. All the same, even with the nonoptimal parameters we chose, Fig. 4 reveals that an �q-method with
varying q gives somewhat better success rates than the other four algorithms considered.
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