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Abstract. We give an 0( IAI’ x 1 TI) algorithm that on the input of a regular Church-Rosser Thue 
system T on alphabet A decides whether or not the monoid MT presented by T is a group, where 
IAl is the cardinality of A, and ITI is the size of the Thue system T. In addition, a problem is 
presented that is decidable for regular monadic Church-Rosser Thue systems, but that is undeci- 
dable for finite non-monadic Church-Rosser Thue systems. 

Introduction 

The Church-Rosser property has been shown to be a very powerful tool in 
providing decidability results for monoids. Many decision problems for monoids, 
that are undecidable in general, become decidable when they are restricted to 
presentations involving the Church-Rosser property [2-5,12,13,15,16]. In addi- 
tion, Nivat and co-workers studied the Church-Rosser property when they investi- 
gated Thue congruences that specify formai languages [6,14]. 

It is well known that there is no algorithm to decide whether or not a monoid 
presented by a Thue system is a group. There are cases where this problem is 
decidable [l, 3,4,11,16]. 

In [3], Book gave a polynomial-time algorithm to decide whether or not a monoid 
presented by a finite monadic Church-Rosser Thue system is a group, but for an 
infinite monadic Church-Rosser Thue system, the al%;orithm uses polynomial space; 
later, by developing the technique of linear sentences [4], Book gave an 0( 1 Al' x 1 TI) 
algorithm to decide whether or not the monoid iM, presented by a regular monadic 
Church-Rosser Thue system T on alphabet A is a group, where IAl is the cardinality 
of A, and I TI is the size of the Thue system T. Here we give an O(]Al’ x I TI) algorithm 
to decide the problem for regular Church-Rosser Thue systems T on A. (See [7], 
for a discussion of the role of tractable problems and polynomial-time algorithms.) 

In addition, we show that, given a finite Church-Rosser Thue system T on A and 
a letter a E A, it is undecidable whether or not a has a right-inverse in MT, but this 
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problem becomes decidable when it is restricted to monadic Church-Rosser Thue 
systems. 

1. Preliminaries 

It is assumed that the reader is familiar with the basic results in the theories of 
automata, computability and formal languages as covered in a text such as that of 
Hopcroft and Ullman [8]. In this section, the notation is established and the basic 
definitions and properties of Thue systems and congruences are described. 

If A is a finite alphabet, then A* is the free monoid with identity e generated by 
A. If w is a string, then the Zen@* of w is denoted by 1 WI: ]el = 0, Ial = 1 for a E A, 
and Iwal=]wl+l for wzA*,a~A. 

For a finite set S of strings, let ISI = EWES Iw]. 
A The system T on alphabet A is a subset of A* x A*, in which each pair in T 

is called a nrle. The Thue congruence generated by T is the reflexive transitive closure 
AT of the relation wT defined as follows: for any u, v E A* such that (u, v) E T or 
(v, u) E T, and any X, y E A*, xuy ~~xvy. Two strings w, z are congruent (mod T) if 
w I*\ T z. The congruence class of z (mod T) is [z] T = { w : w 6 T z}. Whenever possible 
the subscript T will be omitted. 

If T is a Thue system on A, then the congruence classes of T form a monoid M, 
under the multiplication [x] . [ y] = [xy]; the identity is [e]. This is the monoid 
presented by T [lo]. 

If T is a Thue system, write x + y provided x c) y and 1x1~ lyl, and write *, for 
the reflexive transitive closure of the relation +. The relation + is called reduction. 
If u*v, we say that u reduces to v, u is an ancestor of v, and v is a descendant of 
u(mod T). If u has no descendants except itself, then it is irreducible, otherwise it 
is reducible (mod T). 

A Thue system T is Church-Rosser if for all X, y E A*, x&y implies that for 
some z, X*Z and y&z. Thus, we can show that in a Church-Rosser Thue system, 
every congruence class contains exactly one irreducible, which is the shortest string 
in its congruence class, and every string can effectively be reduced to the irreducible 
string in its class. In fact, this is essentially why the Church-Rosser systems are very 
well-behaved. 

Given a Thue system T, let 

domain(T) = (u: 3v ((u, v) E T)}; range(T)={v: 3u ((u, V)E T)}. 

A Thue system on A is 
(1) monadic if 

(i) range( T) c A u {e}; 
(ii) for every u, v such that (u, v) E T, I u) > lvl. 

(2) regular if 
(i) range( T) is finite; 

(ii) for every v E range(T), R, = {u: (u, v) E T} is a regular language. 
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(3) context-free if 
(i j range( T) is finite; 

(ii) for every v E range( T), R, = {u: (u, v) E T} is a context-free language. 
(4) reduced if, for each rule (u, v) E T, u cannot be reduced by any other rule of T, 

and v is irreducible modulo T. 
It is well known that the Church-Rosser property is decidable fo.r regular monadic 

Thue systems [ 151, but not for context-free monadic Thue systems [S]. Regular 
monadic Thue systems and context-free monadic Thue systems are studied respec- 
tively in [ 151 and [ 51. 

Let T be a regular Church-Rosser Thue system on A such that MT is a group. 
If T is reduced, by using the pumping lemma for regular languages, we have that 
T is finite. Thus, non-reduced systems are being considered in this paper. 

2. The main results 

Let V and A be disjoint finite alphabets and let S E V. Let P z V x A*( Vu {e}) 

be finite, and let *s ( Vu A)* x ( Vu A)* be the relation defined as follows: if 
(2, y ) E P, then for all u, v E ( V u A)*, UZV~ uyv. The reflexive transitive closure of 
3 is denoted by a*. The structure G = ( V, A, P, S) is a regular grammar and the 
language generated by G is L(G) = {w E A*: S+* w}. A language L is regular if 
and only if there is a regular grammar G such that L(G) = L. The size of a regular 
grammar G = ( V, A, P, S) is 

WI =Ivl+l4+ c Wl+lYl)* 
(ZYk JJ 

Assume that a h*egular Thue system is presented as a list of pairs of the form 
(G,, v), where G, is a regular grammar for R,. Then the size of T is defined as 

ITI = C <IGl+lvl>= 
ucrarlge( T) 

Now the main results can be established. 

Theorem 2.1. There is an 0( IAl’ x I T() algorithm to decide the following problem: 

given a regular Church-Rosser Thue system on A, is the monoid MT presented by T 
a group? 

First, we give a lemma which will be needed in the proof of Theorem 2.1. 

Let T be a Thue system on A. We denote 

s(T) = fb, 4: h d E Tl, 

and define a sequence of subsets of A as follows: 

A, = {a: 3u E A*: (au, e) E s(T)}; 

A i+l=Aiu(aEA-Ai: 3uEA*,3vEAF: (au, v)E T} (2.0 
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for each integer i al. Obviously, AlEAZC”*CAicAi+lE~**EA. Since A is 
finite, there is an integer k s IAl such that Ak = A,, for each integer j 2 0. Further- 
more, if AlAl # A, then there is an integer k < IAl such that Ak = A,+j for each integer 
j30. 

Lemma 2.2. Let T be a Church-Rosser Thue system on A. Then the monoid MT 
presented by T is a group if and only if there is an integer k s IAl such that Ak = A. 

Proof. (e): The monoid MT is a group if and only if, for each string u E A*, there 
exists a string U’E A* such that UU’~ e. Obviously, this is equivalent to saying that 
for each letter a E A, there exists a string w E A* such that QW (1, e, i.e., a has a 
right-inverse. Let Ak = Aforsomeks]AJ,andletaEA,-A,+wherem4?I’hen 
a has a right-inverse, because: if m = 1, then (au, e) E T for some u E A*. If m > I, 
then (au, v) E T for some u E A*, v E A;_, . Let v = b, b2 . . . b,, where bj E A,_, for 
each j. Then by the induction hypothesis, each bj has a right-inverse, i.e., there exists 
some Uj such that bjuj 6 e for each j. Take w = UU,U,_, . . . u*. Then 

aw = auu,u,_+ . . . ul + VU,U,_~ . . . u1 = b, . . . b,_, b,u,u,_, . . . u,% e. 

Thus MT is a group. 
(a): Let MT be a group. Assume that AlAl s A, i.e., Ak = Ak+l Z Al,, for some 

k<lAI. Let a E A-Ak such that the inverse Y’ is of minimal length. Since T is a 
Church-Rosser Thue system and MT is a group, aa-‘*, e, and since a-’ is irreduc- 
ible, a-’ = ux with (au, v) E T, v # e. Hence, aa-’ = aux+vx. Let v = ybz, y,z E A*, b E 
A. Then vx& e, and since MT is a group, bzxy A e. Thus, 

lb-‘1 s lzxyl c 1~x1 s 1~x1 = la-‘1. 

From the choice of a we conclude that be Ak. Hence, VE A$ implies that 
a E Ak+l s AlAl l Co ntradiction! Thus, A = AlAl. Cl 

The Thue system T = {( abbaab, e)} studied by Jantzen [9] is not Church-Rosser. 
For this system, Ai = {a} for each i 2 1. However, MT is a group. This example 
indicates that the Church-Rosser property is necessary in Lemma 2.2. 

Proof of Theorem 2.1. Lemma 2.2 gives us the following algorithm to decide whether 
or not M7 is a group. 

Group Procedure ( T): 
(1) i:=l 

(2) T, := s( T) 
(3) C:=alph(T,) (={aEA: SEA*: (au, e)E Tl}) 
(4) B:= c 
(5) while i G IAl do 

(6) C:=CvB 
(7) if C=A 
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(8’ / then announce “T has the group-property” and exit 

(9) if B=fd 

(10) then announce “T has not the group-property” and exit 

(II) 1 l := i+1 

02) F:= T(B) (={(u, V)E T: VDE B”}) 

(13) B:=alph(K)-C 
(14) endwhile 

Given a regular grammar G and a letter a E A, the question “L(G) n aA* = $3” 

can be decided in O(lGl) by using breadth-first search. Thus the time for executing 

(3) (or (13)) is O(lAl x I Tl), and the procedure above can be accomplished in 

O<lAl’x I m b ecause of the while-loop (5). El 

The same results as presented in Theorem 2.1 were independently obtained by 
Narendran and Otto [ 131. 

Theorem 2.1 can be extended in the following ways. 
(1) Let G be a context-free grammar, and a E A. Then L(G) u aA* is also 

context-free, we can obtain a context-free grammar G, such that L(G, ) = L(G) u 
aA*, and the size of G, (the definition of the size is similar to that of a regular 
grammar) is at worst O(lGl’). The question “L( G, ) =@” can be decided in poly- 
nomial time. Thus we can decide whether or not a monoid presented by a context-free 
Church-Rosser Thue system is a group in polynomial time. 

(2) Let T be a Thue system on A. T is called almost-con$.luent if for all X, y E A* 
such that x6 y, then there exist g, h such that ;xA g, y * h, and gtih, where m is 
the reflexive transitive closure of the relation H defined as follows: xl-l y if and 
only if x t, y and Ix]= lyl. If T is almost-confluent, then for each w E A*, w++ e if 
and only if w* e. Therefore, the condition “Church-Rosser” can be replaced by 
the condition “almost-confluent” in Theorem 2.1. 

(3) If T is a finite Church-Rosser Thue system, the time for executing (3) (or 
(13)) is O(l TI), and thus the overall time becomes O(lAl x I TI). 

Finally, note that it is not at all clear how this method could be applied to deciding 
whether or not a finitely generated submonoid is a group. 

3. A problem that is decidable for regEiar monadic Church-Rosser Thue systems but 
that is undecidable for finite non-monadic Church-Rosser Thue systems 

Let T be a Thue system on A. The monoid MT presented by T is a group if and 
only if all letters from A have a right-inverse in MT. Thus, given a regular Church- 
Rosser Thue system T on A, tine can decide whether or not alZ letters from A have 
a right-inverse in M T. Then one may formulate the following decision problem. 

Right-Inverse 
Instance: A Thue system T on A, and a letter a E A. 
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Question: Does a have a right-inv:rse in MT? 

In this section, we show that this problem is decidable for regular monadic 
Church-Rosser Thue systems, but that it is undecidable for finite non-monadic 
Church-Rosser Thue systems. 

By using the technique of linear sentences developed by Book, we can prove that 
the problem Right-Inverse is decidable fcr monadic Church-Rosser Thue systems. 
In fact, a letter a E A has a right-inr-ersc in MT if and only if the following linear 
sentence is true under the interpretation induced by T: 3u E A*: au6 Te. But we 
give here another proof more suited t/o our purposes. 

Let T be a monadic Thue system on A. Formula (2.1) can be rewritten as follows: 

Al = {a: 3u E A*: (au, e) E s( ?‘)}; 

A- I+1 =Aiu{aE.4-Ai: 3uEA”: (au, b)E T for some bEAi) 

for each integer i a 1. 

Lemma 3.1. Let T be a monadic Church-Rosser 7hue system on A and a E A. Then, 
a has a right-inverse if and only if a E AlAi. 

Proof. (+): Le; a E Ai,+ A. Then there Gxists an integer m s IAl such that a E 

A, -A,--,, Biad we have a1=a,a2,...,a,,t,~lu2_...,um_a, where aiEA and 
UiEA*foreach i=l,2,..., m - 1, such that (aiui, ai+, ) E T for i = 1,2, . . . , m - 2, 

and (G,-~u,-~, e)Es(T).Lettingu=u,~~...u,_,,wehave 

au= autu2.. . u,-~ * a2u2.. . Urn-,f-)t&-*Urn-, + e 

i.e., au* e. Therefore, Q has a right-inverse in Mr. 
(*): Let T be a monadic Church-Rosser Thue system on alDhabet A. Then we n 

can derive the following claim: 

Claim. Let w = au E A”, where a E A and u E A*, such that 

then a E Aj. 

Proof. By induction over j. j = 1: w = au + w1 = e, then Q E A, and the conclusion 
holds. 

If the conclusion holds for j s m, suppose now that 

w=au -+ w, -+ w2 + l . . * w,+l=e. 

If QI E A,, then a E Atj2+, . Otherwise, assuming without loss of generality that u is 
irreducible, au can be factorized as avs, where for some c( au, c) E T and w1 = cs. 
Since a ti A,, c # e. By induction hypothesis, c E A,,., ; therefore a E A,+l. 

Therefore, the conclusion of the claim holds. C 

If a has a right-inverse, then au A e for some II E A*, and since T is Church-Rosser, 
au& e. Therefore, by the claim above, there is a k such that a E &, SO a E AlAl l 0 
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By using Lemma 3.1, we can prove the following theorem. 

Theorem 3.2. 7?rere is an O( 1 AI' x 1 TI) algorithm to decide the problem Right-Inverse 
for regular monadic Church-Rosser True systems. 

The similar conclusion in Lemma 3.1 is not true for non-monadic Church-Rosser 
Thue systems. For example, let T = {(abc, e), (fgh, ab)}. Then T is Church-Rosser 
and A, = {a} for each i 3 1. But f has a right-inverse in &. Of course, this does 
not imply that the problem Right-Inverse is undecidable for finite non-monadic 
Church-Rosser Thue systems, since there might be other ways to obtain a decision 
algorithm for the problem. However, we will see that the problem is undecidable 
for finite non-monadic Church-Rosser Thue systems. 

First, we construct a finite Church-Rcsser Thue system to simulate a Turing 
machine. This observation was first made by Jantzen and Monien (communicated 
by Book). 

Let 1M = (2, Q, qoz 8) be a single tape Turing machine. Here Q = 

{qo,ql,***, qn }, q. E Q is the initial state, and 

S: Qx(z:u{b}) + QxG~{b~)x{LIEP) 

is the transition function of M, where b denotes the blank symbol, and L and R 
denote the moves of Ws head. Note that we assume that A4 moves its head in 
every step. 

Furthermore, we assume that A4 cannot print the blank symbol, and whenever it 
halts, it halts on the leftmost square it has ever visited in a unique state qn, and no 
transition is possible from within state q,,. Then, we have the following results 
(similar resuhs can be found in [ 123). 

Theorem 3.3 (F. Otto [ 171). There exists a finite Church- Rosser lhue system T(M) 
on r 2 C v {$, p} with the following properties: 

(a) Let w E S = ($)(& v D)* l ( Qp v Qs) l (&, v D)*(C), where & = C v {b}, D G 
rsuchthatDn(Q,uQ,)=Dn~~=(d,andbothQ,={po,pt,p2,...,p~}andQ,= 

{ so, s1, s2, . . . , s, } are disjoint copies of Q. If w *, T(M) z, then z E S; 
(b) M halts on input x if and only if 

3 w E $p,l?“$: wr, T(M) $s&. 

(c) (1) If ($u, v) E T(M), then v = $pi, and u = dlasj, or u =p& for some 
i,j,k<n, a,c&&,andd,,d2ED. 

(2) If (u, V$)E T(M), then v = siy and u = d,asjC or u = pkcd2(c for some 

i,j, ksn,a,cE&, and d,,d,E D. 
(d) Every left-hand side of a rule of T(M) does not begin in $ and does not end 

in $. 
(e) range( T(M)) c r u r*. 



n of eorem put string x, let A = SW 

ofa rule of T(M) be 
airs. Thus al, is also 

n p! or ends in $, new rules produce 

(e): If z halts put ix, then, by the prope in Thtxwem 3.3, t 
exists y E P such that Lettin 

dw = iz&ya. -+ T, 

t-inverse in MT-. A swme that a-’ is t e right-inverse af 
s Church-Rosser, 

e 
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qHe Furthermore, we assume that Z cannot rint the blank symbol. Given an input 

string x5 frsm above discussion, we can effectively construct a finite non-monadic 
Church-Rosser Thue system TX on an alphabet A 3 (6) u C such that ti has a 

right-inverse in A4 r:, if and only if M halts on input x. Thus Right-Inverse is 

undecidable for non-monadic Church-Rosser Thue systems. t3 

Let wR denote the reversal of the word, i.e., eR = q and (~a)” = awR for all w E A* 
E A. Now let 

I-:= {(u, v): (UR, VR)E TX}, 

and MR be the monoid preserrted by RF. Then T,” is Church-Rosser, because T, 
is, and for TE, a lemma corresponding to Lemma 3.4 holds. Hence, we have the 

f&owing result: given a finite non-monadic Church-Rosser Thue system T on A, 
and a letter CI E A, it is undecidable whether or not a has a left-inverse in M;-. 

Acknowledgment 

The author is 

References 

grateful ta Professor Book and the referees for helpful comments 
~proving this paper. 

S Adjsn, Defining reltitions and algorithmic pr&lems fur grwps and semigroups, Proc. Sreklov 
Inst, Mar/I. $5 (1966). 
R. Book, Confluent and &her types of Thue systems, J. ACM 29 (1982) 171-182. 
R. Baok, When is a monoid a group? The Church-Rosser case is tractable, Theoret. Cornput. Sci. 
18 (1982) 325-331. 
R. Book, Decidable sentenees of C ‘lurc%Rosser congrwnces, Theorem. Comput. Sci. 24 (1983) 
301-312. 
R. Book, M. Qantzen and C. Wrathall, Monadic Thue systems, Theoret. Comput. Sci. 19 (1982) 
231-251, 
Y. Coehet and M. Nivat, Une g6nerahzation des ensembles de Dyck, Israel J. Math. 9 ( 197f) 389-395. 
M. Garey and D. Johnson, Computers and Intractability (Freeman, San Francisco, CA, 1979). 
J. Hopcroft and J. IJHman, ~~t~~~~~t~~n to Automata Theory, Languages, and Computation (Addition- 
Wesley, Reading, MA, 1979). 
M. Jantzen, On a special monoid with a single defing relation, T?wwret. Comput. Sci. 16 (1981) 61-73. 
G. LalIement, Semigroq.w und ~~~t~~~~t~~i~~ Applications ( Wiley-Interscience, New York, 1979). 
6. Lallement, On monoids presented by a single relation, 9. Algrbra 32 (1974) 370-388. 
P. Narendran, C. 6’ Dtinlaing and E-L Ruhetschek, Csmplexity (of certain decision problems about 
congruential Languages, J. Cumput. System Sci. 30 (1985) 343-327. 
P. Narcndran and F. Otto, Elements of finite order for finite Chur~&Rosser Thue systems, Acts 
Infirm. 25 (1988) 573-591. 
M. Nivat, On some families of languages related to the Dyck Languages, in: Proc. 2nd ACM Symp. 
on Thwry of Cumputing ( 1970) 221-225. 
C. 6’Dtinlain~, Infinite regular Thue systems, T%eoret. Comput. Sci. 25 (1983) 171-192. 
F. Otto, On deeiding whether a monoid is a free monoid or is a group, Acta Inform. 23 (1986) 99-1 IO. 
F. Otto* Some undecidabitity results for non-monadic Church-Rosser Thue systems, Theoret. 
C&iqd. &.i. 33 (Ew) 261-278. 


