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INTRODUCTION 

In 1912, PoincarC announced [I] his celebrated conjecture concerning the 
existence of fixed points of an area preserving transformation of a ring. 
After some effort he had succeeded in treating only a variety of special cases 
but because of the significance of this result-in particular, as it pertained 
to the restricted three-body problem-he released it for the consideration 
of other mathematicians. A proof of this so-called last geometric theorem of 
PoincarC was published [2] the following year by Birkhoff. In 1926, Birkhoff 
also published [3] certain extensions of this result and then, in 1927, gave [4] 
the following modification of Poincare’s theorem: 

Let T be a one-to-one continuous transformation of a simply 
connected region R of the plane that leaves a point 0 of R fixed. Assume 
further that T conserves area and does not rotate about 0 any point 
of a closed curve C enclosing 0 and that C intersects only once each 
radial line from 0. Then there exist at least two invariant points of T 
on the curve C. 

Application of this result to dynamical systems is limited to the case of 
two degrees-of-freedom (see [4]) and it was not until 193’1 that Birkhoff 
was able to extend [5] this theorem to higher dimensions. The application 
of this latter result, however, demanded a detailed study of conservative 
transformations. Taking advantage of earlier work [q on surface transforma- 
tions, Birkhoff and Lewis presented [7] the first application in 1933; they 
established the existence of infinitely many periodic solutions of a con- 
servative dynamical system in the neighborhood of a given periodic solution 
of general stable type. Then, in 1934, Lewis [S] established the existence 
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of an infinite number of periodic solutions of a conservative Hamiltonian 
system in the neighborhood of an equilibrium point of general stable type. 

It is the aim of this paper to present a modest generalization of the 
theorems of Birkhoff and Lewis and at the same time to establish their 
results using simpler, though similar, techniques. This paper is also written 
in the hope that these interesting results might find a wider scope of 
application. Moser has used [9] the two-dimensional version of Birkhoff’s 
fixed-point theorem to establish periodic motions for the restricted three-body 
problem and the results of the present paper may be used to establish the 
esistence of periodic motions, for example, in various pz-dimensional 
spring-mass systems [IO]. 

We will be dealing with a conservative n-dimensional Hamiltonian H(p, q) 
with a stable equilibrium point at the origin, p = q = 0. We will further 
assume that H is analytic in a neighborhood of p = q = 0. Let A, , ha ,..,, & 
be the fundamental real frequencies of the (oscillatory) linear variational 
equations associated with H and let X = (hi ,..., h,). Birkhoff has shown [4] 
that, in general, for any positive integer CL, the Hamiltonian may be reduced 
by a canonical transformation to the normal form 

where 
H = Ho(d + fib, q), 2Ti = pt + qi2, (1) 

Ho = i Airi + c hijrirj + -.. 
i=l l<i<j<n 

is a polynomial in or, 7s ,..., 7, of, at most, degree p and fi represents a 
convergent power series in powers of pi, qi which begins with terms 
of at least degree 2~ + 2. The coefficients of Ho are invariants of the 
Hamiltonian under canonical transformations. This reduction requires that 
(h, K) = ~~=i Xiki # 0 for every integral vector K with 

I k I = I k, I + ~-0 + I k, I < 2~ + 1. 

We shall employ the following norms throughout this paper: 

(i) If x = (xi , ~a ,..., x,), then 

(ii) If A = (a,j) is an 1z x II matrix, then 

All vectors should be interpreted as column vectors and (i) and (ii) necessarily 
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imply that 11 As 11 < 11 A 11 * 11 x 11. Finally, we will use the symbol r] to denote 
a positive scalar quantity and the symbol q to denote an n-vector each of 
whose components is the scalar 7. Lower-case c’s with or without subscripts 
will denote absolute positive constants. 

REPRESENTATION OF SOLUTIONS 

Assuming that the Hamiltonian H(p, q) has been reduced to normal form 
through terms of order p (p an integer), we may introduce polar canonical 
coordinates by the formulas 

pi = (2Ti)l” COS 4s 9 pi = (2~~)~‘~ sin#i . 

Then the Hamiltonian (1) becomes 

H = HO(T) + ii~, 91, 
where 

(2) 

iS a pdynOmia1 in 7 r ,..., T, with real coefficients, and A is periodic of period 
27~ in the & and analytic with respect to T,+ in the domain 

D:llT-fioll < 7.70 < 13 II4 II < co* 

ho in D we have 1 H 1 < co 11 7 Ilp+l. 
In vector form, the canonical equations of motion associated with the 

Hamiltonian become 

dT aH aA 
-=--=--9 dt 3 a+ 

d$ aH 
(3) 

z=-z = p(T) + g , 

where 

and where (1 = (2’+J with &j = hji . The solution of Eq. (3) with initial 
values (TV, $0) at t = 0 may be represented in the form 

7 = To + R(To , #JO , t), 

4 = ‘+o + t+o> + @(To I do 3 t), 
(4) 

where R and CD are periodic of period 2?r in the $io and are analytic in To , +. , t 

as long as the trajectories remain in D. 
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PRELIMINARY LEMMAS 

In this section we will state and prove several preliminary lemmas before 
proceeding with the proof of a fundamental lemma from which the main 
theorems follow. 

LEMMA 1. For 0 < r] < T,, and r in the domain 117 - ?j 11 < $7, we have 

Proof. Since 

in D, 

we have 

for T in the domain 11 r - +j I/ < 17 and, hence, for )I 7 - +j 11 < 37/4. In order 
to prove (ii), we observe that I A I < c$P+~~‘+~ for 7 in the domain 
11 T - ;i 11 < 7. Thus if u = r - 3, we have 1 fl I < c,2p+l,rlp+l for 11 u II < 71. 
Applying Cauchy’s inequality to afi/&s, in the “disk” 11 (r 11 < $l yields 

for i = 1,2 ,..., 71. Therefore, 

for II 7 - ;i II < $7. 

LEMMA 2. For 0 < 17 < v. and ~~ in the domain Ij 7. - +j I/ < $7, the 
inequahl~ /I 7 - + ]I < 3~14 is mainta&d hlong the trajectory (4) for 
0 < t < yq-” (y a Jixed positiwe constant independent of 7). 

Proof. Let 7 satisfy 0 < 7 < 7s . Then for To satisfying II To - q II < $7, 
there exists a number b > 0 such that for 0 Q t < b, the radial vector 7 

belongs to the domain II 7 - iJ I/ < $7. Furthermore, for 7 in this domain we 
have, from Lemma 1, 11 an/a+ 11 < c&+1; so from Eq. (3), it follows that 

It 7 - 70 I/ < s: /I + (T(S), $+,)I1 d.f < c9?‘+‘t < h 
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provided 0 < t < b and 0 < t < my~1-p wehre y = 1/5c, . This in turn 
implies that the inequality 

Ii 7 - rl II < II 7 - 70 II + !I 70 -ii II < $I 

is satisfied for all such t and, hence, there does not exist a smallest t in the 
interval 0 < t < m-p for which the inequality is violated. 

The next lemma follows immediately from inequality (5) for p >, 2. 

LEMMA 3. Let p >, 2. Then for 0 < 7 < r], and 7. in the domain 
11 7. - +j II < &, along the trajectory (4) we hawe 

I/ T - To 11 < ca7’-1, 

for 0 < t < y-/-2. 

LEMMA 4. For p > 2,0 < 7 < v. and 7. in the domain II ~~ - 7 II < &p 
we have 

II @(To 9 40 9 Oil G wrs, 

for 0 < t < m-l-2. 
Proof. It follows from Eq. (3) that 

d - do = 1: p(T(S)) atv + f: $ (T(S>, ‘#fs)) ok (6) 

Now, from the mean value theorem, we have 

p(T) = p(To) + (ap/aT)* (T - To), 

where (ap/aT)* depends upon t, but for 0 < r] < qo, 0 < t < M--~, 
II To - ;i II < h and II 7 - 15 jl < 2~. we have Il(aP/&)* 1) < cs. Thus 
Eq. (6) may be written 

‘#’ - bo = tp(To> + 1: ($)* (T(S) - To) do + j: $ (T(S), d(s)) ‘% 

and from Lemma 3, it follows that 

I/ 1; ($) * (7(s) - TO) ds )/ < ~5 j-1 11 T(S) - To 11 ds < c&&‘-lt < c&‘-~ 

for 0 < t < m-a. Further, we have from Lemma 1, 
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so long as I( 7 - q I/ < 27. By Lemma 2, this latter inequality is maintained 
for jj7,, - q // < $7 and 0 < t < ye-“. Hence, 

provided 0 < t < yv-*. Combining these results with the representation 
used in Eq. (4) yields the following bound on @: 

LEMMA 5. For p > 2, 0 < q < q,, and T,, in the domain 1) TV - 7, \j < &, 

along the trajectory (4) we have 

Proof. Let ua = ~a - 7. Then by Lemma 4 for 11 a,, (I d 471 and 
0 < t < M-*, we have /I @ /I < csq’-a. Applying Cauchy’s inequality to 
i3Di/&r5, in the “disk” jl ua 11 < $7, we have 

I I 3 
a 

< w’-3 
050 

- = 6c&-4, 
1716 

for i,j= 1,2 ,..., n. Therefore, for I/ ~a - 7 II < $7 and 0 < t < yq-*, we 
have 

Now finally we will consider the following simple arithmetic result. 

LEMMA 6. For 0 < 7 < y*, it is possible to choose a positive number t * and 
an integral vector k = (k, ,.,., k,) such that the following inequalities hold: 

(i) 7je312 < t* < yq-*; 

(ii) [1(27r/t*) k - (A + v)II Q 27~7~/~, 

where 

v = Afj. (7) 

Proof. Consider 7 > 0 fixed. Then v is fixed. Now choose t* such that 
3-3/* G t* G m-2 and consider the n quantities 
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It is always possible to choose integers k, ,..., k, such that 

ki _ (Ai + 4 t* < 1 
27r ., 

and for such integers we have 

I 
i = 1, 2 ,..., n. 

FUNDAMENTAL LEMMA 

Let p > + , 0 < 7 < Q = min(q,, , ys) and consider the domain 
D : 117s - +j 11 < )r], 114s 11 < co, ~-3’~ < t $ m&2. Then selecting 
t*(~-~/~ < t* < m-‘) and integers k, ,..., k, in accordance with Lemma 6, 
we consider the equation 

4 - 90 = t*%J + @(To, $0, t*) = 277k (8) 

obtained from the second equation in (4) with t = t*. We wish to solve 
for 7s in terms of 4s . 

Now, P(,s) may be expressed in the form 

p(To) = x + (170 + pl(To>, 

where P, is a matrix polynomial in Tlo ,..., 7,0 lacking constant and linear 
terms. Hence, using Lemma 6, Eq. (8) may be rewritten as 

ATo = (h/t*) k - h - Pl(To) - (l/t*) @(To, $. , t*) 

= w + El - PI(%) - (l/t*) @(To , do , t*), (9) 

where II 4d II G 2~71 3/2. We now assume that the determinant 1 A 1 # 0. 
Then, using (7), Eq. (9) may be written in the form 

To = k’(f., + El) - x’f-‘p,(T,) - (l/t*) k’@(T, , $. , t*) 

= ;i + 4’7) + &To) + (l/t*) @To , $0, t*), (10) 

where 6s = A-ler , P = -/VP1 and 8 = -/PD. Further, in the 
domain 6, 

11 p 11 < clo 11 To iI2 d (8’ c,,‘12 = Cn’12, 

and by Lemma 4, 

11 G/t* 11 < c,,tp-3/t* < c1,?p-3Ty = C127y’2, 

Also, we have 11 es 11 < cJ3v3j2, 
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We will now show that if r] is sufficiently small the right-hand member 
of Eq. (10) defines a contraction mapping for 70 in the domain /I 7,, - 75 I/ ,( 47. 
A fixed point of this mapping will then be the desired solution of Eq. (8). 
The unique solution 7: so obtained may be regarded as a single-valued 
function TO* = 6(+,) of $a and will be analytic and periodic of period 2~7 
in the &, since # is analytic in (b,, , TV and periodic in the &, . 

Let G(T,,) denote the right-hand member of Eq. (10) where we consider 7 
and &, as fixed. Now 

and since P is at least of degree two in the 7i0 , we have 1) @I&,, 11 < cl47 
in D. Also, by Lemma 5, 

in D. Hence, 11 aG/&,, 11 < cl,,qKr, where or = min(1, ~1 - %) > 0. Now, 
employing the mean value theorem, for $’ and 7:s’ in the domain 

II 70 - +j (( < b, we obtain 

G(T~‘) - G($‘) = (aG/aTo)*(T;s) -$I), 

and therefore, 

where (II < 1 for 0 < 7 < I/c:: 1 If we now consider a sequence 7bk’ of 
successive approximations of the fixed point with +j as the initial approxima- 
tion, then using Eq. (10) we have 

where ~a = min(+ , p - 3) > 1. Thus, if r) > 0 is chosen sufficiently 
small, the last quantity above will be less than 47 and all approximations 
$’ and, hence, the (unique) fixed point r$ belong to the domain 
II r. - +j )I < &. In fact, we note from the above inequality that 

We have established, therefore, the following lemma, 
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FUNDAMENTAL LEMMA. Let the integer p 3 3 and assume that the deter- 
minant j A 1 # 0. If 7 > 0 is chosen sujiciently small and t* is fixed in the 
interval v-3/* < t* < y-q -*, then there exists a manifold M of initial values 
in phase space, dejned by equations of the type 

for which the corresponding +i(t*) of (4) d# t er Yom the & by integral multiples f 
of 27r. The 0i are analytic single-valued functions which are periodic of period 
2~inthe&,andsatisfy~~0-+jij(I<~~~,withc>Oand~>l. 

PRINCIPAL RESULTS 

Regarding t as a fixed parameter, the transformation (4) that maps the 

point b. 9 +o> to k(t), +(t)) in 2n space is a canonical transformation. 
Therefore 

dl = f (pi d4i - Rio 4io) 
i=l 

(11) 

is an exact differential [II] when expressed in terms of 7. , $. and the param- 
eter t. However, along a manifold M of the type described in the Fundamental 
Lemma, C& differs from dfo by the constant 2k17r when t = t*, and hence 
d& = d$,, , i = 1, 2 ,..., n. Thus, for t = t*, Eq. (11) becomes 

(12) 

along M. Integrating Eq. (12) over the manifold we get a single-valued 
analytic function J which is periodic of period 2?r in the #io. It is clear 
that J possesses critical points where d J = 0, which implies from Eq. (12) 
that Ti = Tso, i = 1,2 ,..., n. Hence, these critical points correspond to 
invariant points of the transformation (4) which in turn correspond to 
periodic solutions of Eq. (3) of period t*. Thus, we have established the 
following theorem. 

. 

THEOREM 1. Let the integer p 3 3 and assume that (A, k) # 0 fm every 
integral erector with 1 k 1 = I kI 1 + ‘.* + I k, 1 < 2~ + 1. Then a cmervatiwe 
holomarphic Hamiltonian system of the form (1) with the determinant 
I A I = I 2% I # 0 PO ssesses infinitely many distinct period% soluti of 
arbitrarily bmg (minimum) per&& in the neighborhood of 7 = 0. 

Theorem 1 solves the same problem as that treated by Lewis [SJ. However, 
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in the mechanics of his proof, it is necessary to assume that p 3 8n + 4. 
Thus, it is possible to significantly reduce the commensurability restrictions 
on the linear frequencies and establish the same result. 

At this point we will consider an analytic Hamiltonian H(p, 4, t) which 
is periodic of period 27r in t and has an equilibrium point at p = Q = 0. An 
analogous reduction to normal form may be made provided certain restrictions 
are made on the commensurability of the linear frequencies /\i , X, ,,.., ,Jn and I. 
In particular, we assume that (A, K) # Zfor / k / < 2~ -f- I, I = 0, &I, 12 ,... . 
The Hamiltonian may then be reduced [4] to the form 

H(T, 4, q = H,(T) + ii(T 4, q, (13) 

where H,, has the same form as in Eq. (2) and I? is analytic in 7,#, t and 
periodic of period 277 in the c$~ and in t. Furthermore, 1 fi 1 < c (17 jlp+l, 
where c is a positive constant. This reduction may be accomplished for any 
integer p > 1. 

The various lemmas stated in this paper are readily extended to the 
nonautonomous Hamiltonian (13) and, further, the differential form (11) 
remains exact. Then with 7 > 0 sufficiently small we may choose t* 
(v-3/z < t* < yv-*) such that t * = 2z-m, where m is a positive integer and 
consider the canonical transformation T which maps points along the 
trajectories from t = 0 to t = 2rrm. Any invariant points of T correspond 
to periodic solutions of the Hamiltonian system of period 2mr. In particular, 
if one chooses m as a prime and if at least one of the hi is not an integer 
(eliminating 2~7 as a possible period), then for 7 sufficiently small, 2rrn is 
necessarily the least period of these periodic solutions. The proof of the 
next theorem, therefore, is analogous to that of Theorem 1. 

THEOREM 2. Let p 3 3 and assume that (A, k) # 1 for 1 k < 2~ + 1, 
I = 0, fl, f2,... . Further assume that at least one of the hi is not an integer. 
Then. a holomorphic Hamiltonian system of the form (13) with determinant 
1 A 1 # 0 possesses infinitely many distinct (subharmonic) periodic solutions of 
arbitrarily long (minimum) periods in the nezihborhood of T = 0. 

Now suppose we have a conservative dynamical system with n + 1 degrees 
of freedom and a given periodic motion of general stable type. It is well-known 
that the study of the motion near a periodic solution may be reduced [4] 
to the consideration of a Hamiltonian system with n degrees of freedom in 
which H is analytic in p, q, and t and periodic of period 2~ in the latter. In 
this setting the periodic motion appears as a “generalized” equilibrium point, 
p = q = 0. Periodic motions of this latter system then correspond to 
periodic solutions of the original (2n + 2)th-order system near the given 
periodic motion. By a periodic motion of general stable type we mean one 
for which the frequencies /\I , ha ,..., $ and 1 are incommensurable and the 
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determinant 1 A [ # 0. Hence we may state the following theorem which 
was first proven by Birkhoff and Lewis [6] and follows immediately from 
Theorem 2. 

THEOREM 3 (Birkhoff and Lewis). In a conservative dynamical system 
there exist injnitely many distinct periodic solutions of arbitrarily long 
(minimum) periods in the vicinity of every periodic solution of general stable type. 

For a periodic motion of general stable type, the associated Hamiltonian 
can be expressed in normal form through terms of arbitrarily high order, 
but for purposes of the proof of Theorem 3 it is only necessary to effect 
this through terms of order p. In the proof given by Birkhoff and Lewis it is 
assumed that p > 8n + 4 while in the above proof it is assumed that p > 2 
(independent of n). Th us, in Theorem 3, we may reduce the incommen- 
surability requirements on the frequencies A, ,..., A, (see the statement of 
Theorem 2) and this reduction is quite substantial in the higher-dimensional 
cases. 
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