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SUMMARY

Enterocytes assemble dietary lipids into chylo-
micron particles that are taken up by intestinal
lacteal vessels and peripheral tissues. Although
chylomicrons are known to assemble in part
within membrane secretory pathways, the mod-
ifications required for efficient vascular uptake
are unknown. Here we report that the transcrip-
tion factor pleomorphic adenoma gene-like
2 (PlagL2) is essential for this aspect of dietary
lipid metabolism. PlagL2�/�mice die from post-
natal wasting owing to failure of fat absorption.
Lipids modified in the absence of PlagL2 exit
from enterocytes but fail to enter interstitial lac-
teal vessels. Dysregulation of enterocyte genes
closely linked to intracellular membrane trans-
port identified candidate regulators of critical
steps in chylomicron assembly. PlagL2 thus
regulates important aspects of dietary lipid ab-
sorption, and the PlagL2�/� animal model has
implications for the amelioration of obesity and
the metabolic syndrome.

INTRODUCTION

Pleomorphic adenoma gene-like 2 (PLAGL2) is a close

homolog of PLAG1, a proto-oncogene implicated in

various tumors in humans and genetically modified mice

(Declercq et al., 2005). Together with the candidate tumor

suppressor PLAGL1, these genes constitute a subfamily

(Kas et al., 1998) encoding transcription factors with

a C-terminal transactivation domain and an N-terminal
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zinc-finger region that recognizes GRGGC(N)7 RGGK

motifs in DNA. Although PlagL2 acts as a dominant onco-

gene in NIH 3T3 cells (Hensen et al., 2002) and has

recently been implicated in human acute myeloid leuke-

mia (Landrette et al., 2005), its physiologic functions are

unknown. Here we report that PlagL2 null mice display

severe postnatal wasting resulting from failure to absorb

dietary lipids.

Most dietary lipids are long-chain triglycerides (TGs)

that are digested and absorbed in phases. Gut luminal

hydrolysis generates fatty acids and monoglycerides,

which form mixed micelles with bile salts and enter muco-

sal enterocytes, where endoplasmic reticulum enzymes

re-esterify them into TGs. Along with cholesterol, choles-

teryl esters, phospholipids, and ApoB, these TGs are

assembled into chylomicrons (CMs) and released from

the enterocyte basolateral surface into the lamina propria.

Mutant intestines seem to carry a specific defect in CM

metabolism that prevents entry from intestinal lamina

propria into lacteal vessels, and they show dysregulated

expression of genes closely linked to intracellular lipid

metabolism. Little is known about CM modifications that

permit their uptake by lacteal vessels; our studies estab-

lish a function for PlagL2 in enterocyte CM metabolism

that enables such uptake.

RESULTS AND DISCUSSION

Growth Arrest and Lethality of PlagL2�/�Mice Due
to Starvation
Our targeting strategy deleted PlagL2 exon 2 (encoding

residues 88–496) (Figure 1A), hence disrupting the first

zinc finger and removing the following five zinc-finger

motifs and the transactivation domain. Although several

targeted embryonic stem (ES) cell clones showed
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Figure 1. Targeted Disruption of the Mouse PlagL2 Gene

(A) Representation of the mouse PlagL2 gene (two coding exons separated by a 3.5 kb intron), targeting vector, and recombined null allele. The

targeting construct contains BsrGI (B) and ApaI (A) fragments as 50 and 30 homology arms flanking LacZ cDNA and a floxed (black triangles) PGK-

Neo selection cassette. BamHI (BHI) and EcoRI (E) digests yield diagnostic fragments in Southern analysis using one or more of the indicated probes.

PCR and RT-PCR with primers corresponding to the short arrows permitted determination of genotypes and expression.

(B) Detection of native PlagL2 transcripts in PlagL2+/� and PlagL2+/+ samples and of PlagL2-LacZ fusion transcripts in PlagL2+/� and PlagL2�/� sam-

ples by RT-PCR analysis.

(C) Growth curves of PlagL2�/� pups (dotted line) and littermate controls (solid line) (p % 0.005; n R 15 at all stages). Results are expressed as mean

values ± SD.

(D) Survival curve of PlagL2�/� pups (n = 35).

(E) Northern analysis of the hepatic nutritional markers Igf1 and AS in 3-day-old and 6-day-old PlagL2�/� pups.
homologous recombination, one PlagL2 allele in each

line was replaced by a concatemeric form of the targeting

construct (see Figure S1A in the Supplemental Data avail-

able with this article online). Morula aggregation with

targeted ES cells yielded male chimeras and germline

transmission of the targeted PlagL2 allele (PlagL2�). To

allow Cre-mediated excision of concatemer copies (Lalle-

mand et al., 1998), 129/SvJ mutant mice were crossed with

Swiss Webster PGK-Cre mice and selected against the

Cre transgene in the next generation. Intercrossing the

resulting heterozygous offspring yielded PlagL2�/� pups

in Mendelian ratios. We confirmed loss of PlagL2 and pres-

ence of PlagL2-LacZ fusion transcripts by RT-PCR

(Figure 1B).

PlagL2�/� neonates weighed slightly less than wild-

type littermates and subsequently failed to gain weight

(Figure 1C). Only 15% of mutant pups survived beyond

the first week, and <5% reached weaning age (Figure 1D).

mRNA levels of asparagine synthetase (AS), a starvation

response factor (Jousse et al., 2004), were increased in

PlagL2�/� livers, whereas Igf1 expression, which is re-

pressed during starvation (Thissen et al., 1994), was signif-

icantly decreased (Figure 1E), indicating that PlagL2�/�
Cell M
pups succumb to a wasting syndrome. This early post-

natal phenotype contrasts with the predominant expres-

sion of PlagL2 mRNA between 11.5 and 16.5 days post-

coitum (dpc) (data not shown). The related Plag1 gene

may compensate for loss of PlagL2 in developing tis-

sues where both homologs are present. Plag1 expression

levels decline drastically after birth (Hensen et al., 2004),

perhaps allowing essential PlagL2 requirements to be

revealed.

PlagL2 Expression in Mouse Small Intestine
Presence of ample milk in the stomachs of PlagL2�/� pups

suggested that wasting resulted from malabsorption

rather than malnutrition, and northern analysis revealed

high PlagL2 mRNA levels in 15.5–18.5 dpc mouse intes-

tines. Expression remained high until weaning and per-

sisted thereafter, albeit at reduced relative levels

(Figure 2A). Taking advantage of the LacZ reporter in-

serted in the targeted PlagL2 allele, we detected b-galac-

tosidase in intestines of 18.5 dpc PlagL2+/� embryos

(Figure 2B), but not in stomach, liver, pancreas, mesen-

tery, or mesenteric lymph nodes. Histology revealed

LacZ staining in intestinal villus epithelial cells, but not in
etabolism 6, 406–413, November 2007 ª2007 Elsevier Inc. 407
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Figure 2. PlagL2 Expression in Develop-

ing Mouse Intestine

(A) Northern analysis of PlagL2 expression at

different stages in wild-type mouse small intes-

tine, with b-actin as a loading control.

(B) X-gal staining of 18.5 postcoitum (dpc)

PlagL2+/� and PlagL2+/+ developing intestines.

(C) Histologic sections of X-gal-stained gut

with villus epithelial cells (arrows), intervillus

epithelium (*), and mesenchyme (**) indicated.

(D) qRT-PCR confirming PlagL2 expression in

the epithelial fraction. Ihh and Ptc-1 serve as

control epithelium- and mesenchyme-specific

transcripts. n R 2 for each of the different

gene transcripts tested for each fraction. Ex-

periments were performed in duplicate.

(E–G) PlagL2 immunohistochemistry of 3-day-

old wild-type small bowel, showing epithe-

lium-specific expression; (F) shows the area

boxed in (E).

(H) Immunohistochemistry of PlagL2�/� intes-

tine, revealing background cytoplasmic stain-

ing and absence of signal in enterocyte nuclei.

(I) Control staining of 3-day-old wild-type small

intestine with PlagL2 antiserum omitted.
subepithelial tissue (Figure 2C). We also separated epithe-

lium and mesenchyme of 18.5 dpc intestines and verified

enrichment of each fraction by assessing expression

of epithelial (Indian hedgehog, Ihh) and mesenchymal

(Patched 1, Ptc-1) transcripts (Madison et al., 2005) by

real-time RT-PCR. PlagL2 mRNA appeared in the epithe-

lial fraction (Figure 2D), as also observed through expres-

sion profiling (Li et al., 2007).

Finally, we performed immunohistochemistry on neona-

tal small bowel sections using rabbit PlagL2 antiserum.

We tested antibody reactivity first by immunoblot analysis

(Figure S1B). In wild-type gut sections, the antiserum

stained nuclei of most villus epithelial cells but few if any

subepithelial cells (Figure 2E), as emphasized in high-

magnification micrographs (Figures 2F and 2G). Cytoplas-

mic and smooth-muscle staining also occurred in

PlagL2�/� intestine, where nuclear staining was absent

(Figure 2H), establishing the specificity of the nuclear sig-

nal as expected for a transcription factor; omission of the

antiserum eliminated all signals (Figure 2I). PlagL2 mRNA

levels are roughly equal in different bowel segments, in-

cluding the colon (Figure S1C), where protein expression

is also epithelial (data not shown). Plag1 expression in

the developing gut is negligible and is not influenced by

PlagL2 loss (data not shown).
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Defective Lipid Absorption by PlagL2�/� Intestine
The lamina propria and submucosa in PlagL2�/� small

bowel were significantly distended (Figure 3E), and prom-

inent vacuoles in jejunal enterocytes (Figure 3H) were rem-

iniscent of findings in humans and mice with deficiency or

absence of intestinal apolipoprotein B (ApoB) (Gregg and

Wetterau, 1994; Young et al., 1995). Goblet and enteroen-

docrine cells were represented in normal proportions

(data not shown), and expression of intestinal fatty acid-

binding protein (iFABP), an enterocyte marker, was similar

to that in control intestines (Figure 4B). These results

collectively indicate correct allocation of gut epithelial

cell lineages.

Oil red O staining of the mutant gut revealed striking de-

position of neutral lipids in the interstitium and accumula-

tion within jejunal enterocytes (Figures 3F, 3G, 3I, and 3J).

Thus, whereas PlagL2 expression is epithelial, histopatho-

logical changes in the mutant small bowel concentrate in

the lamina propria and, in light of the wasting syndrome,

suggest defective lipid absorption. Mutant intestines (n =

5) contained 25.3 ± 1.5 mg TG per gram of wet tissue,

compared to 15.0 ± 1.27 mg/g in wild-type littermates

(n = 12). This difference is highly significant (p = 0.0003

by two-tailed t test) and probably underestimates TG ex-

cess in regions of maximal physiologic lipid absorption
r Inc.



Cell Metabolism

PlagL2 Regulates Intestinal Lipid Absorption
compared to the rest of the intestine. In the proximal gut,

which accounts for a small fraction of dietary fat uptake,

PlagL2�/�mice accumulate modest amounts of interstitial

lipid. In the distal jejunum, where over 80% of fat is

absorbed, interstitial lipid accumulation in PlagL2�/�

mice is the highest and lipid excess is evident in entero-

cytes (Figure 3J), probably because transport systems

are overloaded.

Mass spectrometric analysis of independent samples

confirmed at least 2- to 3-fold increase in all TG species

in the mutant bowel (Table S1), including those derived

from saturated, monounsaturated, and polyunsaturated

fatty acids. As the latter cannot form in mammalian cells,

the presence of 18:2, 20:4, and other such species indi-

cates re-esterification of essential fatty acids and impli-

cates PlagL2 function at a later step in lipid absorption.

Notably, cholesterol levels were similar in wild-type

(9.7 ± 2.8 mg/g, n = 12, determined enzymatically) and

mutant (6.7 ± 1.7 mg/g, n = 5, p = 0.52) intestines; mass

spectrometry also disclosed similar phospholipid, choles-

teryl ester, and free fatty acid content (data not shown). In

contrast to the gut, livers of mutant infant mice showed no

increase in TG (5.8 ± 1.0 mg/g, n = 4, compared to 6.0 ±

0.5 mg/g in 12 wild-type littermates; p = 0.85) or choles-

terol (5.1 ± 0.1 mg/g, n = 5, compared to 5.3 ± 0.1 mg/g

in 12 wild-type littermates; p = 0.33) levels.

Interstitial CMs are normally sparse because they effi-

ciently enter lacteal vessels present in the stalk of each

villus. Indeed, transmission electron microscopy (TEM)

of PlagL2+/+ (Figure 3M) and PlagL2+/� (data not shown)

lamina propria showed CM profiles contained within

endothelium-lined channels, whereas PlagL2�/� gut inter-

stitium was filled with mature CMs unbounded by endo-

thelium (Figure 3N). PlagL2�/� enterocytes exhibited

abundant lipid droplets at the apex and ostensibly mature

CMs, which have a distinctive ultrastructure, closer to the

cell nucleus (Figure 3O). These results reveal intact intra-

cellular CM assembly, and we often observed CMs clus-

tered within vesicles, some of which abutted the basolat-

eral cell membrane (Figures 3O and 3P), suggesting

preparation for release. These particles closely resembled

CMs in the interstitium (Figure 3P, inset), and lipid collec-

tions not only appeared in the lamina propria but also

pooled between neighboring enterocytes (Figure 3Q),

above the basement membrane. Neither TEM (Fig-

ure 3O) nor immunostaining for activated caspase-3

(Figure 4A) revealed mucosal cell apoptosis as a possible

source of accumulated CMs. Viable PlagL2 null entero-

cytes thus assemble and secrete CMs that fail to exit the

gut interstitium.

Nature of the Chylomicron Absorption Defect
In PlagL2�/� intestine, capillaries and other lamina propria

elements were compressed by excess lipid (Figures 3K

and 3L). Although subepithelial CM accumulation could

potentially reflect failures intrinsic to lamina propria lym-

phatic vessels, three independent methods place PlagL2

expression in mucosal cells (Figure 2). Our findings thus

suggest a cell-autonomous requirement for PlagL2 in
Cell M
enterocytes, whereby CMs can exit from these cells but

lack modifications required for subsequent uptake.

Plasma lipid concentrations suggest that CM uptake is

impaired not only in the intestine but also in peripheral tis-

sues: 3-day-old mutant mice had elevated circulating TG

(101.6 ± 31.1 mg/dl, n = 6, compared to 46.3 ± 4.5 mg/

dl in 12 wild-type littermates; p = 0.024) and cholesterol

(119.9 ± 36.4 mg/dl, n = 5, compared to 54.9 ± 1.0 mg/

dl in 12 wild-type littermates; p = 0.024) levels. The only

satisfying explanation for the aggregate mutant pheno-

type, which includes normal liver lipid levels, is a CM de-

fect that impairs local absorption and subsequent metab-

olism. Although CM uptake by lacteal vessels is regarded

as a passive process (Lammert and Wang, 2005), we pro-

pose that PlagL2-dependent steps in CM assembly

are needed to enable it. As a result, defective CMs in

PlagL2�/� mice rarely enter the circulation, and the few

that do enter fail to be metabolized within muscle and

adipose tissue, leading to cachexia and death.

Known disorders of gut lipid metabolism include lipase

and bile salt deficiencies, which cause fat malabsorption

(Bijvelds et al., 2005; Lammert and Wang, 2005), and con-

genital abetalipoproteinemia, a disease in which CMs fail

to assemble and long-chain fatty acids are trapped within

enterocytes (Hussain et al., 2003). CM synthesis is a com-

plex process that occurs within intracellular secretory

pathways; few cellular details are certain, such as the

role of ApoB or the small GTPase Sar1b, which is required

for intermediate lipids to exit intracellular membrane com-

partments (Shoulders et al., 2004). Sar1b is defective in

CM retention disease and Anderson’s disease, rare hu-

man disorders characterized by severe fat malabsorption

and failure to thrive in infancy (Shoulders et al., 2004). Little

is known about the mechanisms responsible for CM up-

take into lacteal vessels; our results implicate PlagL2 in

this function.

Molecular Defects in PlagL2�/� Intestines
Human APOB gene mutations cause betalipoprotein

deficiency, and mice lacking intestinal ApoB harbor lipid-

laden enterocytes (Young et al., 1995); abetalipoproteine-

mia results from mutations in the microsomal triglyceride

transfer protein (MTTP) gene (Gregg and Wetterau,

1994). Mttp and ApoB mRNA levels were comparable in

PlagL2�/� and PlagL2+/+ intestine (Figure 4B). ApoB im-

munohistochemistry in control intestines yielded diffuse

cytoplasmic staining in enterocytes, with submucosal

signals virtually confined to the contents of lymphatic

channels (Figures 4C and 4E). In PlagL2�/� enterocytes,

ApoB showed the same crypt-villus gradient and perinu-

clear cytoplasmic enrichment; stronger signals appeared

in the interstitium of the lamina propria (Figures 4D and

4F) and between enterocytes (Figure 4G), but not in

lymphatic vessels. Thus, significant amounts of ApoB

colocalize with CMs detected by other means (Figure 3),

and ApoB levels are unlikely to limit enterocyte lipid

metabolism.

As there are few other candidate genes to test individu-

ally, we used oligonucleotide microarrays to profile small
etabolism 6, 406–413, November 2007 ª2007 Elsevier Inc. 409
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Figure 3. Small Bowel Abnormalities in PlagL2�/� Mice

(A, B, E, and H) Hematoxylin and eosin (A and E) and toluidine blue (B and H) stains of postnatal day 8 PlagL2+/+ (A and B) and PlagL2�/� (E and H)

jejunum. In the latter, the lamina propria (*) and submucosa (**) are extensively dilated, and villus enterocytes show prominent vesicles.

(C, D, F, G, I, and J) Oil red O staining of frozen sections from 3-day-old PlagL2+/+ (C and D) and PlagL2�/� (F, G, I, and J) small intestine. Extensive

interstitial deposition of neutral lipids and fat-laden villus enterocytes are apparent in PlagL2�/� jejunum (I and J). Duodenal staining (F and G) is ex-

clusively subepithelial. Control samples (C and D) lack staining.

(K and L) Compression of lamina propria elements (arrows), including capillaries (cap) and erythrocytes (RBC), by excess lipid.

(M–Q) Ultrastructural characterization of the lipid absorption defect in PlagL2�/�mice. Scale bars in (L), (O), and (Q) = 2 mm; scale bars in (M), (N), and

(P) = 1 mm.

(M and N) Most extracellular chylomicrons (ch) in control (PlagL2+/+) intestine are surrounded by lymphatic endothelium (arrows) in the lamina propria

(M), whereas structures of similar morphology are free in PlagL2�/� intestinal interstitium (N).
410 Cell Metabolism 6, 406–413, November 2007 ª2007 Elsevier Inc.



Cell Metabolism

PlagL2 Regulates Intestinal Lipid Absorption
Figure 4. Dysregulated Intestinal Expression of Genes Linked to Lipid Metabolism in the Absence of PlagL2 Function

(A) Immunostaining of PlagL2�/� (KO) versus PlagL2+/� (HET) intestine for activated caspase-3 failed to reveal excessive enterocyte apoptosis. Gob-

let cells stained nonspecifically, and a positive control (not shown) confirmed Ab reactivity.

(B) Northern analysis of PlagL2, ApoB, Mttp, iFABP, and b-actin expression in 2-day-old intestines reveals comparable marker levels in mice of all

PlagL2 genotypes.

(C–G) ApoB immunohistochemistry. PlagL2+/+ jejunal (Je) and ileal (IL) samples (C and E) show exclusively epithelial staining and some signal within

lymphatic channels (white arrows). PlagL2�/� intestine shows abundant ApoB in epithelial cells (D), with strong and aberrant signals in gut interstitium

(F, black arrows) and pooled between enterocyte bases (G, compare with TEM image in Figure 3Q).

(H) Analysis of a subset of genes whose expression across samples tracked most faithfully with that of PlagL2 and which, by virtue of affiliation with

intracellular secretory pathways, may help explain the particular lipid absorption defect seen in PlagL2�/�mice. Levels of dysregulation (fold change)

recorded in microarray (MA) and qRT-PCR analyses were concordant in nearly all cases.
bowel gene expression at 18.5 dpc, before severe lipid ab-

sorption defects may affect gene expression secondarily.

ApoB and ApoAIV mRNA levels did not differ between

wild-type and PlagL2�/� mutant samples. Among 301

transcripts that did differ (SD 0.5), hierarchical analy-

sis showed tight clustering within each genotype (Fig-
Cell M
ure S2A), and, in functional grouping by Gene Ontology

(GO) criteria, genes implicated in metabolism or in vacuole

and transporter activity predominated. Another stringent

algorithm, Compare Samples, yielded 164 transcripts

with R3-fold change between control and mutant sam-

ples (Figure S2B). 156 of these transcripts overlapped
(O) Apical lipid-laden vesicles, similar in size to mitochondria (mito), in mutant enterocytes transition into structures that resemble normal chylomi-

crons, and multiple chylomicrons are contained in secretory vesicles (arrowheads). bb, brush border.

(P) Vesicles packed with chylomicrons (ch) often abut the basolateral cell membrane in PlagL2�/� enterocytes (Ent1, Ent2).

(Q) Abundant chylomicron collections pooled between the bases of neighboring enterocytes (*).
etabolism 6, 406–413, November 2007 ª2007 Elsevier Inc. 411
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with those identified above (Figure S3 and Table S2) and

were enriched for two GO functions: metabolism and cat-

alytic activity (39%) and transporter activity (21%). Finally,

we isolated transcripts whose expression across all sam-

ples tracked with that of the targeted gene; PlagL2 mRNA

showed substantial difference (Table S3), justifying its

choice as the index. Analysis of variance (p < 0.00005)

identified 80 transcripts whose levels across eight sam-

ples correlated best with that of PlagL2. Of the 68 anno-

tated genes, 40 participate in metabolism or cargo trans-

port (Table S4).

A disproportionate fraction of the genes reduced in

PlagL2�/� intestine thus serve functions related to intracel-

lular cargo transport, including selected sorting nexins and

vacuolar sorting proteins (Figure 4H). The nature of the lipid

absorption defect implicates these genes as candidate

regulators of intracellular steps in processing dietary fat;

some of them likely act to endow CMs with unknown prop-

erties that enable interstitial egress and lacteal entry.

Quantitative RT-PCR analysis of independent samples

verified substantial downregulation of most tested genes,

notably Snx8, Slc17a5, and Fcgrt (Figure 4H). Such genes

likely fall directly or indirectly under PlagL2 transcriptional

control, although some may be misexpressed in physio-

logic response to lipid accumulation.

Lipoproteins are known to transit through intracellular

secretory pathways (Fromme and Schekman, 2005), but

understanding of enterocyte CM processing is incom-

plete. Recent advances implicate the small GTPase Sar1b

in CM retention disorders and certain coat and SNARE

proteins in transport from the endoplasmic reticulum to

the Golgi apparatus (Fromme and Schekman, 2005;

Shoulders et al., 2004; Siddiqi et al., 2006). Reduced

expression in PlagL2�/� gut of sorting nexins and other

factors linked to intracellular transport of lipids, mem-

branes, and secretory products is especially relevant in

this light.

EXPERIMENTAL PROCEDURES

PlagL2 Mutant Mice

The targeting strategy (Figure 1A) was designed to replace exon 3

(coding exon 2, encoding residues 88–496) of PlagL2 with b-gal

cDNA and a floxed PGK-Neo cassette. Homologous arms were subcl-

oned from mouse genomic BAC clone 474a11 (Genome Systems), and

sequences for b-gal and the PGK-Neo selection cassette were re-

trieved from pSDKLacZpA (Gossler et al., 1989) and pPNTLoxP2 (Stal-

mans et al., 2002), respectively. The complete exogenous sequence

was flanked by FRT sites to enable recombinase-mediated cassette

exchange. Targeted R1 ES cells were used to generate chimeric

mice by morula aggregation. Mice were genotyped by PCR using

primers listed in Table S5.

RNA Extraction, Northern Blot Analysis, and RT-PCR

Mouse tissues were snap frozen in liquid nitrogen, and mesenchymal

and epithelial fractions from 18.5 dpc small intestines were isolated

as previously described (Madison et al., 2005). RNA was extracted in

guanidinium isothiocyanate, size fractionated, blotted, and hybridized

according to standard protocols. PlagL2 probe was obtained by di-

gesting pCG-HA-PlagL2 (gift of T. Furukawa, Kansai Medical Univer-

sity, Japan; Furukawa et al., 2001) with BamHI and HindIII. Other

probes were generated by PCR amplification using adult mouse liver
412 Cell Metabolism 6, 406–413, November 2007 ª2007 Elsevi
or gut cDNA and primers listed in Table S5. cDNA was synthesized

from 5 mg total RNA using the SuperScript First-Strand Synthesis Sys-

tem (Invitrogen). qPCR reactions were performed with a qPCR Master-

Mix Plus kit for SYBR green (Eurogentec). Primers for RT-PCR and

qPCR are listed in Table S5.

Histology, Immunohistochemistry, and Ultrastructure

Intestines were fixed overnight in 4% paraformaldehyde, and 6 mm

paraffin-embedded sections were stained with hematoxylin and eosin

or X-gal as previously described (Hensen et al., 2004; Wang et al.,

2002). Oil red O staining was done on cryosections. Immunostaining

used rabbit PlagL2 antiserum (1:2000) against the C-terminal peptide

TSYLPDKLPKVEVDS or ApoB monoclonal Ab 2G11 (1:6000) (Nguyen

et al., 2006) and anti-rabbit or anti-mouse ABC kits (Vector Labs). For

TEM analysis (Sabesin and Frase, 1977), intestines from neonatal mice

were flushed and fixed overnight in 2% OsO4 diluted 2:1 with 0.1 M

phosphate buffer. Samples were postfixed in OsO4 and embedded

in Epon 812. Appropriate thin sections were stained with uranyl acetate

and lead citrate and examined in a JEOL 1200 electron microscope at

an accelerating voltage of 80 kV.

Lipid Analysis

Tissue and plasma TG and cholesterol concentrations were measured

enzymatically (Hyogo et al., 2002). Lipid extraction and reconstitution

of PlagL2�/� and PlagL2+/+ small intestinal fractions (3 dpc) for mass

spectrometry were carried out as previously described (Milne et al.,

2006). Positive-ion ESI MS and tandem MS were performed on

a 4000 QTRAP instrument (Applied Biosystems) equipped with a Har-

vard Apparatus syringe pump operated at 1 ml/min.

Microarray Analysis

Total RNA was extracted from four knockout and four wild-type mouse

small intestines at 18.5 dpc using the Macherey-Nagel NucleoSpin kit.

cRNA synthesis and labeling, hybridization to Affymetrix MOE430 2.0

expression arrays, and data acquisition were performed using the Af-

fymetrix GeneChip Instrument System. Hybridization data were nor-

malized to an invariant set provided by dChip software (Li and

Wong, 2001), and we applied the perfect match (PM)-only model to de-

termine expression values. In hierarchical clustering, 3 of 4 samples

from each genotype that clustered best with other replicates were se-

lected for further analysis. Filter Gene and Compare Sample functions

in dChip were used, respectively, to extract (1) genes with significant

differences between genotypes based on standard deviation across

all samples and (2) transcripts with minimum expression value > 80

fluorescence units and p < 0.05 for the lower 90% confidence limit

on fold change between wild-type and mutant samples.

Supplemental Data

Supplemental Data include three figures and five tables and can be

found with this article online at http://www.cellmetabolism.org/cgi/

content/full/6/5/406/DC1/.
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