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Abstract

We review known factorization results for quaternion matrices. Specifically, we derive the Jordan
canonical form, polar decomposition, singular value decomposition, and QR factorization. We prove
that there is a Schur factorization for commuting matrices, and from this derive the spectral theorem.
We do not consider algorithms, but do point to some of the numerical literature.

Rather than work directly with matrices of quaternions, we work with complex matrices with a
specific symmetry based on the dual operation. We discuss related results regarding complex matrices
that are self-dual or symmetric, but perhaps not Hermitian.
c⃝ 2012 Elsevier GmbH. All rights reserved.
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1. The quaternionic condition

It is possible to prove many factorization results for matrices of quaternions by
deriving them from their familiar complex counterparts. The amount of additional work
is surprisingly small.

There are more abstract factorization theorems that apply to real C∗-algebras, along the
lines of the delightful paper [10] by Pedersen on factorization in (complex) C∗-algebras.
We are dealing here with more basic questions, involving only finite-dimensional linear
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algebra. These are never (or hardly ever?) addressed in basic linear algebra texts, creating
the impression that linear algebra over the quaternions is more difficult than it is.

There are serious hazards within linear algebra over the quaternions. One can be lured
to difficult questions of determinants and handedness of the spectrum, leaving perhaps
victorious, but with the impression that all of linear algebra over the quaternions is going
to be difficult.

We mathematicians are well-advised, when upon such uneven ground, to seek guidance
from physicists. Such guidance helped select the topics here, and helped suggest notation.

One topic was included for reasons of elegance: the Jordan canonical form. For practical
purposes, the Schur decomposition will generally suffice. We prove that as well.

It is assumed that the reader is familiar with such things as the spectral theorem and
the functional calculus for normal matrices. It is not assumed that the reader knows about
C∗-algebras or physics, but these topics are mentioned.

Let H denote the algebra of quaternions

H =


a + bî + c ĵ + dk̂|a, b, c, d ∈ R


.

This is an algebra over R. The canonical embedding C ↩→ H sending 1 to 1 and i to î does
not make H into an algebra over C. The trouble is that the embedding is not central. An
additional algebraic operation is the involution

a + bî + c ĵ + dk̂
∗

= a − bî − c ĵ − dk̂

which satisfies several axioms, including the following:

α ∈ R, x ∈ H H⇒ (αx)∗ = αx∗

x∗x = 0 H⇒ x = 0

(xy)∗ = y∗x∗.

Turning to matrices, the algebra MN (H) has the expected structure of a unital R-algebra,
plus the involution

ai j
∗

=


a∗

j i


of the conjugate-transpose. We would like to know that

A∗ A = 0 H⇒ A = 0

and

AB = I H⇒ B A = I.

We will quickly prove these after we consider a representation of MN (H) on C2N .
We have an obvious representation of MN (H) on HN and quickly notice that since left

and right scalar multiplication of HN disagree, we have both left eigenvalues λ ∈ H solving

Av = λv
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and right eigenvalues µ ∈ H solving

Av = vµ.

A glance at the survey [13] reveals that many difficulties arise.
Ponder the situation for real matrices, in MN (R). To the chagrin of undergraduates, it

is most natural to consider the representation of MN (R) on CN . Given a real orthogonal
matrix O we get the full picture of why it might not diagonalize in MN (R) when we look
at the complex eigenvalues. It is at this point that we are implicitly letting MN (R) act on
CN .

We do well in the case of the quaternions to regard MN (H) as represented on C2N , or in
more modern terms that de-emphasize the role of vectors, via a certain embedding

χ : MN (H) → M2N (C).

This is a very old trick. For N > 1 it appears to have been noticed first by Lee [6].

Definition 1.1. Given two complex N -by-N matrices A and B we set

χ


A + B ĵ


=


A B

−B A


.

We generally study complex matrices in the image of χ and only at the end of our
calculations do we draw conclusions about MN (H). This is in keeping with applications in
quantum mechanics, where Hilbert space is always complex and time-reversal symmetry
will often be incorporated in the conjugate linear operation T . We define T : C2N

→ C2N

by

T


v
w


=


−w

v


(1)

for v and w in CN . See [8, Section 2.2] for details on when T is relevant to time reversal
symmetry.

A less generous description of our approach is that we plan to study complex matrices
with a certain symmetry that is useful in physics, and then sell the same results to pure
mathematicians by re-branding them as theorems about matrices of quaternions.

The operator T is relatively well behaved, despite being only conjugate linear. It
preserves orthogonality, and indeed

⟨T ξ, T η⟩ = ⟨ξ, η⟩. (2)

Also

ξ ⊥ T ξ (3)

which is another one-line calculation.

Lemma 1.2. The mapping χ is well-defined, is an R-algebra homomorphism, is one-to-
one and satisfies

(χ(Y ))∗ = χ

Y ∗

.
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Proof. Notice that every quaternion q can be written as α + β ĵ with α and β in C. This
makes the map well-defined. It is clearly one-to-one and R-linear. Notice that β ĵ = ĵ β̄ for
complex number β and so B ĵ = ĵ B. Therefore

χ


A + B ĵ


χ


C + D ĵ


=


A B

−B A

 
C D

−D C


=


AC − B D AD + BC

−BC − AD −B D + AC


= χ


AC − B D


+


AD + BC


ĵ


= χ


A + B ĵ
 

C + D ĵ


and 
χ


A + B ĵ
∗

=


A B

−B A

∗

= χ


A∗
− BT ĵ


= χ


A + B ĵ

∗
. �

We can describe the image of χ in several useful ways. We will need several unary
operations on complex matrices. For starters we need the transpose AT and the pointwise

conjugate A and the conjugate-transpose, or adjoint, A∗
= A

T
= AT. Finally, we need a

twisted transpose that is useful in physics. This is a “generalized involution” X ♯ called the
dual operation that is defined only for X in M2N (C).

Definition 1.3. For A, B, C and D all complex N -by-N matrices, define
A B
C D

♯

=


DT

−BT

−CT AT


.

Alternatively, we set X ♯
= −Z XT Z where

Z =


0 I

−I 0


. (4)

Notice that Z could be replaced by a matrix with similar properties and define a variation
on the dual operation. Indeed, the choice of Z is not standardized.

Lemma 1.4. For X in M2N (C) the following are equivalent:

1. X is in the image of χ ;
2. X∗

= X ♯;
3. X = −T ◦ X ◦ T meaning Xξ = −T (X T (ξ)) for every vector ξ in C2N .

Proof. Assume

X =


A B

−B A


.

Then

X∗
=


A

T
−BT

B
T

AT


= X ♯.



254 T.A. Loring / Expo. Math. 30 (2012) 250–267

Conversely X∗
= X ♯ translates into block form as

A∗ C∗

B∗ D∗


=


DT

−BT

−CT AT


so we have proven (1) ⇐⇒ (2).

We compute −T ◦ X ◦ T for X again in block form, and find

−T ◦ X ◦ T


v
w


= −T


A B
C D

 
−w

v


= −T


−Aw + Bv
−Cw + Dv


=


−Cw + Dv

Aw − Bv


=


D −C

−B A

 
v
w


so the matrix for the linear operator −T ◦ X ◦ T is


X ♯
∗

. Therefore (2) ⇐⇒ (3). �

Definition 1.5. Let us call

X∗
= X ♯

the quaternionic condition and the matrix X we will call a quaternionic matrix.

We now dispose of the implications

A∗ A = 0 H⇒ A = 0

and

AB = I H⇒ B A = I

for matrices of quaternions. These are true implications for complex matrices, and in
particular for quaternionic matrices, and therefore true for matrices of quaternions.

We pause to note some axioms of the dual operation. It behaves a lot like the transpose.
It is linear:

(X + αY )♯ = X + αY ♯

even for complex α. Here X and Y are any 2N -by-2N complex matrices. The dual reverses
multiplication:

(XY )♯ = Y ♯ X ♯.

It undoes itself:
X ♯
♯

= X

and commutes with the adjoint:
X ♯
∗

=

X∗
♯

.
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Lemma 1.6. Every matrix G in M2N (C) can we expressed in a unique way as

G = X + iY

with X and Y being quaternionic matrices.

Proof. Given G we set

X =
1
2

G♯∗
+

1
2

G

and

Y =
i

2
G♯∗

−
i

2
G. �

2. Kramers degeneracy and Schur factorization

Eigenvalue doubling is a key feature of self-dual, self-adjoint matrices. In physics this
is called the Kramers degeneracy theorem, or the theory of Kramers pairs [5,8,12]. This
generalizes in two ways, to give eigenvalue doubling given the symmetry X = X ♯ and
conjugate-pairing of eigenvalues given the symmetry X∗

= X ♯.
Such a collection of paired eigenvectors will, in good situations, form a unitary matrix.

If U is unitary matrix that satisfies the quaternionic condition then it satisfies another
symmetry making it symplectic, specifically U T ZU = Z .

Lemma 2.1. Suppose U is a unitary 2N-by-2N matrix. The following are equivalent:

1. U is symplectic;
2. U∗

= U ♯;
3. ZU = U Z;
4. U ◦ T = T ◦ U;
5. if v is column j of U for j ≤ N then column N + j of U is T (v).

Proof. This follows easily from Lemma 1.4. �

We need to know that the group of symplectic unitary matrices acts transitively on Cn .

Lemma 2.2. If v is any unit vector in C2N then there is a symplectic unitary with Ue1 = v.

Proof. Let v1 = v. We use (2) and (3) to select in order vectors that are an orthonormal
basis for C2N , but of the form

v1, T v1, v2, T v2, . . . , vN , T vN .

If we reorder to

v1, v2, . . . , vN , T v1, T v2, . . . , T vN

we have the columns of the desired symplectic unitary. �

The most basic result in this realm is an ugly lemma that says that T maps left
eigenvectors of X to right eigenvectors of X ♯, with the same eigenvalue. The second part
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of this lemma is more elegant, if less general. It specifies how every quaternionic matrix
has a conjugate symmetry in its spectral decomposition.

Lemma 2.3. Suppose X is in M2N (C).

1. If Xξ = λξ then

(T ξ)∗ X ♯
= λ (T ξ)∗ .

2. If X∗
= X ♯ and Xξ = λξ then

X (T ξ) = λ (T ξ) .

Proof. (1) Starting with

X =


A B
C D


and

ξ =


v
w


we find that Xξ = λξ translates to

Av + Bw = λv

Cv + Dw = λw

and (T v)∗ X ♯
= λ (T v)∗ translates to

−wT DT
− vTCT

= −λwT

wT BT
+ vT AT

= λvT

so these are equivalent conditions.
(2) follows from (1) by taking adjoints. �

Now we are able to extend Kramers degeneracy to a variety of situations, starting with
a block diagonalization for commuting quaternionic matrices. Part (2) of Theorem 2.4
appeared in [11].

Theorem 2.4. Suppose X1, . . . , Xk in M2N (C) commute pairwise and X∗

j = X ♯
j for all j .

1. There is a single symplectic unitary U such that, for all j ,

U∗ X jU =


T j S j

−S j T j


with T j upper-triangular and S j strictly upper-triangular.

2. If, in addition, the X j are normal then there is a single symplectic unitary U such that,
for all j ,

U∗ X jU =


D j 0
0 D j


with D j diagonal.

3. Every symplectic unitary has determinant 1.
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Proof. (1) A finite set of commuting matrices will have a common eigenvector, so let
v be a unit vector such that X j v = λ j v. We know then that T v is an eigenvalue for
X j with eigenvector λ j . There is a symplectic unitary U1 such that U1e1 = v, and then
U1eN+1 = T v by Lemma 2.1. Let Y j = U∗

1 X jU1. Then

Y j e1 = λ j e1

and

Y j eN+1 = λ j eN+1.

This means that column 1 and column N + 1 are all but zeroed-out,

Y j =


λ j ∗ 0 ∗

0 A j 0 C j

0 ∗ λ j ∗

0 B j 0 D j

 .

Up to a non-symplectic change of basis we are looking at block-upper-triangular matrices
that commute, so the lower-right corners in that basis commute. This means that the

Z j =


A j C j
B j D j


(5)

all commute, and each must satisfy Z∗

j = Z ♯
j . By induction, we have proven the first claim.

For (2) we modify the proof just a little. Starting with the X j normal, we find the Y j are
also normal and so

Y j =


λ j 0 0 0
0 A j 0 C j

0 0 λ j 0
0 B j 0 D j

 .

This, after an appropriate basis change, would be block-diagonal, and from this we can
conclude that the matrix in (5) is normal. The induction proceeds as before, with the
stronger conclusion that B j = C j = 0 and A j = D j is diagonal.

(3) Applying (2) we find

W = U


D 0
0 D


U∗

where D is a diagonal unitary. Therefore

det(W ) = det(D) det(D) = det(D)det(D) ≥ 0

and since a unitary has determinant on the unit circle, we are done. �

Corollary 2.5. Every matrix in MN (H) is unitarily equivalent to an upper-triangular
matrix in MN (H) that has complex numbers on the diagonal.

There is an algorithm [1] for the Schur decomposition of quaternionic matrices.
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Corollary 2.6. Every normal matrix in MN (H) is unitarily equivalent to a diagonal matrix
in MN (C). Every Hermitian matrix in MN (H) is unitarily equivalent to a diagonal matrix
in MN (R).

Corollary 2.7. Every Hermitian self-dual matrix X in M2N (C) is of the form

X = U


D j 0
0 D j


U∗

for some symplectic unitary U and a diagonal real matrix D j .

These corollaries cause us to reconsider the concept of left and right eigenvalues in H
and focus on just those that are in C. For details on left eigenvalues and non-complex right
eigenvalues, consult [3]. We put the complex right eigenvalues in a simple context with the
following.

Lemma 2.8. Suppose v, w ∈ CN and λ ∈ C and A, B ∈ MN (C). Then
A B

−B A

 
v
w


= λ


v
w


if and only if

A + B ĵ
 

v − ĵw


=


v − ĵw


λ.

Therefore λ ∈ C is a right eigenvalue of X ∈ MN (H) if and only if λ is an eigenvalue of
χ(X).

Proof. This a short, direct calculation. �

3. Jordan canonical form

Kramers degeneracy extends to the generalized eigenvectors used to find the Jordan
canonical form.

Lemma 3.1. Suppose X ♯
= X∗. If

(X − λI )r v = 0 and (X − λI )r−1 v ≠ 0

then 
X − λI

r T v = 0 and

X − λI

r−1 T v ≠ 0.

Proof. For any Y we have

∥Y v∥ = ∥Y v∥ = ∥ZY Z Zv∥

proving

∥Y v∥ = ∥Y ♯∗T v∥.

Since 
(X − λI )k

♯∗

=

X − λI

k
the result follows. �
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We see the general idea of a proof [14] of the Jordan decomposition for a quaternionic
matrix. When we build a Jordan basis we need to respect T in two ways. Whatever basis we
pick for the subspace corresponding to λ with positive imaginary part, we apply T to get
the basis for the subspace corresponding to λ. When λ is real we need to pick generalized
eigenvectors in pairs.

The Jordan form of a quaternionic matrix is not elegant, as each Jordan block larger than
2-by-2 gets spread into all four quadrants of the matrix. We work directly with a Jordan
basis and then give our final conclusion in terms of quaternions.

Theorem 3.2. Suppose X ♯
= X∗. There is a Jordan basis for X consisting of pairs of the

form v, T v.

Proof. Let Nλ denote the subspace of all generalized eigenvectors for λ together with the
zero vector. Recall that just treating X as a complex matrix, the procedure for selecting
a Jordan basis involves selecting, for each λ, a basis for Nλ with the following property:
whenever b is in this basis, then (X − λI )b is either zero or back in this basis.

For λ in the spectrum with positive imaginary part we make such a choice and then
apply T to get a set of vectors in Nλ that has the correct number of elements to be a basis
of Nλ. It will also be a linearly independent set since Z and conjugation both preserve
linear independence. Since

(X − λI )T b = T (X − λI )b

this basis of Nλ has the desired property.
For λ in the spectrum that is real we need to modify the procedure for selecting the basis

of Nλ. A common procedure selects a basis br,1, . . . , br,mr for

ker (X − λ)r
∩


ker (X − λ)r−1

⊥

∩ (im (X − λ))⊥ (6)

and constructs for Nλ the Jordan basis
(X − λ) j br,k | 1 ≤ r ≤ rmax, 0 ≤ j ≤ r − 1, k = 1, . . . , mr


Since

T (X − λ) j br,k = (X − λ) j T br,k

we get the desired structure if the subspaces (6) are T -invariant. This follows from the next
two lemmas and the equality

(im (X − λ))⊥ = ker

X∗

− λ

.

We can now assemble the bases of the various Nλ to get a Jordan basis built from the
Kramers pairs. �

Lemma 3.3. If X ♯
= X∗ then ker(X) is T -invariant.

Proof. This is a restatement of the λ = 0 case of Lemma 2.3(2). �

Lemma 3.4. If a subspace H0 is T -invariant then (H0)
⊥ is also T -invariant.
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Proof. If v is in (H0)
⊥ then for every w ∈ H0 we have

⟨T v, w⟩ = − ⟨T v, T T w⟩ = −⟨v, T w⟩ = 0. �

Corollary 3.5. Suppose X ∈ Mn(H). There is an invertible matrix S ∈ Mn(H) and a
complex matrix J in Jordan form such that X = S−1 J S.

4. Norms

There are two operator norms to consider on X in MN (H): that induced by quaternionic
Hilbert space and that induced by complex Hilbert space on χ(X). They end up identical.

Theorem 4.1. Suppose X is in MN (H). Then using the norms

∥v∥ =


N

j=1

v∗

j v j

 1
2

on HN and

∥w∥ =


2N
j=1

w jw j

 1
2

on C2N we have

sup
v≠0

∥Xv∥

∥v∥
= sup

w≠0

∥χ(X)w∥

∥w∥
.

Proof. Utilizing also the norm on C2N we calculate the four relevant norms:v
w

2

= ∥v∥
2
+ ∥w∥

2 .v − ĵw
2

= ∥v∥
2
+ ∥w∥

2 . A B
−B A

 
v
w

2

= ∥Av + Bw∥
2
+
Aw − Bv

2
.A + B ĵ

 
v − ĵw

2
=

Av + Bw + ĵ

Bv − Aw

2

= ∥Av + Bw∥
2
+
Bv − Aw

2
.

The result follows. �

5. Singular value decomposition

As in the complex case, a slick way to prove that there is a singular value decomposition
is to work out the polar decomposition and then use the spectral theorem on the positive
part.
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In [13] it is stated that “a little more work is needed for the singular case” when
discussing the polar decomposition. The extra work involves padding out a quaternionic
partial isometry to be a quaternionic unitary (and so a symplectic unitary).

We remind the reader that U is a partial isometry when (U∗U )2
= U∗U , or equivalently

UU∗U = U or U∗UU∗
= U∗ or (UU∗)2

= UU∗. If we restrict the domain and range of
U we find it is an isometry from (ker(U ))⊥ to (ker(U∗))⊥.

Lemma 5.1. Suppose U∗
= U ♯ and U is a partial isometry in M2N (C). There is a

symplectic unitary W in MN (C) such that W ξ = Uξ for all ξ ⊥ ker(U ).

Proof. If v is in ker(U ) then by Lemma 2.3, T v is also in ker(U ). Since v and T v are
orthogonal, we can show that ker(U ) has even dimension 2m and that is has a basis for the
form

v1, . . . , vm, T v1, . . . , T vm .

We are working in finite dimensions so the dimension of ker(U∗) is also 2m and we select
for it a basis

w1, . . . , wm, T w1, . . . , T wm .

We can define W to agree with U on (ker(U ))⊥ and to send v j to w j and T v j to T w j and
so get a unitary that commutes with T , which means that it is symplectic. �

Lemma 5.2. Suppose X∗
= X ♯ in M2N (C). Then there is a unitary U and a positive

semidefinite P with U∗
= U ♯ and P∗

= P♯ and X = U P.

Proof. Let f be a continuous function on the positive reals with f (0) = 0 and f (λ) = λ−
1
2

for every nonzero eigenvalue of X∗ X . Then let

W = X f (X∗ X).

The usual calculations in functional calculus tell us W is a partial isometry and that

X = W P for P = (X∗ X)
1
2 . Working with monomials and polynomials and then taking

limits, we can show that

( f (Y ))♯ = f

Y ♯


for any positive operator Y and so

W ♯
= f


X ♯ X∗♯


X ♯

= f

X∗ X


X∗

= W ∗.

Also P♯
= P = P∗.

We just showed that the matrices in the minimal polar decomposition are quaternionic.
We use Lemma 5.1 to finish the argument. �

As expected, the polar decomposition leads to a singular value decomposition.

Theorem 5.3. Suppose X∗
= X ♯ in M2N (C). There are symplectic unitary matrices U

and V and a diagonal matrix D with nonnegative real entries and D♯
= D∗ such that

X = U DV .
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Proof. We take a quaternionic polar decomposition X = W P . Since P is positive, we
apply Theorem 2.4 to get symplectic unitary matrices Q and V and a diagonal matrix D
such that P = Q DV . The eigenvalues of P are nonnegative, so the same is true for the
diagonal elements of D and we have the needed factorization X = (W Q)DV . �

6. QR factorization

It is easy to use Lemma 2.2 to get over H a QR factorization theorem. Notice that upper-
triangular matrices are sent by χ to matrices that are block-upper-triangular.

Theorem 6.1. (1) If X∗
= X ♯ in M2N (C) then there are symplectic unitary matrices Q

and R of the form

R =


A B

−B A


with A and B upper-triangular. (2) If X ∈ MN (H) then there is a unitary Q and upper-
triangular matrix R in MN (H) such that X = Q R.

Proof. (2) follows directly from (1), so we prove (1).
We apply Lemma 2.2 to the first column of X and find X = Q1 R1 where

R1 =


A1 B1

−B1 A1


where A1 and B1 have zeros in their first columns, except perhaps in the top position. As
we did earlier, we can proceed with a proof by induction. �

7. Self-dual matrices

If we study matrices with X ♯
= X then we are no longer working directly with

quaternionic matrices, but as we discuss below, there is a connection. We discuss a Schur
factorization and a structured polar decomposition for self-dual matrices. The latter is a
bit tricky, so we warm up with a structured polar decomposition for symmetric complex
matrices.

For dealing with a single self-dual matrix, there is the efficient Paige/Van Loan
algorithm [4,9] to implement the following theorem.

Theorem 7.1. Given X1, . . . , Xk in M2N (C) that commute pairwise and are self-dual,
there is a single symplectic unitary U such that, for all j ,

U∗ X jU =


T j C j

0 T T
j


with T j upper-triangular and the C j skew-symmetric.

Proof. Let v be a nonzero unit vector such that X j v = λ j v for all j . By Lemma 2.3,

X∗

j (T v) = λ j (T v) .
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There is a symplectic unitary U1 such that U1e1 = v and U1eN+1 = T v. Let Y j =

U∗

1 X jU1. Then

Y j e1 = λ j e1

and

Y ∗

j eN+1 = λ j eN+1.

Since eN+1 is real, we take the adjoint and discover that

eT
N+1Y j = λ j eT

N+1.

This means the column 1 and row N + 1 are all but zeroed-out,

Y j =


λ j ∗ ∗ ∗

0 A j ∗ C j
0 0 λ j 0
0 B j ∗ D j

 .

Basic facts about block-triangular matrices show that the

Z j =


A j C j
B j D j


are a commuting family of matrices, and since U1 was chosen to be symplectic, the Z j will
be self-dual. A simple induction now finishes the proof. �

A promising numerical technique for the joint diagonalization of two commuting self-
dual self-adjoint matrices H and K would be to form the normal self-dual matrix X =

A + i B and apply Paige/Van Loan to reduce to block-diagonal form. Then apply ordinary
Schur decomposition. This technique was used in [4, Section 9] to diagonalize matrices that
were exactly self-dual and approximately unitary. This idea is mentioned in [2], Section
6.5.

It is not hard to show that the minimal polar decomposition, the one that is unique and
can involve a partial isometry, preserves in some way just about any symmetry thrown at
it. This is because the functional calculus interacts well with the dual operation [7], as
well as with the transpose. It is a bit harder to figure out what happens for the maximal
polar decomposition. By the minimal polar decomposition is meant the factorization that
is unique and can involve a partial isometry. By the maximal polar decomposition is meant
the factorization that involves a unitary.

We begin with the easier result about the polar decomposition of complex symmetric
matrices.

Theorem 7.2. If X in M2n(C) satisfies XT
= X then there is a unitary U such that

U T
= U and X = U |X |.

Proof. Again choose f with f (0) = 0 and f (λ) = λ−
1
2 for every nonzero eigenvalue of

X∗ X and let

W = X f (X∗ X).
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As always, W is a partial isometry and X = W P for P = (X∗ X)
1
2 = |X |. Now we

discover that

W T
= f


XT X


XT

= f

X X∗


X = X f


X∗ X


= W.

To create a unitary U with X = U |X | we must extend W to map ker(W ) to ker (W ∗). We
can arrange U T

= U as follows. Let v1, . . . , vm be an orthonormal basis of ker(W ). Then
v1, . . . , vm will be an orthonormal basis of ker(W ∗) = ker(W ) and we define V to be zero
on (ker(W ))⊥ and V v j = v j . Thus V ∗ will be zero on (ker(W ))⊥ and V ∗v j = v j , but
the same can be said about V . That means that V T

= V and so U = W + V will be the
required symmetric unitary.

Notice there is no structure on |X |, but considering it with |X∗| we get the formulaX∗
 = |X |

T . � (7)

For the self-dual situation, we shall see that a similar construction works as long as we
respect Kramers degeneracy.

Proposition 7.3. If a partial isometry W in M2N (C) is self-dual, then the initial space of
W will have even dimension and T will map the initial space isometrically onto the final
space of W .

Proof. Applying Lemma 2.3 to the self-adjoint matrix W ∗W we find that

W ∗W v = v H⇒

W ∗W

♯ T v = T v

H⇒

W W ∗


T v = T v.

That is, when v ∈ (ker W )⊥ we have T v ∈ (ker W ∗)⊥ and ∥W ∗T v∥ = ∥v∥. This is useful
because

v, W ∗T v

=

v, −W ∗Zv


=


−W T Zv, v


= ⟨−Z W v, v⟩

=

v, W ∗Zv


= −


v, W ∗T v


which means that v and W ∗T v are orthogonal, and

W ∗T W ∗T v = W ∗Z W ∗Zv

= W ∗Z W T Zv

= −W ∗W ♯v

= −W ∗W v

= −v.

If we start with a unit vector v in (ker W )⊥ then we end up with an orthogonal pair of unit
vectors v and w with W ∗T v = w and W ∗T w = −v.
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If q is a vector in (ker W )⊥ that is orthogonal to both v and w then W ∗T q will be
orthogonal to both W ∗T v and W ∗T w since T preserves orthogonality everywhere and
W ∗ preserves the orthogonality of vectors in (ker W ∗)⊥. Thus we can create a basis of
(ker W )⊥ out of pairs

v1, W ∗T v1, . . . , vm, W ∗T vm . �

We need some examples of self-dual partial isometries. Treating vectors as 2N -by-1
matrices, if we set

V = (T v) w∗
− (T w) v∗

then this rank 2 (at most) matrix is self-dual since

V ♯
= −Z


−Zvw∗

+ Zwv∗
T Z

= −Z

wv∗Z − vw∗Z


Z

= Zwv∗
− Zvw∗

= −T (w)v∗
+ T (v)w∗

= V .

If we start with v and w orthogonal, then V will be the rank 2 partial isometry taking v to
T w and w to T v. We record this as a lemma that avoids the ugly notation.

Lemma 7.4. Suppose v and w are orthogonal unit vectors. Then the partial isometry from
Cv + Cw to CT v + CT w that sends v to T w and w to −T v will be self-dual.

Theorem 7.5. If X in M2n(C) satisfies X ♯
= X then there is a unitary U such that

U ♯
= U and X = U |X |.

Proof. Once more W = X f (X∗ X) works to create a partial isometry W with X = W P
for P = |X | and this time we have W ♯

= W . We need a partial isometry from ker(W )

to ker (W ∗) that is self-dual. The dimension of ker(W ) will be even, by Proposition 7.3.
Moreover if

v1, w1, . . . , vm, wm

is an orthogonal basis for ker(W ) then

T v1, T w1, . . . , T vm, T wm

will be an orthogonal basis for ker (W ∗). The needed self-dual partial isometry V will send
v j to T w j and w j to T v j and the self-dual unitary that we use will be U = W + V . �

8. The odd particle causes even degeneracy

We hope not to scare the mathematical reader with more discussion of Kramers
degeneracy. What Kramers discovered was that for a certain systems involving an odd
number of electrons, the Hamiltonian always had all eigenvalues with even multiplicity.
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A mathematical manifestation of this is that the tensor product of two dual operations
is the transpose operation in disguise. In contrast to that, the tensor product of three dual
operations is a large dual operation in disguise. Specifically if we implement an orthogonal
change of basis, the dual operation becomes the transpose.

This is essentially the same as the facts that are more familiar to mathematicians, that
H ⊗R H ∼= M4(R) and H ⊗R H ⊗R H ∼= M4(H).

In the following, we let Z N be as in (4), the matrix that specified the dual operation.

Lemma 8.1. Consider

U =
1

√
2

(I ⊗ I − i Z N ⊗ Z M ) .

For all X ∈ M2N (C) and Y ∈ M2M (C),

U∗

X ♯

⊗ Y ♯


U =

U∗ (X ⊗ Y ) U

T
.

Proof. Since ZT
K = −Z K we see U = U T. Also

U∗U =
1
2

(I ⊗ I + i Z N ⊗ Z M ) (I ⊗ I − i Z N ⊗ Z M )

=
1
2


I ⊗ I + (Z N ⊗ Z M )2


= I ⊗ I

so U is a unitary and U = U−1.
Since U 2

= −i Z N ⊗ Z M we find

U∗

X ♯

⊗ Y ♯


U = U

X ♯

⊗ Y ♯


U

= U (−i Z N ⊗ Z M )


XT
⊗ Y T


(i Z N ⊗ Z M ) U

= UU 2


XT
⊗ Y T


U

2
U

=

U∗ (X ⊗ Y ) U

T
. �

We have refrained from discussing C∗-algebras, but here they add clarity. What the
lemma is showing is

(M2N (C) ⊗ M2M (C), ♯ ⊗ ♯) ∼=

M2(M+N )(C), T


.

Lemma 8.2. For all X ∈ M2N (C) and Y ∈ M2M (C),

XT
⊗ Y ♯

= (X ⊗ Y )♯

where the ♯ on the right is taken with respect to I ⊗ Z M .

Proof. This is much simpler, as

(X ⊗ Y )♯ = − (I ⊗ Z M ) (X ⊗ Y )T (I ⊗ Z M )

= − (I ⊗ Z M )


XT
⊗ Y T


(I ⊗ Z M )

= XT
⊗


−Z M Y T Z M


. �
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Together, these lemmas show us that a tensor product of three

M2N j (C), ♯


leads to

something isomorphic to
M2(N1+N2+N3)(C), ♯


.

Acknowledgments

The author is grateful for the guidance and assistance received from mathematicians and
physicists, in particular Vageli Coutsias, Matthew Hastings and Adam Sørensen.

This work was partially supported by a grant from the Simons Foundation (208723), and
by the Efroymson fund at the University of New Mexico.

References

[1] A. Bunse-Gerstner, R. Byers, V. Mehrmann, A quaternion QR algorithm, Numer. Math. 55 (1989) 83–95.
[2] A. Bunse-Gerstner, R. Byers, V. Mehrmann, Numerical methods for simultaneous diagonalization, SIAM J.

Matrix Anal. Appl. 14 (1993) 927–949.
[3] D.R. Farenick, B.A.F. Pidkowich, The spectral theorem in quaternions, Linear Algebra Appl. 371 (2003)

75–102.
[4] M.B. Hastings, T.A. Loring, Topological insulators and C∗-algebras: theory and numerical practice, Ann.

Physics 326 (2011) 1699–1759.
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