View metadata, citation and similar papers at core.ac.uk

L
Erd
brought to you by i CORE

provided by Elsevier - Publisher Connector

JOURNAL OF DIFFERENTIAL EQUATIONS 4, 131-141 (1968)

Periodic Solutions of Arbitrarily Long Periods
in Hamiltonian Systems*

T. C. Harris

North Carolina State University at Raleigh, North Carolina 27607
Received May 6, 1966

INTRODUCTION

In 1912, Poincaré announced [/] his celebrated conjecture concerning the
existence of fixed points of an area preserving transformation of a ring.
After some effort he had succeeded in treating only a variety of special cases
but because of the significance of this result—in particular, as it pertained
to the restricted three-body problem—he released it for the consideration
of other mathematicians. A proof of this so-called last geometric theorem of
Poincaré was published [2] the following year by Birkhoff. In 1926, Birkhoff
also published [3] certain extensions of this result and then, in 1927, gave [4]
the following modification of Poincaré’s theorem:

Let T be a one-to-one continuous transformation of a simply
connected region R of the plane that leaves a point 0 of R fixed. Assume
further that T conserves area and does not rotate about Q0 any point
of a closed curve C enclosing 0 and that C intersects only once each
radial line from 0. Then there exist at least two invariant points of T
on the curve C.

Application of this result to dynamical systems is limited to the case of
two degrees-of-freedom (see [4]) and it was not until 1931 that Birkhoff
was able to extend [5] this theorem to higher dimensions. The application
of this latter result, however, demanded a detailed study of conservative
transformations. Taking advantage of earlier work [6] on surface transforma-
tions, Birkhoff and Lewis presented [7] the first application in 1933; they
established the existence of infinitely many periodic solutions of a con-
servative dynamical system in the neighborhood of a given periodic solution
of general stable type. Then, in 1934, Lewis [8] established the existence
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of an infinite number of periodic solutions of a conservative Hamiltonian
system in the neighborhood of an equilibrium point of general stable type.

It is the aim of this paper to present a modest generalization of the
theorems of Birkhoff and Lewis and at the same time to establish their
results using simpler, though similar, techniques. This paper is also written
in the hope that these interesting results might find a wider scope of
application. Moser has used [9] the two-dimensional version of Birkhoff’s
fixed-point theorem to establish periodic motions for the restricted three-body
problem and the results of the present paper may be used to establish the
existence of periodic motions, for example, in various n-dimensional
spring-mass systems [/0].

We will be dealing with a conservative n-dimensional Hamiltonian H(p, ¢)
with a stable equilibrium point at the origin, p = ¢ = 0. We will further
assume that £ is analytic in a neighborhood of p = ¢ = 0. Let Ay, A ,..., A,
be the fundamental real frequencies of the (oscillatory) linear variational
equations associated with H and let A = (A, ,..., A,). Birkhoff has shown [4]
that, in general, for any positive integer u, the Hamiltonian may be reduced
by a canonical transformation to the normal form

H=Hy) + H(p,9) 2m=p2+ ¢4 (1)
where
HO = Z AiTi + Z )\,-j‘ri‘rj + st
i=1 1<igign

is a polynomial in 7, 75,..., 7, of, at most, degree u and H represents a
convergent power series in powers of p;,¢; which begins with terms
of at least degree 2u + 2. The coefficients of H are invariants of the
Hamiltonian under canonical transformations. This reduction requires that
Ry =Y, Mk, #~ 0 for every integral vector & with

k| =Ry |+ o+ k| <20+ 1.
We shall employ the following norms throughout this paper:
() If x = (%, %5,..., %), then

X|| = su X e
l#ll = sup ||

(i) If A = (a;;) is an # X n matrix, then
W4l = lililgn ;; | ag; |-

All vectors should be interpreted as column vectors and (i) and (ii) necessarily
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imply that || Ax| < || 4 || - || 2 ||. Finally, we will use the symbol 7 to denote
a positive scalar quantity and the symbol 7 to denote an n-vector each of
whose components is the scalar %. Lower-case ¢’s with or without subscripts
will denote absolute positive constants.

REPRESENTATION OF SOLUTIONS

Assuming that the Hamiltonian H(p, ¢) has been reduced to normal form
through terms of order u (1 an integer), we may introduce polar canonical
coordinates by the formulas

pi = @r)*cosd;,  g; = (27,)/sing;.

Then the Hamiltonian (1) becomes

H = Hyr) + H(r, ¢), @
where

Hy=Qo+ 3 Mg+ () = ¥ A
1<ig<ign i=1

is a polynomial in 7y ..., 7, with real coefficients, and H is periodic of period
27 in the ¢; and analytic with respect to 7, ¢ in the domain
Dillr =l <mo < LlI$ll < co.

Also in D we have | H| < ¢, || 7|j++L
In vector form, the canonical equations of motion associated with the
Hamiltonian become

dr _ _oH _ _oH
7> S o
dp oH ol ©)
@ =% 0T
where
P(T)=ag°=)\+/11—{—"',

and where A = (2%);;) with A;; = A;;. The solution of Eq. (3) with initial
values (74, ¢,) at £ = 0 may be represented in the form

T =19+ R(7, ¢y, 1),

¢ = o + tP(ro) + D70, ¢y » 1),

where R and @ are periodic of period 27 in the ¢, and are analyticin 7, , ¢,, ¢
as long as the trajectories remain in D.

@
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PRELIMINARY LEMMAS
In this section we will state and prove several preliminary lemmas before
proceeding with the proof of a fundamental lemma from which the main

theorems follow.

LeEmMa 1. For 0 < n < ng and 7 in the domain || — 77 || < 39, we have

0 |2 < o
@ |7 <o
Proof. Since

|Z ] <airp i D,

we have

H “ c12#+177p»+1 = ¢ 17[5+1

for 7 in the domain [+ — 7 || < % and, hence, for || — || < 3%/4. In order
to prove (ii), we observe that | H | < 602““77"“ for 7 in the domain
|7 — 4| <=. Thusif ¢ = 7 — 4, we have | H| < c2v+igptt for ol <.
Applying Cauchy’s inequality to 8H/éo; in the “disk” || ¢ || < 37 yields

o
30‘i

¢, 02;4+L,7u+1

i

= (;02:L+317#

for { = 1, 2,..., n. Therefore,
oH
[T | <
for |7 — 71l < §n.
LEMMA 2. For 0 <7 <y and =, in the domain |7, — || < &n, the

inequality |7 — 7| < 39/4 is maintained along the trajectory (4) for
0 <t < ynp* (y a fixed positive constant independent of z).

Proof. Let 7 satisfy 0 < 5 << 1o . Then for 7, satisfying || 7y — 7 || < ¥,
there exists a number b > 0 such that for 0 < ¢ < b, the radial vector

belongs to the domain ||+ — 7 || < §x. Furthermore, for r in this domain we
have, from Lemma 1, || 8H/8¢ | < c;p*+1; so from Eq. (3), it follows that

pr—nli <] % (r(5), (9] d < emerit < i, )
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provided 0 <t < b and 0 < ¢ < yp* wehre y = 1/5¢,. This in turn
implies that the inequality

fr—al <lr =7l +lmo ~7ll < 3n

is satisfied for all such ¢ and, hence, there does not exist a smallest ¢ in the
interval 0 <{ ¢ < yn~# for which the inequality is violated.
The next lemma follows immediately from inequality (5) for p > 2.

LemMa 3. Let p > 2. Then for 0 <n <7, and 7, in the domain
|7 — 7| < 47, along the trajectory (4) we have

7 —7oll < e,

for0 <t <yt

LemMa 4. For p > 2,0 < 5 < %y and v, tn the domain || 7y — || < i
we have

| D(7o» bo» Ml < cam®,
for 0 <t < yn2
Proof. It follows from Eq. (3) that

6—do=[ Peas+ [ 5 P (o), ) ()

Now, from the mean value theorem, we have
P(r) = P(7,) + (0P[07)* (T — 1),

where (0P[or)* depends upon t, but for 0 <75 <7my, 0 <2 < 2
o — 7l < ¥n, and |7 — 7| < $n, we have [(dP/or)*] < ¢;. Thus
Eq. (6) may be written

b —do = 1)+ [ (Z) )~ s + [ L () 0000

and from Lemma 3, it follows that

11,

for 0 < t < yy~2. Further, we have from Lemma 1,

)0 — 7o) ds| < s [ 6) = ol ds < gt < e

”f —(T(S)' &(s)) ds ” < it
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so long as || — 7 || < §5. By Lemma 2, this latter inequality is maintained
for || 7y — 71| < 4n and 0 < ¢ << yyp~*. Hence,

11, vt < o

provided 0 < ¢ < yy~2 Combining these results with the representation
used in Eq. (4) yields the following bound on @:

P < egn® 4 e < e

Lemma S, For p 2 2,0 < % <y, and 7y in the domain |7 — 7 || < iy
along the trajectory (4) we have
[l 8D[or, || < e,
Jor O <t <yt

Proof. Let oy =7y —7. Then by Lemma 4 for [ gy < 4% and
0 <t < yyp? we have | @ < ¢g#~% Applying Cauchy’s inequality to
09,00y in the “disk™ || o4 || < 37, we have

0P,
3 Ti0

-3
cgnt

/6

= Gcgntt,

for i, j = 1, 2,..., n. Therefore, for |7, — 7| < 3» and 0 < ¢ < yy78, we
have
[| 0B/om, || < bnegnr— = eyt

Now finally we will consider the following simple arithmetic result.
LEMMA 6. For 0 << v <C y2, it is possible to choose a positive number t* and
an integral vector k = (k, ,..., k,) such that the following inequalities hold:
@) 32 < <md
(i) i2n/t*) B — (A + o)l < 2773,
where
v = Ai. (7

Proof. Consider 7 > 0 fixed. Then v is fixed. Now choose ¢* such that
7732 < t* < y~? and consider the n quantities

2k,1r At .|

'i 211_

—~ A+ ‘Ui)l =%
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It is always possible to choose integers %, ,..., &, such that

ki_ (/\z +‘vi) t* < 1,
2
and for such integers we have
2"‘” — O+ v,)l LU, =1, 2

FunNpAMENTAL LEMMA

Let o >$%, 0<y <u =min(yy,y?) and consider the domain
Dillrg—7l <¥p ldoll <0, 732Kt <yn? Then selecting
t*(n372 < #* < yp~?) and integers k, ,..., k, in accordance with Lemma 6,
we consider the equation

¢ — @y = t*P(ry) + D7y, Py, t¥) = 27k, (8)

obtained from the second equation in (4) with ¢ = t*. We wish to solve
for 7, in terms of ¢, .
Now, P(r,) may be expressed in the form

P(rg) = A + Ao + Py(),

where P, is a matrix polynomial in 7y,..., 7,9 lacking constant and linear
terms. Hence, using Lemma 6, Eq. (8) may be rewritten as

Arg = (2m[t*) k — X — Py(ro) — (1/t*) B(ro , b , 1*)
=0+ & — Py(rg) — (1/t*) V(ro, b0 , %), ©)

where || &(n) || << 27732, We now assume that the determinant | 4| 5= 0.
Then, using (7), Eq. (9) may be written in the form

7o = A0 + &) — A7Py(7o) — (1/t%) A7D(7o, b , 1¥)
=17 + &0} + Plre) + (1/t*) D(ry , by , %), (10)

where ¢, = Al,, P = —A-'P, and & = —A-'®. Further, in the
domain D,

PN < epll gl < (B eygn® = eun?,
and by Lemma 4,
1)) < cmn“-”/t* P = oo,

Also, we have || || < ¢gn/2
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We will now show that if 7 is sufficiently small the right-hand member
of Eq. (10) defines a contraction mapping for 74 in the domain || 7y — 7 || < 4.
A fixed point of this mapping will then be the desired solution of Eq. (8).
The unique solution 7 so obtained may be regarded as a single-valued
function 7§ = §(¢,) of ¢y and will be analytic and periodic of period 2
in the ¢y, since & is analytic in &, 7o and periodic in the ¢y, .

Let G(ry) denote the right-hand member of Eq. (10) where we consider 7
and ¢, as fixed. Now

a_q~aP+1aq3
ory By | ¥ o,

and since P is at least of degree two in the r;,, we have || 8B/ér, || < €14m
in D. Also, by Lemma 5,

” t* Bry “ = t* A= ” “ 7 egypt || A7 || = cypp—5/2

in D. Hence, || 8G/ér,|| < g7, where «; = min(l, u — §) > 0. Now,
employing the mean value theorem, for (" and +{¥ in the domain
[l7¢ — 7 Il < %7, we obtain

G(7?) — G(7V) = (8G]or )*(z{? — 731),
and therefore,
| GG — GEMN < eygpra || 78 — 70 || < | 782 — 7P ||,

where o < 1 for 0 <5 < 1/cij*r If we now consider a sequence 7% of
successive approximations of the fixed point with 7 as the initial approxima-
tion, then using Eq. (10) we have

) _ &  _ = - i—1 I ‘fo =7l
”To —7’“<”To _7)”2‘! <'——1:T 17"]"’
=1

where x, = min(§,u — §) > 1. Thus, if y >0 is chosen sufficiently
small, the last quantity above will be less than }% and all approximations
=¥ and, hence, the (unique) fixed point 7¥ belong to the domain
| 7o — 7| < #7. In fact, we note from the above inequality that

o5 — 7l < eom'™

We have established, therefore, the following lemma,



PERIODIC SOLUTIONS IN HAMILTONIAN SYSTEMS 139

FUNDAMENTAL LEMMA. Let the integer p > 3 and assume that the deter-
minant | A| # 0. If 7 > 0 is chosen sufficiently small and t* is fixed in the
interval w312 < t* < yn2, then there exists a manifold M of initial values
in phase space, defined by equations of the type

T;'(‘) = 0i(¢10 yerey ‘?»"no) (i =1, 2,..., n)

for which the corresponding $,(t*) of (4) differ from the ¢, by integral multiples
of 2wr. The 0; are analytic single-valued functions which are periodic of period
2z in the ¢,y and satisfy || 0 — 77 || < e, with ¢ > 0 and « > 1.

PrincIipPaL REesuLTs

Regarding ¢ as a fixed parameter, the transformation (4) that maps the

point (74,¢,) to (7(f),4(¢)) in 2n space is a canonical transformation.
Therefore

4] = 3. (e — i) (1)

is an exact differential [//] when expressed in terms of 7, , ¢, and the param-
eter ¢. However, along a manifold M of the type described in the Fundamental
Lemma, ¢, differs from ¢;, by the constant 2k when t = #*, and hence
dp; = doy, i = 1, 2,...,n Thus, for t = t*, Eq. (11) becomes

n
] = 121 (i — 7i0) dbio (12)
along M. Integrating Eq. (12) over the manifold we get a single-valued
analytic function J which is periodic of period 2= in the ¢,,. It is clear
that | possesses critical points where dJ = 0, which implies from Eq. (12)
that =, = 7,4, £ =1,2,..., n. Hence, these critical points correspond to
invariant points of the transformation (4) which in turn correspond to
periodic solutions of Eq. (3) of period t*. Thus, we have established the
following theorem. '

THEOREM 1. Let the integer p > 3 and assume that (A, k) + O for every
tntegral vector with | k| = | ky | + - + | k, | < 2p + 1. Then a conservative
holomorphic Hamiltonian system of the form (1) with the determinant
[ A| = |2%);| O possesses infinitely many distinct periodic solutions of
arbitrarily long (minimum) periods in the neighborhood of v = 0.

Theorem | solves the same problem as that treated by Lewis [8]. However,
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in the mechanics of his proof, it is necessary to assume that u > 8n | 4.
Thus, it is possible to significantly reduce the commensurability restrictions
on the linear frequencies and establish the same result.

At this point we will consider an analytic Hamiltonian H(p, ¢, t) which
is periodic of period 27 in ¢ and has an equilibrium point at p = ¢ = 0. An
analogous reduction to normal form may be made provided certain restrictions
are made on the commensurability of the linear frequencies A, , A, ,..., A, and 1.
In particular, we assume that {A, &> + [for | k| <2u 1,1 =0, 1, +2,....
The Hamiltonian may then be reduced [4] to the form

H(r,$, 1) = Hy(r) + H(r, ¢, 1), (13)

where H, has the same form as in Eq. (2) and A is analytic in 7, ¢, ¢ and
periodic of period 27 in the ¢, and in . Furthermore, | H | < ¢ 7|+,
where ¢ is a positive constant. This reduction may be accomplished for any
integer u > 1.

The various lemmas stated in this paper are readily extended to the
nonautonomous Hamiltonian (13) and, further, the differential form (11)
remains exact. Then with 5 > 0 sufficiently small we may choose #*
(7732 < * < yn~?) such that 1* = 2mm, where m is a positive integer and
consider the canonical transformation 7 which maps points along the
trajectories from ¢ = 0 to ¢ = 2mm. Any invariant points of 7 correspond
to periodic solutions of the Hamiltonian system of period 2mm. In particular,
if one chooses m as a prime and if at least one of the A; is not an integer
(eliminating 27 as a possible period), then for » sufficiently small, 27m is
necessarily the least period of these periodic solutions. The proof of the
next theorem, therefore, is analogous to that of Theorem 1.

THEOREM 2. Let p = 3 and assume that (A k) £ 1 for [k < 2u + 1,

=0, 1, 42,... . Further assume that at least one of the A; is not an integer.
Then a holomorphic Hamiltonian system of the form (13) with determinant
| A| # O possesses infinitely many distinct (subharmonic) periodic solutions of
arbitrarily long (minimum) periods in the neighborhood of + = 0.

Now suppose we have a conservative dynamical system with n 4 1 degrees
of freedom and a given periodic motion of general stable type. It is well-known
that the study of the motion near a periodic solution may be reduced [4]
to the consideration of a Hamiltonian system with n degrees of freedom in
which H is analytic in p, g, and ¢ and periodic of period 27 in the latter. In
this setting the periodic motion appears as a “‘generalized” equilibrium point,
p = q = 0. Periodic motions of this latter system then correspond to
periodic solutions of the original (27 4 2)th-order system near the given
periodic motion. By a periodic motion of general stable type we mean one
for which the frequencies A, , Ay ,..., A, and 1 are incommensurable and the
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determinant | 4| ¢ 0. Hence we may state the following theorem which
was first proven by Birkhoff and Lewis [6] and follows immediately from
Theorem 2.

TueoreM 3 (Birkhoff and Lewis). In a conservative dynamical system
there exist infinitely many distinct periodic solutions of arbitrarily long
(minimum) periods in the vicinity of every periodic solution of general stable type.

For a periodic motion of general stable type, the associated Hamiltonian
can be expressed in normal form through terms of arbitrarily high order,
but for purposes of the proof of Theorem 3 it is only necessary to effect
this through terms of order p. In the proof given by Birkhoff and Lewis it is
assumed that p > 8n 4 4 while in the above proof it is assumed that p > §
(independent of n). Thus, in Theorem 3, we may reduce the incommen-
surability requirements on the frequencies A, ,..., A, (see the statement of
Theorem 2) and this reduction is quite substantial in the higher-dimensional
cases,
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