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Bioconcentration refers to the process of uptake and buildup of chemicals in living organisms. Experi-
mental measurement of bioconcentration factor (BCF) is time-consuming and expensive, and is not fea-
sible for a large number of chemicals of regulatory concern. Quantitative structure–activity relationship
(QSAR) models are used for estimating BCF values to help in risk assessment of a chemical. This paper
presents the results of a QSAR study conducted to address an important problem encountered in the pre-
diction of the BCF of highly hydrophobic chemicals. A new QSAR model is derived using a dataset of
diverse organic chemicals previously tested in a United States Environmental Protection Agency labora-
tory. It is noted that the linear relationship between the BCF and hydrophobic parameter, i.e., calculated
octanol–water partition coefficient (ClogP), breaks down for highly hydrophobic chemicals. The parabolic
QSAR equation, log BCF = 3.036 ClogP � 0.197 ClogP2 � 0.808 MgVol (n = 28, r2 = 0.817, q2 = 0.761,
s = 0.558) (experimental log BCF range = 0.44–5.29, ClogP range = 3.16–11.27), suggests that a non-linear
relationship between BCF and the hydrophobic parameter, along with inclusion of additional molecular
size, weight and/or volume parameters, should be considered while developing a QSAR model for more
reliable prediction of the BCF of highly hydrophobic chemicals.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Globally, regulatory agencies are developing methods and crite-
ria for hazard and risk assessment of chemicals (ASTM, 1993;
ECETOC, 1995; ECHA, 2012; OECD, 2007). Bioaccumulation and
bioconcentration refer to the process of uptake and buildup of
chemicals in living organisms. The bioaccumulation factor (BAF)
parameter is used as a measure of a chemical’s bioaccumulation
potential. If the BAF value of a chemical is not available, its BCF
is used to assess the bioaccumulation potential. Experimental mea-
surement of BAF and BCF values is time-consuming and expensive,
and is not feasible for a large number of chemicals of regulatory
concern. Therefore, attention is focused on estimation of these val-
ues by using quantitative structure–activity relationship (QSAR)
models. QSAR models are used as screening tools to assess the
effect of a large number of chemicals on the environment and
human health. These models establish empirical relationships
between the molecular parameters (physico-chemical properties)
of the organic chemicals and physiological responses in the organ-
ism. Based on a large number of QSAR studies, it has been noted
that the dataset of chemicals should exhibit a wide range in their
biological activities and parameter values for developing a robust
QSAR model (Hansch and Leo, 1995; Hansch et al., 1995).

The most common method for estimating BCF value consists of
developing QSAR models establishing correlations between BCF
and hydrophobicity of a chemical as measured by the logarithm
of the octanol–water partition coefficient (denoted by logP or
logKow). In regulatory context, the objective is to use parameters
which are easy to calculate and compare (such as logP) and
develop simple models which could be used to predict the most
accurate BCF value (ASTM, 1993; ECETOC, 1995; ECHA, 2012;
Mackay and Fraser, 2000; OECD, 2007).

Several QSAR models have been proposed for predicting the BCF
of organic chemicals, which use a linear, parabolic, bilinear or poly-
nomial relationship, extensively reviewed in Arnot and Gobas
(2006), Devillers et al. (1998), Müller and Nendza (2009), and
Pavan et al. (2006). Most of the QSAR models reported for the
prediction of BCF within a regulatory context are based on the
correlation of log BCF with logKow. For a chemical, the mechanistic
basis underlying the relationship of BCF with logKow is the analogy
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between the partitioning process between a biological lipid mem-
brane and water, and the partitioning process between n-octanol
and water (Arnot and Gobas, 2003, 2006; Bintein et al., 1993;
Dearden, 2004; Dearden and Hewitt, 2010; Devillers et al., 1998;
Dimitrov et al., 2002; Jonker and van der Haijden, 2007; Kubinyi,
1976; Müller and Nendza, 2009; Pavan et al., 2006; USEPA, 2012;
Veith et al., 1979). Few QSAR models have been reported using
other experimentally derived parameters such as water solubility
(S), and soil adsorption coefficients (Kenaga and Goring, 1980).
However, their applicability is limited due to the problem of data
availability. To avoid new tests, theoretical molecular descriptors
(such as topological, connectivity indices, quantum, and other
descriptors) have been used for developing BCF prediction models.
Assessment of their ability to correctly predict the BCF value of a
chemical resulted in a large number of incorrect classifications
(Pavan et al., 2006).

Arnot and Gobas (2003) proposed a mechanistic QSAR model
for predicting the BCF and BAF of organic chemicals in aquatic food
webs. This model uses the logKow and a number of correction fac-
tors, but does not consider a chemical’s molecular weight and size-
related parameters. EPI Suite software from United States
Environmental Protection Agency (USEPA) (2012) uses the BCFBAF
program, based on the Arnot–Gobas model, to predict the BCF and
BAF values of a chemical. The BCFBAF program uses two linear
QSAR equations for predicting the BCF of a chemical. The first
equation with a positive linear hydrophobic term indicates that
the log BCF increases linearly with logKow values for logKow 6 7.0,
while the second equation with a negative linear hydrophobic term
shows a decreasing linear relationship for values of logKow > 7.0.
According to this model the decrease in BCF with increasing logKow

(>7.0) for highly hydrophobic chemicals is mainly due to adsorp-
tion of chemical in the water phase and not due to biomagnifica-
tion or steric factors affecting membrane permeability (Arnot and
Gobas, 2003). In another study, Bintein et al. (1993) reported a
comparative analysis of linear, parabolic and bilinear QSAR models
to explain the nonlinear dependence of fish bioconcentration on
logP. These models indicate that the linear relationship between
log BCF and hydrophobicity is unable to explain the low BCF of
highly hydrophobic chemicals. The authors (Bintein et al., 1993)
concluded that the parabolic model, and preferably the bilinear
model (Kubinyi, 1976), is more useful.

The European Chemical Agencies (ECHA) guidance document
indicates that the log BCF increases linearly with logKow values
<5 and a decreasing linear relationship is observed for higher val-
ues of logKow. It is noted that apart from experimental errors in
the determination of BCF values for these very hydrophobic
chemicals, reduced uptake due to the increasing molecular size
may also be responsible for this relationship (ECHA, 2012).
Dimitrov et al. (2002) established that the relationship between
log BCF and logKow for highly hydrophobic chemicals can be
explained by including the molecular size parameter in the QSAR
model. The ECHA guidance document also suggests that the
molecular weight parameter, even though not directly related
to the molecular size of a compound, together with other infor-
mation can be used to assess a chemical’s bioaccumulation
potential (ECHA, 2012). However, no experimental data have
been reported to support a specific threshold for the molecular
weight parameter.

To predict the BCF values of highly hydrophobic chemicals, we
have derived a new QSAR model using a dataset of diverse organic
chemicals whose experimental BCF values were measured in a
USEPA laboratory (Veith et al., 1979). The developed model is
validated using cross validation, Tropsha’s metrics, rm

2 metrics,
y-randomization test, and applicability domain analysis. This new
model is discussed below and also compared with other QSAR
models reported in the literature.
2. Materials and methods

2.1. Selection of dataset

Experimental log BCF values of 29 chemicals used in this study are taken from
Veith et al. (1979) (see Table 1). This study on a diverse group of organic chemicals
tested for bioconcentration in fathead minnow (Pimephales promelas) was con-
ducted at a USEPA Environmental Research Laboratory. This is a good dataset for
QSAR study as it includes a diverse group of organic chemicals including haloge-
nated, nonhalogenated, and phosphate containing chemicals displaying a wide
range in the parameter values (experimental log BCF range = 0.44–5.29, ClogP
range = 3.16–11.27). Earlier models based on this dataset are used as an example
for BCF prediction in the European Union Technical Guidance Document on risk
assessment (Pavan et al., 2006). Out of 55 chemicals for which the BCF data were
reported (Veith et al., 1979), only 30 chemicals were tested at the USEPA laboratory
and the others were taken from different sources. We have used the BCF data of
chemicals tested in the USEPA laboratory. One chemical ‘toluene diamine’, out of
these 30 chemicals, is not included in our study due to uncertainty as to its
structure.

2.2. Calculation of molecular parameters

The logP values listed in Table 1 are taken from Veith et al. (1979) and are pro-
vided here for comparison. They were estimated by the reverse phase HPLC method
(Veith and Morris, 1978). The ClogP and MgVol parameter values are calculated and
auto loaded from the C-QSAR Program (2006). The utility of the C-QSAR program in
comparative correlation analysis has been discussed in Hansch and Leo (1995).
Within chemical families of structural congeners, biological activity is well pre-
dicted from a chemical structure by the C-QSAR program. The parameters used in
this report have been discussed in detail along with their applications in Hansch
and Leo (1995). Briefly, ClogP is the calculated logP and is a measure of hydropho-
bicity of a chemical (Leo et al., 1971; Leo, 1993), and MgVol is the molar volume cal-
culated by the method of (Abraham, 1993; Zhao et al., 2003). Note that the ClogP
values are for the neutral form of acids and bases that may be partially ionized. If
the degree of ionization is about the same for a set of congeners, the ionization fac-
tor can be neglected; otherwise, good correlation can be obtained using electronic
terms (Leo et al., 1971; Leo, 1993).

The correlation matrix for the parameters used in this study is given in Table 2.
The correlation between experimental logP and ClogP values for 13,815 compounds
in the CLOG program, which is a part of the C-QSAR Program (2006), is 0.98 (exper-
imental logP = 1.00 ClogP � 0.03 (n = 13,815, r = 0.98, s = 0.35). Many programs are
used for calculating octanol–water partition coefficients and are reviewed in
Mannhold et al. (2009). However, we have used the ClogP parameter in this study
as it has been widely used and cited by the QSAR community, both for environmen-
tal studies and drug design (Arnot and Gobas, 2006; Devillers et al., 1998; Garg
et al., 1999; Hansch et al., 1989; Leo and Hansch, 1999; Müller and Nendza,
2009; Selassie et al., 2003; Smith et al., 2002, 2003, 2004, 2006), and a very high
correlation (r = 0.98) between experimental logP and ClogP gives confidence in
using ClogP values whenever experimental logP values are not available.

The QSAR stepwise multiple linear regression (MLR) analyses are executed with
the C-QSAR program and all the parameters are auto loaded (C-QSAR, 2006). In all
the QSAR equations reported in this report, n is the number of data points, r is the
correlation coefficient, s is the standard deviation, and q2 is the quality of fit of the
data, calculated using Cramer et al.’s (1988) approach, which approaches the value
of r2 as the quality of fit improves.

3. Results and discussion

First, we developed a QSAR model for the whole dataset using
stepwise MLR analysis. Next, we divided the whole dataset into a
training set and a test set and performed internal and external
validation studies. Cross validation techniques were utilized for
internal validation, and the model developed using training set
was used to predict the activity of test set chemicals. Tropsha’s
and rm

2 metrics were also calculated to evaluate the internal and
external predictive abilities of the QSAR model. To ensure the
developed QSAR model is robust and not derived due to chance,
the y-randomization test was performed. Lastly, the applicability
domain of the developed QSAR model was evaluated to ascertain
the reliability of the model.

3.1. Model development

Stepwise MLR analysis on whole dataset reported by Veith et al.
(1979) (Table 1) resulted in Eqs. (1)–(3).



Table 1
Experimental and predicted BCF and molecular parameter values used in this study.

No. Chemical CAS no. Expt. log BCFa Pred. log BCFb

(Eq. (1))
Pred. log BCFb

(Eq. (3))
Pred. log BCFb

(Eq. (5))
Exp. logP ClogP logP MgVol

1 Heptachlor 76-44-8 3.98 3.40 3.90 3.87 5.58 5.45 5.44 1.96
2 Heptachlor epoxide 1024-57-3 4.16 3.05 2.74 2.73 4.98 4.39 5.40 1.96
3 p,p0 – DDEd 72-55-9 4.71 3.82 4.65 4.61 6.96 6.74 5.69 2.05
4 Pentachlorophenol 87-86-5 2.89 3.16 3.61 3.65 5.12 4.71 5.01 1.39
5 Hexabromobiphenyl 59261-08-4 4.26 4.24 4.56 4.51 NA 8.01 6.39 2.37
6 Methoxychlord 72-43-5 3.92 3.31 3.31 3.25 5.08 5.18 4.30 2.37
7 Mirex 2385-85-5 4.26 3.48 3.72 3.64 7.13 5.69 6.89 2.44
8 Hexabromocyclododecane 3194-55-6 4.26 4.22 4.27 4.18 NA 7.95 5.81 2.74
9 Hexachlorocyclopentadienec 77-47-4 1.47 3.27 4.00 4.04 5.04 5.04 5.51 1.35

10 Heptachloronorbornene 5202-36-8 4.05 3.19 3.48 3.49 NA 4.82 5.28 1.69
11 Hexachloronorbornadiene 3389-71-7 3.81 3.06 3.13 3.17 NA 4.42 5.28 1.53
12 Aroclor-1016 12674-11-2 4.63 3.55 4.50 4.49 5.62 5.92 5.88 1.69
13 Aroclor-1248 12672-29-6 4.85 3.75 4.75 4.73 NA 6.51 6.11 1.81
14 Aroclor-1254d 11097-69-1 5.00 3.94 4.86 4.83 NA 7.11 6.47 1.94
15 Aroclor-1260 11096-82-5 5.29 4.20 4.73 4.69 NA 7.90 6.91 2.18
16 Chlordane 12789-03-6 4.58 3.69 4.40 4.35 6.22 6.32 6.00 2.13
17 Octachlorostyrene 29082-74-4 4.52 4.00 4.90 4.87 NA 7.28 6.29 1.93
18 p,p0 – DDT 50-29-3 4.47 3.83 4.53 4.47 6.91 6.76 5.75 2.22
19 o,p0 – DDT 789-02-6 4.57 3.83 4.53 4.47 NA 6.76 5.75 2.22
20 Hexachlorobenzene 118-74-1 4.27 3.60 4.79 4.80 5.73 6.06 5.23 1.45
21 1,2,4-Trichlorobenzene 120-82-1 3.32 2.98 3.14 3.23 4.05 4.16 4.23 1.08
22 Lindane 58-89-9 2.26 2.84 2.13 2.19 3.72 3.75 3.89 1.58
23 5-Bromoindole 10075-50-0 1.15 2.65 1.51 1.65 3.00 3.16 2.97 1.12
24 2,4,6-Tribromoanisold 607-99-8 2.94 3.05 3.17 3.21 4.48 4.40 4.48 1.44
25 N-phenyl-2-napthylamine 135-88-6 2.17 3.14 3.19 3.20 4.38 4.64 4.38 1.79
26 Tris(2,3-dibromopropyl) phosphate 126-72-7 0.44 2.74 0.59 0.53 3.71 3.44 4.98 2.87
27 Tricresyl-phosphate 1330-78-5 2.22 3.56 3.63 3.51 NA 5.95 3.42 2.79
28 Chlorinated-ecosane 112-95-8 1.69 5.31 1.64 1.70 NA 11.27 7.05 2.93
29 Diphenylamined 122-39-4 1.48 2.75 1.80 1.89 3.50 3.47 3.42 1.42

NA = data not available.
a Experimental log BCF values are taken from Veith et al. (1979).
b Predicted log BCF values are calculated by QSAR Eqs. (1), (3) and (5).
c Not included in deriving QSAR Eqs. (3) and (5).
d Test compounds (#3, 6,14, 24, and 29) are not included in deriving Eqs. (4) and (5). Values in bold are predicted for these compounds using Eq. (5).

Table 2
Correlation matrix (r2 and n) for the molecular parameters used in this study.

Exp. logP logP ClogP MgVol MW

Exp. logP 0.789 0.891 0.185 0.073
logP 19 0.57 0.18 0.17
ClogP 19 29 0.348 0.065
MgVol 19 29 29 0.507
MW 19 29 29 29
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Log BCF ¼ 0:328 ClogPþ 1:610
n ¼ 29; r2 ¼ 0:187; q2 ¼ �0:324; s ¼ 1:226

ð1Þ

Log BCF ¼ 2:939 ClogP� 0:200 ClogP2 � 6:134
n ¼ 28; r2 ¼ 0:753; q2 ¼ 0:701; s ¼ 0:672
Optimum ClogP ðlog P0Þ ¼ 7:370

ð2Þ

Log BCF ¼ 3:036 ClogP� 0:197 ClogP2 � 0:808 MgVol� 5:213
n ¼ 28; r2 ¼ 0:817; q2 ¼ 0:761; s ¼ 0:558
Optimum ClogP ðlog P0Þ ¼ 7:716

ð3Þ

From these equations, it is obvious that the parabolic QSAR
model given by quadratic Eq. (3) is the better regression model
for this dataset (experimental log BCF range = 0.44–5.29, ClogP
range = 3.16–11.27). The difference between r2 and q2 in Eq. (3)
is 0.056, indicating the model has low overfitting effects. The linear
model given by Eq. (1) is not able to explain the behavior of highly
hydrophobic chemicals (Fig. 1). Note that although the ClogP based
parabolic model given by Eq. (2) is significantly better than the lin-
ear model given by Eq. (1), addition of a volume parameter in Eq.
(2) improves the quality of fit and standard deviation of the model
as shown by Eq. (3). One chemical, hexachlorocyclopentadiene,
was omitted in deriving Eq. (3) as these data were anomalous to
the relationship between the logP and the log BCF shown in
Fig. 1 (log BCF = 1.47, ClogP = 5.04). Veith et al. (1979) also noted
this strange behavior of hexachlorocyclopentadiene and omitted
it from their correlation analysis. Interestingly, two other chemi-
cals, tris (2,3-dibromopropyl) phosphate and chlorinated ecosane,
omitted from the Veith et al. (1979) analysis were predicted well
by Eq. (3) (Table 1). We also assessed the bilinear relationship of
hydrophobicity combined with MgVol and found that the predict-
ability of bilinear model is lower (n = 28, r2 = 0.783, q2 = 0.694,
s = 0.655).

Eq. (3) indicates that 7% of the variance in the data can be
explained by including a volume related parameter. Correlation
matrix in Table 2 shows that there is no mutual correlation
between ClogP and MgVol parameter (r2 = 0.348) eliminating the
possibility of chance correlation. We performed an F-test to ensure
the statistical significance of McGowan parameter in Eq. (3), and
found F3, 34 = 9.36 (4.72). Here, F is the Fischer ratio between the
variances of calculated and observed activities, and the value
within the parenthesis is the standard F-value at 99% level
(Lomax and Hahs-Vaughn, 2013). As the F ratio is greater than
the standard F-value (9.36 > 4.72), it can be concluded that the
McGowan volume parameter is significant and should be included
in the equation used for predicting the BCF of the chemicals in this
dataset.



Fig. 1. Correlation of the experimental log BCF with predicted log BCF.

Fig. 2. Correlation of the experimental log BCF values with experimental logP, logP
and ClogP.
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Eq. (3) shows a parabolic dependence of bioconcentration on
hydrophobicity indicating that the BCF value of a chemical first
increases with increasing hydrophobicity up to an optimum value
(logP0 = 7.716) and then decreases with increasing hydrophobicity.
The presence of a negative MgVol term in Eq. (3) demonstrates that
BCF decreases with increase in the size of a chemical. The MgVol
parameter has been used in other QSAR studies to explain the cor-
relation between biological activity and the size of a chemical
(Hansch and Leo, 1995).

Our results show that the parabolic model (Eq. (3)) based on
hydrophobic and molecular volume parameters is better able to
explain the low log BCF values of highly hydrophobic chemicals
in this dataset than the linear model (Eq. (1)) (Fig. 2). Eq. (3) under-
lines the presence of an optimum logP value in the range of 7–8.
This is in agreement with optimum values reported in other QSAR
studies related to BCF prediction (Arnot and Gobas, 2006; Dearden,
2004; Devillers et al., 1998; Müller and Nendza, 2009; Pavan et al.,
2006). Most hydrophobic chemicals in this dataset including chlo-
rinated ecosane (ClogP = 11.27, experimental log BCF = 1.69, pred.
log BCF (Eq. (1)) = 5.31, pred. log BCF (Eq. (3)) = 1.64), are well pre-
dicted by the parabolic model in Eq. (3) (Table 1). Differences
between experimental and predicted log BCF values (Table 1) for
some of the chemicals (e.g., heptachlor epoxide, pentachlorophe-
nol, N-phenyl-2-naphthylamine and Tricresyl-phosphate) could
be due to their reactivity, acid/base properties or other factors.
However, these factors are well considered in the calculation of
ClogP parameter value (Leo, 1993). Note that ClogP values are cal-
culated using the fragment constant method which employs a
number of fragment constants based on a unique and simple set
of rules and many correction factors to account for proximity
effects due to multiple halogenation, hydrogen bonds, intra-molec-
ular hydrogen-bonds involving oxygen and nitrogen atoms, elec-
tronic effects in aromatic systems, unsaturation, branching,
chains, and rings (Hansch et al., 1995; Leo, 1993).

It is noteworthy that the parabolic models (Eqs. (2) and (3))
derived by us are similar to the parabolic model derived for 154
organic chemicals by Bintein et al. (1993). We did not observe a
bilinear relationship for the dataset in Table 1. It could be due to
a low number of chemicals in our dataset (29 vs. 154 in (Bintein
et al., 1993)). Presence of a molecular volume related parameter
in Eq. (3) is also supported by an earlier QSAR study by Dimitrov
et al. (2002).
3.2. Model validation

To measure the predictive ability of the QSAR model, we per-
formed internal and external validation studies as recommended
by several researchers (Gramatica et al., 2013; Golbraikh and
Tropsha, 2002; Golbraikh et al., 2003; Kiralj and Ferreira, 2009;
Mitra et al., 2011; Roy and Mitra, 2011; Tropsha et al., 2003,
Tropsha, 2010). Internal validation uses a training set to evaluate
the predictivity of a model, whereas external validation uses a test
set which is not included in building the training set model.

We divided the whole dataset into two sets, a training set com-
prised of 24 chemicals and a test set comprised of 5 chemicals
(listed in Table 1), ensuring that the total range of experimental
log BCF values is adequately tested (Golbraikh et al., 2003;
Kennard and Stone, 1969). QSAR analysis on training set data gave
following Eqs. (4) and (5).

Log BCF¼2:874 ClogP�0:186 ClogP2�0:630 MgVol�5:138
n ¼ 24; r2 ¼ 0:673; q2 ¼ 0:538; s ¼ 0:825
Optimum ClogP ðlog P0Þ ¼ 7:731

ð4Þ
Log BCF¼2:936 ClogP�0:189 ClogP2�0:907 MgVol�4:733
n ¼ 23; r2 ¼ 0:793; q2 ¼ 0:724; s ¼ 0:636
Optimum ClogP ðlog P0Þ ¼ 7:769

ð5Þ

Similar to Eq. (3) derived for the whole dataset, hexa-
chlorocylcopentadiene was found as a misfit in deriving Eq. (4)
and its removal from the training set improved the quality of fit
and standard deviation of the model as shown by Eq. (5). In Eq.
(5), the difference between r2 and q2 is 0.069, indicating the model
has low overfitting effects. Note that Eq. (5) developed using the
training set data is similar to Eq. (3) developed using the whole
dataset.

Internal validation was done using cross validation techniques.
First, we performed leave-one-out cross validation (LOO-CV),
where one compound of the training set is removed and the model
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is retrained using the remaining compounds. This process is
repeated over all the samples in the training set. The model predic-
tivity is measured by calculating the cross validated coefficient
(q2

LOO) as described in Roy and Mitra (2011), and Tropsha et al.
(2003), and a model is considered satisfactory if q2

LOO > 0.5. We
developed a QSAR model using LOO-CV method and obtained a sat-
isfactory predictive model, similar to Eq. (5), with q2

LOO = 0.53.
Next, we performed leave-many-out cross validation (LMO-CV)

studies as it has been suggested that LOO-CV alone may not be
enough to assess the predictive power of a model (Tropsha et al.,
2003; Roy and Mitra, 2011). LMO-CV is similar to LOO-CV except
that in LMO-CV a definite number of training set data points are
removed from model building in each cycle. After all the cycles
are completed, the predicted activity values are used to calculate
q2

LMO. We obtained highly significant models with values of q2
LMO

varying from 0.52 to 0.57 after leaving out 2, 3 and 4 data points
during cross validation.

For comparison, we also performed LOO-CV and LMO-CV anal-
ysis on the whole dataset and found that q2

LOO and q2
LMO of the final

model varies from 0.757–0.761 after leaving out 1, 2, 3 and 4 data
points during cross validation. These results indicate that for the
dataset in Table 1, model developed using whole dataset (Eq. (3))
could be used for predicting the BCF of new compounds not included
in developing the model.

External validation was done using the test set data to determine
the predictive ability of the model for the compounds not included
in the training set (Table 1). Predicted r2

pred (also known as q2
ext)

calculated using the equation described in Tropsha et al. (2003)
was found to be 0.925, and all the test set chemicals were very well
predicted. Note that model with r2

pred > 0.5 is considered to be valid
for prediction.

Tropsha’s metrics are used for analyzing the external predictabil-
ity of the model and widely used to validate QSAR models (Roy and
Mitra, 2011). We calculated k and k0, slopes of the regression line of
the predicted activity vs. experimental activity and vice versa, and
r0

2 and r00
2 correlation coefficient of regression between the pre-

dicted and experimental activity of the compounds in the test set
and vice versa without using y-intercept, as described in
Golbraikh and Tropsha (2002). A model is considered acceptable
if the following conditions are satisfied: r2 > 0.6, 0.85 6 k 6 1.15
Fig. 3. y-Randomization plot of QSAR model.
or 0.85 6 k0 6 1.15, (r2 � r0
2/r2) or (r02 � r0

2/r2) < 0.1 (Golbraikh and
Tropsha, 2002). Analysis of test set data show that all the values
are within the specified range: r2 = 0.962, k = 1.06, k0 = 0.94,
(r2 � r0

2/r2) = 0.007, and (r02 � r0
2/r2) = 0.01. These values were calcu-

lated using DTC cheminformatics tools (http://dtclab.webs.com/
software-tools). Although it is sometimes possible to obtain a high
cross validated q2 value due to many reasons, but only few of them
are really found highly predictive when judged by these validation
metrics. Thus, these results further validate the model developed
in this study.

rm
2 metrics (average rm

2 and delta rm
2) were developed to eval-

uate the internal and external predictive abilities of the QSAR
model (Roy et al., 2012). It is suggested that for a QSAR model to
be acceptable, the value of ‘‘average rm

2’’ should be >0.5 and ‘‘delta
rm

2’’ should be <0.2 (Mitra et al., 2011, Roy et al., 2012). We used
RmSquare Calculator (http://aptsoftware.co.in/rmsquare/) to cal-
culate these metrics for the training, test, and whole dataset. Our
results indicated that although delta rm

2 values for training and
whole set are slightly higher than recommended, all other values
are within the specified range: average rm

2(LOO) = 0.54 and delta
rm

2(LOO) = 0.30; average rm
2(test) = 0.86 and delta rm

2(test) = 0.04;
average rm

2 (overall = 0.60 and delta rm
2 (overall) = 0.29.

3.3. y-Randomization test

To ensure the developed QSAR model is robust and not derived
due to chance, the y-randomization test was performed on the
training set data as recommended (Roy and Mitra, 2011; Tropsha
et al., 2003). In this test, MLR models are generated by randomly
scrambling the dependent variable (activity data) while keeping
the independent variable (descriptors) unchanged. The resulting
models are expected to have significantly low r2 and cross vali-
dated q2 values for several trials, which confirm that the developed
models are robust. We performed 100-y-randomization tests and
observed that for all the models except one, the values of r2 and
q2

LOO were <0.5 (Fig. 3). This test confirms that the developed model
is robust and not derived merely due to chance.

3.4. Evaluation of the applicability domain of the model

Evaluation of the applicability domain of the QSAR model is con-
sidered an important step to establish that the model is reliable to
make predictions within the chemical space for which it was devel-
oped (Eriksson et al., 2003; Roy and Mitra 2011; Tropsha et al.,
2003; Tropsha 2010; Tropsha and Golbraikh, 2007). There are sev-
eral methods for defining the applicability domain of a QSAR model,
but we used the most commonly used leverage approach in this
study (Gramatica, 2007). Leverage of a given chemical compound
hi is defined as: hi = xi

T(XT X)�1xi, where xi is the descriptor row of
the query compound and X is the descriptor matrix of the training
set compounds used to develop the model. As a prediction tool,
the warning leverage h� is defined as: h� = 3(p + 1)/n, where n is
the number of training compounds, and p is the number of descrip-
tors in the model. The test compounds with leverages hi < h� are
considered to be reliably predicted by the model. The Williams plot,
a plot of standardized residuals vs. leverage values, is used to inter-
pret the applicability domain of the model. The domain of reliable
prediction for external test set compounds is defined as compounds
which have leverage values within the threshold (hi < h�) and stan-
dardized residuals no greater than 3 units (±r). Test set compounds
where (hi > h�) are considered to be unreliably predicted by the
model due to substantial extrapolation. For the training set, the
Williams plot is used to identify compounds with the greatest
structural influence (hi > h�) in developing the model.

The Williams plot for the training set shown in Fig. 4, estab-
lishes applicability domain of the model within ±3r and a leverage
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threshold h� = 0.5. It is clear from Fig. 4 that all the compounds in
the dataset are within the applicability domain of the model except
two training set compounds (#26 and #28). Both of these com-
pounds have their leverage values greater than the warning h�

value and could be high leverage compounds influencing the per-
formance of the model. However, their standard residual values
are very low and within the established limit. As a result, these
two compounds could be considered as influential in fitting the
model performance but not necessarily outliers to be deleted from
the training dataset, and thus the model can be applied with con-
fidence within the defined applicability domain.

3.5. Effect of highly hydrophobic compounds on the model

Fig. 2 shows that one ClogP value (11.27) (compound #28 in
Table 1) in the dataset is far from the other chemicals. We removed
this compound from the whole dataset and derived Eq. (6) that
shows this chemical did not force Eqs. (2) and (3) to assume a par-
abolic shape. Note that the optimum value of ClogP in Eq. (6) is
similar to the one observed in Eq. (3). Hexachlorocyclopentadiene
was a misfit here also and omitted in deriving Eq. (6).

Log BCF ¼ 3:183 ClogP� 0:210 ClogP2 � 0:805 MgVol� 5:592
n ¼ 27; r2 ¼ 0:802; q2 ¼ 0:729; s ¼ 0:600
Optimum ClogP ðlog P0Þ ¼ 7:570

ð6Þ

In addition, Fig. 2 shows that three compounds (#5, 8, and 15 in
Table 1) with >7.7 ClogP values are clustered together. To study
the effect of these highly hydrophobic chemicals on the parabolic
model, we removed all four (#5, 8, 15 and 28 in Table 1) from the
whole dataset and derived Eqs. (7) and (8).

Log BCF ¼ 0:845 ClogP� 1:022
n ¼ 25; r2 ¼ 0:613; q2 ¼ 0:552; s ¼ 0:843

ð7Þ

Log BCF ¼ 2:698 ClogP� 0:176 ClogP2 � 5:639
n ¼ 25; r2 ¼ 0:644; q2 ¼ 0:568; s ¼ 0:825
Optimum ClogP ðlog P0Þ ¼ 7:656

ð8Þ
Looking at these two equations, it is evident that when highly
hydrophobic chemicals are removed from the dataset, the para-
bolic model (Eq. (8)) is not superior to the linear model (Eq. (7)).
Further addition of the MgVol parameter did not improve Eq. (8).
This clearly shows that QSAR modeling is unable to reveal the par-
abolic relationship between log BCF and hydrophobicity of highly
hydrophobic chemicals if the dataset under study does not have
sufficient spread in the hydrophobic parameter value.
3.6. Comparison of logP and ClogP parameters

We developed a QSAR model for the whole dataset, similar to
Eq. (3), using logP values measured by Veith and Morris (1978)
listed in Table 1, to compare two hydrophobic parameters, ClogP
and logP. It was noticed that the parabolic hydrophobic term and
MgVol parameter are no longer significant in the model developed
using logP values, and the model has low predictability as evident
by its low q2 and high s values (n = 28, r2 = 0.561, q2 = 0.194,
s = 0.913). Note that logP values were measured by using reverse
phase HPLC method (Veith and Morris, 1978), and it is possible
that reverse phase HPLC method may not be effective in the mea-
surements of partition coefficients >7.0 for highly hydrophobic
chemicals. Looking at the range (low–high) of hydrophobic
parameter values in Table 1, (experimental logP = 3.00–7.13,
logP = 2.97–7.05, and ClogP = 3.16–11.27), shows that experimen-
tal logP and logP values have insufficient spread in the parameter
values to reveal the optimum value of logP (7.716), whereas 21% of
the chemicals (6 out of 29) have ClogP > 7.0 (Table 1). Because of
the wide spread in ClogP parameter values, optimum value is
revealed in Eq. (3) and a parabolic relationship between log BCF
and ClogP value of highly hydrophobic chemicals in the dataset
under study could be observed. As mentioned earlier in Section 2.2,
ClogP has been widely used in QSAR studies, and a very high cor-
relation (r = 0.98) between experimental logP and ClogP gives con-
fidence in using ClogP values whenever experimental logP values
are not available. It would be interesting to compare the range of
hydrophobic parameter values in a few larger datasets used for
deriving BCF QSAR models.
4. Conclusion

In this study we developed QSAR models for the whole dataset,
training set, and test set. Cross validation (LOO and LMO), Trop-
sha’s metrics, and rm

2 metrics validate the internal and external
predictabilities of the model developed using training and test
set. Results of y-randomization test ensure that the developed
QSAR model is robust and not derived merely due to chance. Eval-
uation of the applicability domain establishes that the developed
model is reliable to make predictions within the chemical space
for which it is developed.

We found that Eq. (3) developed using the whole dataset is sim-
ilar to Eq. (5) developed using the training set which is validated by
cross validation, y-randomization and applicability domain analy-
sis. This suggests that for the dataset in Table 1, the model devel-
oped using whole dataset (Eq. (3)) could be used for prediction
of the new compounds not included in developing the model.
Our results are supported by observations made in other studies
(Mitra et al., 2011; Tropsha, 2010) where it is suggested that if a
dataset is small (like the dataset used in this study), one should
use the whole dataset for model development as dividing it into
training and test sets could result in loss of an appreciable amount
of chemical information.

It is demonstrated that a parabolic QSAR model is better able to
explain the low log BCF values of highly hydrophobic chemicals in
comparison to a linear model. The parabolic equations formulated
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in this study underline the presence of an optimum logP value in
the range of 7–8. This is in agreement with values reported in other
QSAR studies for predicting BCF. Our results suggest that BCF
prediction using a linear QSAR equation may introduce error into
the prediction of highly hydrophobic chemicals. Linear models
are unable to explain the parabolic scatter observed between log
BCF and hydrophobic parameter for highly hydrophobic chemicals.
To summarize, if the dataset under study has enough data points
and the hydrophobic parameter values vary over a wide range, a
non-linear relationship between BCF and the hydrophobic param-
eter, along with inclusion of additional molecular size, weight and/
or volume related parameters, should be considered while devel-
oping a QSAR model for more reliable prediction of the BCF of
highly hydrophobic chemicals.
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