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Abstract

This paper discusses quantitative bounds on the convergence rates of Markov chains, under
conditions implying polynomial convergence rates. This paper extends an earlier work by Roberts
and Tweedie (Stochastic Process. Appl. 80(2) (1999) 211), which provides quantitative bounds
for the total variation norm under conditions implying geometric ergodicity.

Explicit bounds for the total variation norm are obtained by evaluating the moments of an
appropriately de1ned coupling time, using a set of drift conditions, adapted from an earlier work
by Tuominen and Tweedie (Adv. Appl. Probab. 26(3) (1994) 775). Applications of this result
are then presented to study the convergence of random walk Hastings Metropolis algorithm
for super-exponential target functions and of general state-space models. Explicit bounds for
f-ergodicity are also given, for an appropriately de1ned control function f.
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1. Introduction

Let P be a transition kernel on a state space X equipped with a countably gen-
erated �-1eld B(X). Let � be a probability measure on B(X). Denote by � :=
(XZ+ ;B(X)⊗Z+ ; {�n}; P�) the time-homogeneous Markov chain with transition
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probability kernel P and initial distribution �. Assume that the kernel P is �-irreducible,
i.e. there exists a measure � on B(X), such that for all x∈X, A∈B(X)

�(A)¿ 0⇒ Px(�A ¡∞)¿ 0; (1)

where �A is the return time to the set A, i.e. �A := inf{n¿ 1; �n ∈A} (with the con-
vention inf ∅=+∞). Denote by  a maximal irreducibility measure for P (see Meyn
and Tweedie, 1993, hereafter MT, Chapter 4, for the de1nition and the construction
of such a measure). We call a set A∈B(X) accessible if  (A)¿ 0, full if  (Ac) = 0,
and absorbing if P(x; A) = 1 for all x∈A. Recall that when P is  -irreducible, then
every absorbing set is full. A collection of sets D1; D2; : : : ; Dd is called a d-cycle
if P(x; Dk) = 1 for all x∈D(k−1)[d], k = 1; : : : ; d. The kernel is aperiodic if there
is no 2-cycle.
If P is  -irreducible aperiodic and has an invariant probability measure �, it is well

known that � is a maximal irreducibility measure and that for all x in a full and
absorbing set

lim
n
‖Pn(x; :)− �(:)‖TV = 0;

where ‖:‖TV is the total variation distance, de1ned for any signed measure � as
‖�‖TV := sup|g|61|�(g)|, where �(g) :=

∫
g(x)�(dx). In words, for � almost all

starting points x the total variation distance of the iterate of the kernel and of the
stationary distribution goes to zero as n → ∞. This property is referred to as
ergodicity.
We will study in this paper a stronger form of ergodicity. Let r := {r(n)} be

a non-decreasing sequence of positive real numbers and f¿ 1 be a Borel function.
A  -irreducible and aperiodic kernel is said (f; r)-ergodic if there exists an unique
invariant probability measure � such that �(f)¡∞ and for all x in a full and absorbing
set

lim
n

r(n)‖Pn(x; :)− �(:)‖f = 0; (2)

where ‖:‖f is the f-norm, de1ned for each signed measure � as ‖�‖f := sup|g|6f|�(g)|.
Most of the works in Markov chain theory have been devoted to the case where
r(n)=�n for some �¿ 1, extending well-known results for irreducible 1nite state-space
chain (a property referred to as f-uniform ergodicity in Meyn and Tweedie, 1993).
Tuominen and Tweedie (1994) have developed a set of necessary and suFcient con-
ditions to establish (f; r)-ergodicity for a class of subgeometrical sequences. To state
their results, we need some additional de1nitions. Let �0 be the set of non-decreasing
positive sequence r := {r(n)} such that r(0)¿ 1 and log{r(n)}=n ↓ 0. A sequence
r := {r(n)} is said to be subgeometrical if r(n) is strictly positive for all n∈Z+ and
there exists a sequence r0 ∈�0 such that

lim inf r(n)=r0(n)¿ 0 and lim sup r(n)=r0(n)¡∞:

Denote by � the set of subgeometrical sequences. We 1nally need the notions of
sampled chain and petite set. A measurable set C is �a-petite if there exist a distribution
a := {a(n)} on Z+, a constant �¿ 0 and a maximal irreducibility measure �a on B(X)
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such that for all x∈C, B∈B(X),

Ka(x; B) :=
∑
n

a(n)Pn(x; B)¿ ��a(B): (3)

For  -irreducible and aperiodic kernels, every petite set is �m-small (Meyn and Tweedie,
1993, Theorem 5.5.7); recall that a set C ∈B(X) is �m-small if there exist an integer
m¿ 0, a constant �¿ 0 and a probability measure �m on B(X) such that for all x∈C,
B∈B(X),

Pm(x; B)¿ ��m(B): (4)

For a  -irreducible kernel, there is a countable cover of the space with small sets,
and every accessible set contains at least one accessible small set (Meyn and Tweedie,
1993, Theorem 5.2.2).
The following proposition is a (partial) statement of Theorem 2.1 in

Tuominen and Tweedie (1994) (see also Meyn and Tweedie, 1993, Theorems 10.4.9.
and 14.0.1.)

Proposition 1. Assume that P is  -irreducible and aperiodic. Let f : X→ [1;∞) be
a Borel function, r := {r(n)}∈� be a sub-geometrical sequence, and C ∈B(X) be a
petite set such that

sup
x∈C

Ex

[
�C−1∑
k=0

r(k)f(�k)

]
¡∞: (5)

Then,

(i) there exists an unique invariant probability measure �, which is equivalent to  ,
such that �(f)¡∞.

(ii) for every x in the full and absorbing set S(f; r) := {x; Ex[
∑�C−1

k=0 r(k)f(�k)]
¡∞},

lim
n

r(n)‖Pn(x; :)− �(:)‖f = 0:

(iii) C is (f; r)-regular, i.e. for any accessible set B∈B(X),

sup
x∈C

Ex

[
�B−1∑
k=0

r(k)f(�k)

]
¡∞:

The (f; r)-ergodicity is thus implied by the control of the so-called (f; r)-modulated
moment of the return time to C, Ex[

∑�C−1
k=0 r(k)f(�k)]. Tuominen and Tweedie (1994)

suggest a set of drift conditions to control the (f; r)-modulated moments. Namely if P
is  -irreducible and aperiodic, and if there exist a sequence of drift functions Vn¿ 1,
a Borel function f¿ 1, a petite set C and a 1nite constant b such that {V1 ¡∞} ⊂
{V0 ¡∞}, V0 is bounded on C and

PVn+16Vn − r(n)f + br(n)5C;
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where r := {r(n)}∈�, then Eq. (5) is veri1ed. This condition is unfortunately rather
diFcult to check in practice necessitating more practical drift conditions.

1.1. Modulated moments and drift conditions

In this contribution, we will focus on the case of polynomial sequences r := {r(n)},
de1ned as

lim inf
n

r(n)(n+ 1)−� ¿ 0 and lim sup
n

r(n)(n+ 1)−� ¡∞;

for some �¿ 0. Control of (f; r)-modulated moments for polynomial sequences has
been considered (among others) in Tuominen and Tweedie (1994) and Stramer and
Tweedie (1999). The key ideas in these contributions consist in using a set of nested
drift conditions, an idea formalized in Fort and Moulines (2000), but that can be traced
back to an early work by Tweedie (1983) (see also Jarner and Roberts, 2002). We
will brieHy review the key ideas below. Let f : X→ [1;∞) be a Borel function, q be
a positive integer and a non-empty set C ∈B(X).

D[f; q; C] There exist some measurable functions on X, 16f=:V06 · · ·6Vq,
and some 1nite constants bk , k ∈{0; : : : ; (q− 1)}, such that supC Vq ¡∞ and for
all k ∈{0; : : : ; (q− 1)},

PVk+1(x) + Vk(x)6Vk+1(x) + bk5C(x): (6)

When q = 1; D[f; 1; C] is the so-called f-modulated drift towards C (see Meyn and
Tweedie, 1993, Chapter 14): under this condition, it can be shown that

sup
x∈C

Ex

[
�C−1∑
k=0

f(�k)

]
¡∞:

When P is  -irreducible and aperiodic, C petite, this condition implies, by application
of Proposition 1, that �(f)¡∞, the set S(f; 1) := {x; Ex[

∑�C−1
k=0 f(�k)]¡∞} is

full and absorbing, and limn‖Pn(x; :) − �(:)‖f = 0 for all x∈S(f; 1). We will now
show how the use of nested drift functions can be used to improve this result. De1ne
the polynomial sequence 5∗q := {5∗q(n)} as

5∗0(n) := 1; n¿ 0;

5∗j(0) := 1; 5∗j(n) :=
n∑

k=1

5∗( j−1)(k); j¿ 1; n¿ 1: (7)

Note that 5∗1(n)= n for n¿ 1, and for j¿ 1, 5∗j(n)= nj=j! +O(nj−1) as n→∞. By
convention, we set 5∗−1(n) := 0, n¿ 0. Observe that the sequence 5∗l := {5∗l(n)},
l¿ 1, has the property

∀n; m¿ 1; 5∗l(n+ m) =
l∑

k=0

5∗k(n)5∗(l−k)(m): (8)
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Proposition 2. Let q be a positive integer, C ∈B(X); C �= ∅, and f¿ 1 be a
Borel function. Suppose that P is  -irreducible and that D[f; q; C] holds. Then C is
accessible and

Ex

[
�C−1∑
k=0

5∗(q−1)(k + 1)f(�k)

]
6Vq(x) +

(q−1∑
l=0

bl

)
5C(x): (9)

If in addition, C is petite, then C is (f; 5∗(q−1))-regular.

Proof. Eq. (6) implies that supC Ex[�C]¡∞ and thus that the set C is Harris recurrent,
which implies that C is accessible by Meyn and Tweedie (1993, Proposition 9.1.1). The
key tool to prove Eq. (9) is the so-called Comparison Theorem (Meyn and Tweedie,
1993, Theorem 14.2.2) which shows that, for all j∈{0; : : : ; (q− 1)} and any stopping
time �, we have

Ex

[
�−1∑
k=0

Vj(�k)

]
6Vj+1(x) + bjEx

[
�−1∑
k=0

5C(�k)

]
: (10)

Following an idea initially proposed by Tweedie (1983), we may iterate the Comparison
Theorem, which shows that, for j∈{1; : : : ; (q− 1)},

Ex

[
�−1∑
k=0

E�k

[
�−1∑
l=0

Vj−1(�l)

]]

6 Ex

[
�−1∑
k=0

{
Vj(�k) + bj−1E�k

[
�−1∑
l=0

5C(�l)

]}]
(11)

6Vj+1(x) + bjEx

[
�−1∑
k=0

5C(�k)

]
+ bj−1Ex

[
�−1∑
k=0

E�k

[
�−1∑
l=0

5C(�l)

]]
; (12)

and by the Markov property,

Ex

[
�−1∑
k=0

5∗1(k + 1)Vj−1(�k)

]
= Ex

[
�−1∑
k=0

(k + 1)Vj−1(�k)

]

6 Vj+1(x) +
1∑

l=0

bj−lEx

[
�−1∑
k=0

5∗l(k + 1)5C(�k)

]
:

A straightforward backward recursion 1nally yields

Ex

[
�−1∑
k=0

5∗j(k + 1)f(�k)

]
6Vj+1(x) +

j∑
l=0

bj−lEx

[
�−1∑
k=0

5∗l(k + 1)5C(�k)

]
: (13)

Applying Eq. (13) with �= �C and j = q− 1 proves that

Ex

[
�C−1∑
k=0

5∗(q−1)(k + 1)f(�k)

]
6Vq(x) +

q−1∑
l=0

bl 5C(x); (14)
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and Eq. (9) follows. The second assertion is along the same lines as in Meyn and
Tweedie (1993, Proposition 14.2.3). Assume that C is �a-petite (where �a is a maximal
irreducibility measure) and that the sampling distribution (see Eq. (3)) a := {a(n)}
veri1es

∑
n na(n)¡∞ (a can always be chosen to verify this latter property). For any

accessible set B, we have, 5C(x)6 �a(B)−1Ka(x; B). Thus,

Ex

[
�B−1∑
k=0

5∗l(k + 1)5C(�k)

]
6 �a(B)−1

∞∑
n=0

a(n)Ex

[
�B−1∑
k=0

5∗l(k + 1)5B(�k+n)

]
;

6 �a(B)−1
∞∑
n=0

a(n)Ex

[
�B+n−1∑
k=n∨�B

5∗l(k + 1− n)5B(�k)

]
;

and as 5∗l is an increasing sequence,

Ex

[
�B−1∑
k=0

5∗l(k + 1)5C(�k)

]
6 �a(B)−1

( ∞∑
n=0

na(n)

)
Ex[5∗l(�B)]:

Apply now Eq. (13) with �= �B. We have,

Ex[5∗( j+1)(�B)]6 Ex

[
�B−1∑
k=0

5∗j(k + 1)f(�k)

]

6 Vj+1(x) + �a(B)−1

(∑
n

na(n)

) j∑
l=0

bj−lEx[5∗l(�B)];

and the proof is concluded by an obvious induction.

Remark 1. Eq. (9) implies that

{Vq ¡∞} ⊂S(f; 5∗(q−1)) :=

{
x∈X; Ex

[
�C−1∑
k=0

5∗(q−1)(k + 1)f(�k)

]
¡∞

}
:

Since, under D[f; q; C], PVq6Vq + bq−15C , then the set {Vq ¡∞} is absorbing, and
since C ⊂ {Vq ¡∞}, it is non-empty and {Vq ¡∞} is full when P is  -irreducible.
Hence, S(f; 5∗(q−1)) is full and absorbing. Note also that under D[f; q; C], supC Vq

¡∞ and then

sup
x∈C

Ex

[
�C−1∑
k=0

5∗(q−1)(k + 1)f(�k)

]
¡∞:

We will establish the converse assertion in the following proposition.

Similar to what is done in Meyn and Tweedie (1993, Chapter 14) for f-ergodic
chain, it is possible to determine the minimal solutions of the nested drift conditions.
Recall that, in linking the single f-modulated drift towards C, PV1 + f6V1 + b05C ,
with f-regularity, MT consider the extended real value function

U (x) := Ex

[
�C∑
k=0

f(�k)

]
;
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where �C := inf{n¿ 0; �n ∈C} is the hitting-time on C (with the convention inf
∅=+∞). It is easily shown that

PU (x) = Ex

[
�C∑
k=1

f(�k)

]
; (15)

which implies that, for x �∈ C, PU (x)+f(x)=U (x). Note that U (x)=f(x) for x∈C.
Let C ∈B(X) be a (f; 1)-regular and accessible set. Then, the set C is petite by Meyn
and Tweedie (1993, Proposition 14.2.4). In addition, supx∈C Ex[

∑�C−1
k=0 f(�k)]¡∞

and supC f¡∞, so Eq. (15) implies that supC PU ¡∞. Hence,

PU (x) + f(x)6U (x) + 5C(x)sup
x∈C

Ex

[
�C∑
k=1

f(�k)

]

and D[f; 1; C] is satis1ed with V1 := U (and C is petite).
Conversely, assume that D[f; 1; C] is veri1ed for some drift function V . A straight-

forward adaptation of Meyn and Tweedie (1993, Proposition 11.3.2) (see also Tweedie,
1983) implies that

Ex

[
�C∑
k=0

f(�k)

]
6V1(x) + b05C(x) (16)

which shows that U (x)6V1(x) for x �∈ C. For x∈C, U (x)=f(x)6V1(x), where the
latter inequality holds by construction. Also, since supC V1 ¡∞, then supx∈C Ex[

∑�C
k=1

f(�k)]¡∞ and it may be shown as above that U veri1es the drift condition
PU +f6U + b5C . In conclusion, U is the minimal pointwise solution of D[f; 1; C].
We now generalize this result to the nested drift conditions. Set U0 := f and for j∈
{0; : : : ; (q− 1)}

Uj+1(x) := Ex

[
�C∑
k=0

5∗j(k + 1)f(�k)

]
: (17)

Note that, by construction, 16f = U06 · · ·6Uq.

Proposition 3. Let f : X → [1;∞) be a Borel function, q be a positive integer, and
C ∈B(X), C �= ∅. Assume that

supx∈C Ex

[
�C∑
k=1

5∗(q−1)(k)f(�k)

]
¡∞:

Then, D[f; q; C] is veri:ed with Vk = Uk , for k ∈{0; : : : ; q}. In addition, the func-
tions {Uk}, k ∈{0; : : : ; q}, are the minimal pointwise solutions of Eq. (6), in the
sense that, for any other solution {Vk}, k ∈{0; : : : ; q} of Eq. (6) verifying f=:
V06V16 · · ·6Vq, we have

Uk(x) = Ex


 �C∑

j=0

5∗(k−1)(j + 1)f(�j)


6Vk(x); k ∈{0; : : : ; q}: (18)
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Proof. For all j∈{0; : : : ; (q− 1)}, PUj+1(x) = Ex[
∑�C

k=1 5∗j(k)f(�k)]. Noting that on
{�0 �∈ C}, �C = �C , we have for x �∈ C,

PUj+1(x) + Uj(x) = Ex

[
�C∑
k=1

{5∗j(k) + 5∗j−1(k + 1)}f(�k)

]
+ f(x)

= Ex

[
�C∑
k=0

5∗j(k + 1)f(�k)

]
= Uj+1(x):

Hence, for all j∈{0; : : : ; (q− 1)}, we have

PUj+1(x) + Uj(x) = Uj+1(x) + Ex

[
�C∑
k=1

5∗j(k)f(�k)

]
5C(x)

which concludes the proof of the 1rst statement. We now establish that these solutions
are pointwise minimal. Let {Vk}, k ∈{0; : : : ; q} be a solution of D[f; q; C]. On C,
Vj6Vj+1 whereas on Cc, it may be proved similar to Eq. (16) that Ex[

∑�C
k=0 Vj(�k)]6

Vj+1(x). Then

Ex

[
�C∑
k=0

Vj(�k)

]
6Vj+1(x):

By repeated applications of the latter inequality, we obtain similar to Eq. (11), for
j∈{0; : : : ; (q− 1)},

Ex

[
�C∑
k=0

5∗j(k + 1)f(�k)

]
6Vj+1(x);

that is Uj+16Vj+1, which concludes the proof.

By combining the two previous propositions and Remark 1, we have

Corollary 1. The two assertions are equivalent

(i) supx∈C Ex[
∑�C−1

k=0 5∗(q−1)(k)f(�k)]¡∞.
(ii) There exists a set of functions {Vk}, k ∈{0; : : : ; q}, such that D[f; q; C] holds;

in addition the subset {Vq ¡∞} is full and absorbing and

{Vq ¡∞} ⊂
{
x∈X; Ex

[
�C−1∑
k=0

5∗(q−1)(k)f(�k)

]
¡∞

}
:

By combining Corollary 1 and Proposition 1, it is easily seen that

Theorem 1. Let q be a positive integer, f be a Borel function and C ∈B(X) be
a non-empty petite set. Suppose that P is  -irreducible and aperiodic and that
D[f; q; C] holds. Then P possesses an unique invariant probability measure � such
that �(f)¡∞ and for all x in the full and absorbing set {Vq ¡∞},

lim
n

(n+ 1)(q−1)‖Pn(x; :)− �(:)‖f = 0: (19)
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This result extends Theorem 14.0.1 (Meyn and Tweedie, 1993) to the case where
q, the number of nested drift conditions is greater than one. Note that if D[f; q; C] is
veri1ed for some functions {Vj}, then, for any j∈{0; : : : ; (q−1)}, assumption D[Vj; q−
j; C] also holds which directly implies that �(Vj)¡∞ and for all x in the full and
absorbing set {Vq ¡∞}

lim
n

(n+ 1)(q−j−1)‖Pn(x; :)− �(:)‖Vj = 0; (20)

showing that there is a trade-oK between the rate of convergence and the set of functions
that can be controlled.

1.2. Reduction to a single drift condition

To assess the rate of convergence of the Markov chain, it is sometimes convenient
to reformulate the set of nested drift conditions into a single drift condition to obtain
something similar to the Foster–Lyapunov drift for geometric ergodicity. The possi-
bility of translating the set of nested drift conditions into a single drift condition has
been 1rst outlined by Jarner and Roberts (2002)—hereafter JR. In this contribution, a
generalization of the JR drift condition is proposed.
Let q be a positive integer, � : [1;∞)→ [0;∞) be a q-times diKerentiable function

and C ∈B(X), C �= ∅. Consider the following assumption

S[�; q; C] There exist a measurable function V : X → [1;∞) and a constant
b¡∞ such that supC V ¡∞ and

PV 6V − � ◦ V + b5C: (21)

In addition, there exist some 1nite constants ck ¿ 1, k ∈{0; : : : ; q}, such that for
all k ∈{0; : : : ; q} the functions �k de1ned recursively as �q(x) := cqx and �k :=
ck�′

k+1� are non-decreasing concave function on [1;∞) and 16�06 · · ·6�q.

The condition above is in particular ful1lled by �(x) := cx1−', for some 0¡'¡ 1
and 0¡c6 1. Then Eq. (21) may be expressed as

PV 6V − cV 1−' + b5C; (22)

and (22) coincides with the JR drift condition. In such case, S[�; q; C] is satis1ed by
choosing q as any integer such that q6 1=' and for k ∈{0; : : : ; q}, �k(x)=c−k∏q−1

l=q−k

(1− l')−1 x1+k'−q' ˙ x1+k'−q'.

Proposition 4. Assume S[�; q; C]. Then D[f; q; C] is veri:ed with f := �0 ◦ V and
functions Vk ˙ �k ◦ V; k ∈{1; : : : ; q}.

Proof. We verify the nested drift conditions with V0(x) := �0 ◦ V (x)¿ 1 and for
k ∈{1; : : : ; q}, Vk(x) := {

∏k−1
l=0 cl}�k ◦ V (x). Observe that for a continuously diKeren-

tiable concave function  ,  ′ is decreasing and for all 06 x6y,

 (y − x) =  (y)−
∫ y

y−x
 ′(t) dt6  (y)− x ′(y): (23)
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We have

PVq =

{ q∏
l=0

cl

}
PV 6 Vq −

{q−2∏
l=0

cl

}
cq−1 (�′

q�) ◦ V +

{ q∏
l=0

cl

}
b5C

6 Vq −
{q−2∏

l=0

cl

}
�q−1 ◦ V +

{ q∏
l=0

cl

}
b5C

= Vq − Vq−1 +

{ q∏
l=0

cl

}
b5C:

In addition, since cq−1¿ 1, {∏q−2
l=0 cl}�q−16 {∏q−1

l=0 cl}�q and Vq−16Vq. Let
16 k6 q − 1 and assume that Vk 6Vk+1 and there exists bk ¡∞ such that
PVk+16Vk+1 − Vk + bk5C . Since �k is concave, the Jensen’s inequality implies that
on Cc, P(�k ◦V )6�k(PV ), and as �k is non-decreasing, P(�k ◦V )6�k(V −�◦V ).
Since 06� ◦ V 6V , we can apply Eq. (23), and on Cc,

P(�k ◦ V )6�k ◦ V − (�′
k �) ◦ V = �k ◦ V − c−1

k−1�k−1 ◦ V:
Then on Cc, PVk 6Vk − Vk−1. The inequalities 0¡�k−1 ◦ V 6�k ◦ V 6 cqV show
that on C,

P(�k ◦ V )− �k ◦ V + c−1
k−1�k−1 ◦ V 6 P(�k ◦ V )− �k ◦ V + �k−1 ◦ V

6 P(�k ◦ V )6 cqPV 6 cq(V + b):

The assumption supC V ¡∞ proves that the constant bk−1 := supC{PVk −Vk +Vk−1}
is 1nite and PVk 6Vk − Vk−1 + bk−15C . The induction is concluded by noting that
ck−1¿ 1 implies Vk−16Vk .

Remark 2. Assume that the drift function V is unbounded oK petite sets, i.e. that the
level sets {V 6M} are petite. This situation is typical in the applications considered
herein. The situation of interest is when V and PV are unbounded on the state space. If
V is bounded then the state space is petite and in such case, a  -irreducible kernel P is
uniformly ergodic. If PV is bounded while V is unbounded, then the Foster–Lyapunov
condition holds and if P is  -irreducible aperiodic then the chain is V -geometrically
ergodic. When V and PV are both unbounded, Proposition 4 still holds when S[�; q; C]
is relaxed as follows: for k ∈{0; : : : ; (q − 1)}, the function �k is equivalent to �′

k+1�
as |x| goes to in1nity, and is non-decreasing and concave for large |x|. See Paragraph
2.1.2 for an example involving the function �(x) ˙ x logb x, b¡ 0. The proof is a
straightforward adaptation of Proposition 4 and is omitted.

Remark 3. In practice, it is not harder to establish the nested drift conditions D[f; q; C]
directly rather than deriving D[f; q; C] from the single drift condition S[�; q; C]. The
direct evaluation of the drift functions Vk yields in general better explicit bounds of er-
godicity (see Section 3). This is why in the examples we will in general verify directly
the nested drift conditions. On the other hand, single drift conditions are appealing be-
cause they parallel the well-established theory of geometric ergodicity. In particular, it
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is worthwhile to note that the strength of the “drift term” � ◦ V is sub-linear whereas
it is linear in the Foster–Lyapunov drift condition where � ◦ V = (1− ,)V , for some
0¡,¡ 1. Linear drift yields geometrical ergodicity whereas sub-linear drift yields
sub-geometrical rate.

Remark 4. Assume that the JR drift condition Eq. (22) is veri1ed and supC V ¡∞.
Set q := �1='�. Proposition 4 shows that D[V 1−q'; q; C] holds. When P is  -irreducible
aperiodic and C is petite, an application of Proposition 1 shows that for all k ∈{1; : : : ; q}

lim
n

(n+ 1)k−1‖Pn(x; :)− �(:)‖V 1−k' = 0:

We will see below how the maximal rate can be improved and how the rates can be
interpolated (non-integer exponents).
The JR drift condition PV 6V − cV 1−'+ b1C yields naturally to a :nite number of

nested drift conditions (equal to �1='�) and hence to a :nite polynomial rate of conver-
gence. We conjecture that a single drift condition on the form PV 6V − cV logb(1 +
V ) + B1C (where b¡ 0) may yield an in1nite number of nested drift conditions and
presumably to a rate of convergence of the form r(n) = exp(-n�) for some -¿ 0 and
�¡ 1.

1.3. Interpolated rates

The previous set of assumptions D[f; q; C] only allows us to be able to obtain
integer polynomial rates. This obviously raises the question of interpolating between
these integer rates. Similarly, in the derivations above the maximal attainable rate also
is an integer. The next result shows how it is possible, at the price of an additional
assumption, to improve this upper bound.

Proposition 5. Assume that P is  -irreducible and aperiodic. Let f : X→ [1;∞) be
a Borel function, q be a positive integer and C ∈B(X) be a non-empty petite set
such that D[f; q; C] holds. Suppose that

sup
x∈C

Ex

[
�C−1∑
k=0

V�
q (�k)

]
¡∞; (24)

for some 0¡�6 1. Then there exists an unique invariant probability measure � and
for all x in the full and absorbing set {Vq ¡∞}, for all 06 -6 1,

lim
n

(n+ 1)q�- ‖Pn(x; :)− �(:)‖V�(1−-)
q

= 0: (25)

Proof. Eq. (25) follows from Proposition 1 with r(n) := (n+1)q�- and f := V�(1−-)
q ,

provided that we can show

sup
x∈C

Ex

[
�C−1∑
k=0

(k + 1)q�-V �(1−-)
q (�k)

]
¡∞: (26)
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Eq. (26) holds for -= 0 by assumption. The Jensen’s inequality, the sub-additivity of
x �→ |x|� and Eq. (14) imply that

Ex[5∗q(�C)�]6 (Ex[5∗q(�C)])�6V�
q (x) + 5C(x)

(q−1∑
k=0

bk

)�

: (27)

By the Markov property and using standard manipulations we have

Ex

[
�C−1∑
k=0

E�k [5∗q(�C)�]
]
= Ex

[
�C−1∑
k=0

5∗q(�C − k)�
]
= Ex

[
�C∑
k=1

5∗q(k)�
]
: (28)

Plugging Eq. (27) into Eq. (28) yields

sup
x∈C

Ex

[
�C∑
k=1

5∗q(k)�
]
6 sup

x∈C
Ex

[
�C−1∑
k=0

V�
q (�k)

]
+

(q−1∑
k=0

bk

)�

¡∞: (29)

As 5∗q(k)� ∼ C(k + 1)�q, Eq. (26) follows for - = 1. For 0¡-¡ 1, we have by
applying the HQolder’s inequality twice

Ex

[
�C−1∑
k=0

(k + 1)q�-V �(1−-)
q (�k)

]

6 Ex



(

�C−1∑
k=0

(k + 1)q�
)-(�C−1∑

k=0

V�
q (�k)

)1−-



6

(
Ex

[
�C−1∑
k=0

(k + 1)q�
])-(

Ex

[
�C−1∑
k=0

V�
q (�k)

])1−-

;

showing that Eq. (26) for 0¡-¡ 1 follows from Eq. (24) and Eq. (29).

Remark 5. As C is accessible (Proposition 2), then the invariant probability veri1es

�(V�
q ) =

∫
C

�(dy)Ey

[
�C−1∑
k=0

V�
q (�k)

]
;

(see, Meyn and Tweedie, 1993, Theorem 10.4.9). The expectation is uniformly bounded
on C which implies that �(V�

q )¡∞. In some examples (e.g. when the stationary
distribution � is explicitly known), it is easier to establish that P is positive recurrent
and that

�(V�
q )¡∞: (30)

As shown in Meyn and Tweedie (1993, Proposition 14.2.11) Eq. (30) implies the
existence of a sequence of (f; 1)-regular sets whose union is full so that Eq. (24) is
veri1ed. Hence Eqs. (24) and (30) are actually equivalent.

Remark 6. As shown by Eq. (19), if P is  -irreducible aperiodic and if D[f; q; C]
holds for a petite set C, the maximal rate of convergence in total variation norm
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(that can be determined from the drift conditions) is proportional to (n + 1)q−1.
Proposition 5 shows that provided Eq. (24) holds for (q − 1)=q6 �6 1, the maxi-
mal rate of convergence in total variation norm, is proportional to (n+ 1)q �.

Remark 7. It is known (Meyn and Tweedie, 1993, Theorem 14.0.1) that when P is
 -irreducible and aperiodic and D[f; 1; C] holds for some petite set C and a Borel
function f¿ 1, then limn ‖Pn(x; :)−�(:)‖f=0 on the full and absorbing set {V1 ¡∞};
if in addition �(V1)¡∞, then

∑
k¿1 ‖Pk(x; :)−�(:)‖f ¡∞ on {V1 ¡∞}. The result

above shows that when �(V�
1 )¡∞ for 0¡�6 1, then limn n�‖Pn(x; :)− �(:)‖TV = 0

for all x∈{V1 ¡∞}, providing us with a mean to sharpen the conclusions of Meyn
and Tweedie (1993, Theorem 14.0.1).

Remark 8. Proposition 5 above allows to retrieve Theorem 3.6 in Jarner and Roberts
(2002), when using a single drift condition of the form Eq. (22), i.e. (PV 6V −
cV 1−'+b5C , 0¡'¡ 1, and supC V ¡∞). This condition implies that, for all 0¡.6 1,

PV .6V . − .cV .−' + b.5C; (31)

for some 1nite constant b.. Set q := �1='�¿ 1 and Vk ˙ V k', for k ∈{0; : : : ; q}.
Eq. (31) shows that the functions {Vk} satis1y the conditions D[1; q; C]. Set � :=
(1− ')=(q'). Then, V�

q ∝ V 1−' and Eq. (22) shows that �(V�
q )¡∞ (using again e.g.

Meyn and Tweedie, 1993, Theorem 14.3.7). By applying Proposition 5, noting that
V ¡∞ on X, we have for all -∈ [0; 1], x∈X,

lim
n

(n+ 1)q�-‖Pn(x; :)− �(:)‖Vq'�(1−-) = 0:

For all /∈ [1; 1='], by setting - := (/ − 1)'=(1− '), we 1nally obtain

lim
n

(n+ 1)/−1‖Pn(x; :)− �(:)‖V 1−/' = 0: (32)

2. Examples

In this section X = Rl, B(Rl) is the Borel �-1eld and |:| is the Euclidean norm.

2.1. Random Walk Hastings Metropolis algorithm

Let P be the transition kernel of a symmetric Random Walk Hastings Metropolis
algorithm (henceforth named the Metropolis algorithm) on R (see Robert and Casella,
1999). Multidimensional extensions can be obtained using the technique outlined in
Jarner and Hansen (2000). Denote by k(x) (resp. p(x)) the symmetric proposal density
(resp. the target density) w.r.t. the Lebesgue measure. For any Borel bounded function
f, Pf is given by

Pf(x)− f(x) =
∫
{f(x + y)− f(x)}k(y) dy

+
∫
R(x)−x

{f(x + y)− f(x)}
(
p(x + y)

p(x)
− 1
)

k(y) dy;
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where R(x) is the so-called rejection region (where the proposed moves are rejected
with a positive probability depending upon the target density)

R(x) := x + {y∈R; p(x + y)6p(x)}: (33)

Mengersen and Tweedie (1996) (resp. Roberts and Tweedie, 1996; Jarner and Hansen,
2000) have shown that the Metropolis algorithm on Rl is geometrically ergodic pro-
vided that the target density p is log-concave in the tails (resp. sub-exponential). Fort
and Moulines (2000) have shown that the Metropolis algorithm converges at any poly-
nomial rate, when the log density decreases hyperbolically at in1nity, logp(x) ∼ −|x|s,
0¡s¡ 1, as |x| → ∞ (as for Weibull or Benktander distributions; see KlQuppelberg,
1988).

2.1.1. Regular variation in the tails
Assume that

(A1) (i) p is continuous on R and (ii) there exist some 1nite constants s¿ 1,
M ¿ 0, C ¿ 0, a function 3 : R→ [0;∞) such that for all |x|¿M , p is strictly
decreasing and for all y∈R(x)− x,∣∣∣∣p(x + y)

p(x)
− 1 + syx−1

∣∣∣∣6C|x|−13(x)y2

and lim
|x|→∞

3(x) = 0.

This class contains, among other, the Pareto distributions p(x) ˙ |x|−s (in that case,
3(x) := 1=|x|) and many other “heavy tailed” distributions.

(A2) (i) there exist �¿ 0 and '¡∞ such that |y|6 '⇒ k(y)¿ �, (ii) the pro-
posal density k is symmetric and there exists 4¿ 1 such that

∫ |y|4+3k(y) dy¡∞.

(A1i) and (A2i) ensure that P is  -irreducible and aperiodic and that every compact
set is petite (Roberts and Tweedie, 1996, Theorem 2.2.). The key result to apply the
derivations above is

Lemma 1. Assume (A1–2). Set s∗ := 4∧s. For all 26 �¡s∗+1, x �→ ∫
P(x; dy)|y|�

is bounded on compact set and∫
P(x; dy)|y|�6 |x|� − 1

2
�2
k�(s+ 1− �)|x|�−2(1 + �(x));

where �2
k :=

∫
y2k(y) dy and lim|x|→∞ �(x) = 0.

The proof is in Appendix A.1. Set V (x) := 1 + |x|� for some 2¡�¡s∗ + 1. It is
easily seen that V is a solution to the JR drift condition Eq. (22) with ' := 2=�. Since
the compact sets are petite, we deduce from the discussions of Paragraph 1.3 that for
any .∈ [0; (s∗ − 1)=2),

lim
n

(n+ 1).‖Pn(x; :)− �(:)‖TV = 0; x∈R;
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and for all r ∈ [0; s∗ − 1) and .∈ [0; (s∗ − 1− r)=2),

lim
n

(n+ 1).‖Pn(x; :)− �(:)‖1+|x|r = 0; x∈R:

2.1.2. Weibull distribution on R+

Assume that

(A3) the target density p is a standard Weibull density on [0;∞) with shape
parameter 0¡5¡ 1, that is p(x) := 5x5−1 exp(−x5), x¿ 0,
(A4) (i) there exist �¿ 0 and '¡∞ such that |y|6 ' ⇒ k(y)¿ �, (ii) the
proposal density k is symmetric and

∫∞
0 y�∗+25+2 exp(-y5)k(y) dy¡∞ for some

0¡-¡ 1, �∗ ∈R.

As in the preceding example, (A4i) and the continuity of the target density p ensure
that the kernel is  -irreducible and aperiodic and that every compact set is petite.

Lemma 2. Assume (A3–4). For all �6 �∗, x �→
∫
P(x; dy)y� exp(-y5) is bounded on

compact set and∫
P(x; dy)y� exp(-y5)

= x� exp(-x5)− 1
2
�2
k-(1− -)52x2(5−1) x� exp(-x5)(1 + �(x)); (34)

where �2
k :=

∫
y2k(y) dy and lim|x|→∞ �(x) = 0.

The proof is in Appendix A.1. Let f(x) := (1∨x)� exp(-x5) for some �6 �∗, and let
q be a positive integer. Eq. (34) entails that there exists a compact set C = C(q; -; �)
and some measurable functions Vk ˙ (1 ∨ x)�+2k(1−5) exp(-x5), solving D[f; q; C].
Thus, by Theorem 1, for all q¿ 0, �6 �∗

lim
n

(n+ 1)q‖Pn(x; :)− �(:)‖(1∨x)� exp(-x5) = 0; x¿ 0:

Eq. (34) can also be cast into the framework detailed in Paragraph 1.2. For example,
whenever �∗ = 0, Eq. (34) can be translated into a single drift condition PV 6V −
� ◦ V + b1C , with V (x) := exp(-x5) and �(x)˙ x log2(5−1)=5x.

2.2. A non-linear state-space model

Let F : Rl → Rl be a measurable function. Let us consider the non-linear state-space
model {�n}, de1ned for n¿ 0

�n+1 = F(�n) +Wn+1;

where

(NSS 1) {Wn} is a sequence of i.i.d random variables with distribution 8(dx) :=
.(x)dx, and �0 is independent from {Wn}.
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Non-linear state-space models have received a large attention in the literature. Most
of the contributions focus on conditions implying V -uniform geometric ergodicity (see
Doukhan and GhindSes, 1980; Mokkadem, 1987; Tanikawa, 1996, 1999; Diaconis and
Freedman, 1999). We focus here on conditions that rather imply polynomial conver-
gence rates. The transition kernel P is given by P(x; dy)=.(y−F(x)) dy. It is assumed
that

(NSS 2) P is Lebesgue-irreducible, aperiodic and every non-empty compact set
is petite.

Conditions upon which this assumption holds can be found, e.g. see Meyn and Tweedie
(1993, Chapter 6 and the references therein). In particular, (NSS 2) is ful1lled when-
ever (i) F : Rl → Rl is continuous, (ii) |F(x)|6 |x| for all x∈Rl and (iii) there exist
�. ¿ 0 and '. ¡∞ such that |y|6 '. ⇒ .(y)¿ �..

(NSS 3) There exist 0¡d6 2, r ¿ 0 and M ¡∞ such that

|F(x)|6 |x|(1− r|x|−d) on |x|¿M; and sup
|x|6M

|F(x)|¡∞:

(NSS 4) There exists s∗¿d such that 8(s∗) :=
∫ |y|s∗.(y) dy¡∞.

The study of non-linear state-space models under (NSS 3–4) has been initiated among
others by Tuominen and Tweedie (1994) and AngoNze (1994) with 0¡d¡ 1. This
model has later been worked out by Veretennikov (2000) who proved ergodicity at
sub-geometrical rate (see below) for d= 2.

Lemma 3. Assume (NSS 1–4). Then, for all d6 s6 s∗, x �→ ∫
P(x; dy)|y|s is

bounded on compact sets.

(i) Assume that 0¡d¡ 1. Then,∫
P(x; dy)|y|d6 |x|d − ,1(1 + �(x)); (35)

with ,1 := dr − 8(d) and lim|x|→∞�(x) = 0. In addition, for all d¡s6 s∗,∫
P(x; dy)|y|s6 |x|s − ,2|x|s−d(1 + �(x)); (36)

with ,2 := sr.
(ii) Assume that 16d¡ 2,

∫
x8(dx) = 0 and s∗¿ 2. Then,

• Eq. (35) holds with ,1 := dr.
• If s∗ ¡ 4 (resp. s∗¿ 4) Eq. (36) holds for all d¡s6 2 (resp. d¡s6 s∗),
with ,2 := sr.

(iii) Assume that d= 26 s∗ and
∫
x8(dx) = 0. Then,

• Eq. (35) holds with ,1 := 2r − 8(2).
• If s∗¿ 4, then Eq. (36) holds for all 2¡s6 s∗ with ,2 := sr−(5s−8)8(2)=2
if s6 4 and ,2 := sr − s(s− 1)8(2)=2 if s¿ 4.
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The proof is in Appendix A.2. The case 0¡d¡ 1 has been addressed by AngoNze,
Theorem 2(2): the proof closely parallels the arguments used by this author. To deal
with the cases (ii) and (iii), we write for |x|¿M ,∫

P(x; dy)|y|s =
∫
|F(x) + y|s8(dy)

6
∫
(|x|2(1− r|x|−d)2 + |y|2 + 2〈F(x); y〉)s=28(dy);

where 〈:; :〉 is the scalar product. An upper bound of the integrand is then obtained
by Taylor expansion of the function t �→ (t + a)s=2, with a := |x|2(1 − r|x|−d)2 and
t := |y|2 + 2〈F(x); y〉.

Remark 9. In cases (ii) and (iii), the moment assumptions can be weakened if one as-
sumes that the distribution 8 is symmetric. More precisely, assume that
(NSS1–4) hold for some 16d6 2 and that 8 is symmetric. Then, Eq. (36) holds for
all 16d6 2 and all d¡s6 s∗. This assertion can be proved along the same lines
as the proof of Lemma 3, by setting a := |x|2(1− r|x|−d)2 + |y|2 and t := 2〈F(x); y〉.

If ,1 ¿ 0, Eq. (35) shows that P possesses an unique invariant probability measure
�, and, for all x∈Rl, limn‖Pn(x; :) − �(:)‖TV = 0. Assume that s∗ ¿d and Eq. (36)
holds for all d6 s6 s∗ (that is for example either d¡ 1 or 16d6 2 and s∗¿ 4) and
,2 ¿ 0; set ' := d=s∗ and q := �1='�¿ 1. Lemma 3 shows that (a) �(|x|s∗−d)¡∞
(by Meyn and Tweedie, 1993, Theorem 14.3.7); (b) the functions Vk(x) ˙ |x|kd,
k ∈{0; : : : ; q}, are solutions of D[1; q; C] for some compact (and hence petite) set C.
Set now � := (1 − ')=(q'). Hence, V�

q (x) ˙ |x|s∗−d and �(V�
q )¡∞. Proposition 5

establishes that for all x∈Rl and all .∈ [1; s∗=d],

lim
n

(n+ 1).−1‖Pn(x; :)− �(:)‖1+|x|s∗−.d = 0: (37)

Tuominen and Tweedie (1994, Proposition 5.2.) considered the case 0¡d¡ 1. They
assume that s∗ ∈Z+, s∗¿ 2 and prove that for all x∈Rl and all .∈{1; : : : ; s∗},

lim
n

(n+ 1).−1‖Pn(x; :)− �(:)‖1+|x|s∗−. = 0;

which is a weaker result than Eq. (37). AngoNze (1994, Theorem 2) establishes
Eq. (37) for 0¡d¡ 1 and s∗¿ 1. Veretennikov (2000, Theorem 1) studied the case
d= 2 and showed that when s∗ ¿ 4,

lim
n

(n+ 1).−1‖Pn(x; :)− �(:)‖TV = 0

for .∈ [1; s∗=2) (the upper bound being not exactly obtained).

3. Computable bounds for polynomial ergodicity

The main objective of this section is to determine computable bounds, i.e. a function
B : X × Z+ → [0; 2] such that, for all x∈X and all n∈Z+,

‖Pn(x; :)− �(:)‖TV 6B(x; n): (38)
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Roughly speaking, a bound is a computable bound, when it can be expressed as a
function of quantities that can be explicitly determined from the transition kernel,
such as constants appearing in drift conditions and minorizing constants on small sets.
Computable bounds have been derived under conditions implying geometric ergodicity
(see, e.g. Rosenthal, 1995a, b; Roberts and Tweedie, 1999, 2001, and the references
therein).
As illustrated by Rosenthal (1995a) and Roberts and Tweedie (1999), computational

bounds for the total-variation distance can be obtained by using the so-called Lindvall’s
inequality, which relates ‖Pn(x; :)−�(:)‖TV to the tail probability of a coupling time T .
The construction of this coupling time involves de1ning a probability space (:;F;P)
and a process Z = {(Xn; X ′

n ; dn)} such that (a) for all positive measurable function f
on (X;B(X)), and all n¿ 0,∫

f(Xn) dP= Pnf(x);
∫

f(X ′
n) dP= �(f);

(b) Xn=X ′
n for all n greater than the coupling time T , and T ¡∞ P-a.s. The auxiliary

variable dn, referred to as the bell variable, is set to 0 for n6T and 1 otherwise.
This construction is a standard tool for chain on countable space and consequently,
for atomic general state-space chain. For non-atomic general state-space chain, such
construction is possible, e.g. if one can 1nd a set = ⊂ X ×X, and an integer m¿ 1,
such that for all (x; x′)∈=,

Pm(x; A) ∧ Pm(x′; A)¿ ��m(A) (39)

for some constant �¿ 0 and a probability measure �m on B(X). This is not a minimal
assumption for de1ning a coupling procedure but it suFces for our purpose. Lindvall’s
inequality shows that ‖Pn(x; :) − �(:)‖TV6 2P(T ¿n), and thus determining B(x; n)
amounts to compute an upper bound for the tail probability of T . A convenient way to
determine such bound is to use a (re1nement of the) Markov’s inequality, which implies
to compute appropriately de1ned moments of T . This approach, 1rst investigated by
Rosenthal (1995a), has later been improved by Roberts and Tweedie (1999), who re-
late moments of T to moments of the hitting-time on =, � := inf{n¿ 0; (Xn; X ′

n)∈=}.
These contributions deal with the geometrical case and compute the generating func-
tion of the coupling time E[�T ], �¿ 1, as a function of the minorization constant �
(Eq. (39)) and of the generating function of the hitting-time �, E[��]. The latter quan-
tity is then classically bounded using the Foster–Lyapunov drift criterion. We extend
the results of Roberts and Tweedie to polynomial rate functions r(n)˙ nq, for a real
q¿ 0, and substitute the Foster–Lyapunov drift criterion for the nested drift conditions
D[f; q; C].
In order to present the main ideas, we 1rst complete the above program under simple

conditions (Theorems 2 and 3); we will show afterwards how to improve such results
(Theorems 4 and 5). Let C;D∈B(X), C ⊆ D. Assume that

H1a[C;D] C is accessible and D is �1-small: there exist �¿ 0 and a probability
measure �1 on B(X) such that

∀x∈D ∀A∈B(X); P(x; A)¿ ��1(A):
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Set = := C × D ∪ D × C and de1ne the residual kernel

R(x; dy) := (1− �5D(x))−1(P(x; dy)− �5D(x)�1(dy)): (40)

The classical coupling construction (see, e.g. Rosenthal, 1995a) can be summarized as
follows. Let ,, ,′ be two probability measures on B(X). Sample X0 (resp. X ′

0) from
, (resp. ,′) and set d0 := 0.

(1) if dn = 0 and
(i) (Xn; X ′

n) �∈ =, then set dn+1 := 0 and sample independently Xn+1 and X ′
n+1

from the distribution P(Xn; :) and P(X ′
n ; :).

(ii) (Xn; X ′
n)∈=, then

• with probability �, set dn+1 := 1, and draw Xn+1 = X ′
n+1 ∼ �1.

• with probability 1−�, set dn+1 := 0 and sample independently Xn+1 ∼ R(Xn; :)
and X ′

n+1 ∼ R(X ′
n ; :).

(2) if dn = 1, set dn+1 := 1, draw Xn+1 = X ′
n+1 ∼ P(Xn; :).

It is easily seen that Z = {Zn := (Xn; X ′
n ; dn)} is an homogeneous Markov chain on

(:;F) := (XZ+ × XZ+ × {0; 1}Z+ ;B(X × X × {0; 1})⊗Z+). Let P∗ be its transition
kernel. Denote by P,;,′ ; i (resp. E,;,′ ; i) the probability (resp. the expectation) on (:;F)
for the initial distribution , ⊗ ,′ ⊗ 'i (i∈{0; 1}). Endow the probability space with
the natural 1ltration Fn : =�(Zk ; k6 n). It is easily seen that for any n¿ 0, and any
positive Borel function f

E,;,′ ;0[f(Xn)] = ,Pnf and E,;,′ ;0[f(X ′
n)] = ,′Pnf: (41)

De1ne the Fn-adapted coupling-time T as T : =inf{n¿ 1; dn =1}. Setting ,= 'x and
,′ = � the stationary distribution for P, the coupling inequality then reads

‖Pn(x; :)− �(:)‖TV6 2Px;�;0(T ¿n): (42)

The tails of the coupling-time are controlled by the Markov inequality, Px;�;0(T ¿n)6
r(n)−1Ex;�;0[r(T )], for any positive non-decreasing sequence {r(n)}. Since by construc-
tion T¿ 1 and, for any initial probabilities ,; ,′, P,;,′ ;0(T ¿n + k|T ¿n)¿ (1 − �)k

for all k¿ 0 and n¿ 0, this inequality can be re1ned as follows (see Theorem 4.1 in
Roberts and Tweedie, 1999).

Lemma 4. Let T¿m be a random-time on a probability space (:;F;P) such that,
for some 0¡�¡ 1, P(T ¿n+ k|T ¿n)¿ (1− �)k for all k¿ 0, n¿m− 1. For a
non-decreasing and positive sequence r := {r(n)}, n¿m,

P(T ¿n)6U�;m(r; n) E[r(T − m)] (43)

U�;m(r; n)

:= (r(n+ 1− m) + (1− �)−(n+1−m)
∑

j¿n+1−m

(1− �) j(r(j + 1)− r(j)))−1:

(44)
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The construction of an implicit bound then amounts to determine the moments
Ex;�;0[r(T )], for the polynomial sequence r(n) := 5∗q(n) (see Eq. (7)), where q is
some positive integer. De1ne the hitting-time on = and the successive Fn-adapted
return-time to = of the process {(Xn; X ′

n)}
T0 := inf{k¿ 0; (Xk; X ′

k )∈=};
Tn := inf{k¿Tn−1 + 1; (Xk; X ′

k )∈=}; n¿ 1 (45)

with the convention that inf ∅ := +∞ and T−1 := −1. For l∈{0; : : : ; q}, denote by

A(l) := (1− �) sup
(x;x′)∈=

∫
R(x; dy)R(x′; dy′)Ey;y′ ;0[5∗l(1 + T0)]; (46)

and A(l) := 0 otherwise. De1ne the (Toeplitz) matrix A := [Ai;j]06i; j6q, where Ai;j :=
A(i − j). Since A is lower triangular and that the diagonal elements are strictly less
than 1 (by construction, A(0) = 1− �), I − A is invertible. De1ne B := (I − A)−1.

Remark 10. Observe that for all l∈{0; : : : ; q}, A(l)6 (1− �)-l=q where

- := sup
n¿1;l∈{1;:::;q}

[5∗l(n)]q=l

5∗q(n) sup
(x;x′)∈=

∫
R(x; dy)R(x′; dy′)Ey;y′ ;0[5∗q(1 + T0)]:

This implies that for 06 l6 k6 q, j¿ 0, [Aj+1]k; l6 (1− �)j+1-(k−l)=q5∗j(k − l+1).
For k=l, �Bk;k=1. For 06 l¡k6 q, Bk;l6 (1−�) -(k−l)=q∑

j¿0(1−�) j5∗j(k−l+1).
By de1nition of the sequence 5∗j, for n¿ 1,

∑
j¿0

(1− �) j5∗j(n) = 1 + (1− �)
n∑

r=1

∑
j¿0

(1− �) j5∗j(r);

and by a trivial induction (on n), it is established that
∑

j¿0(1−�) j5∗j(n)=�−n. Hence,
for l¡k, �Bk;l6 (1− �) -(k−l)=q�−(k−l). Finally, Bk;l = 0 for all l¿k.

Proposition 6. Let C;D∈B(X), C ⊆ D, such that H1a[C;D] holds. Let q be a posi-
tive integer. For any integer k ∈{0; : : : ; q}, and any initial probabilities ,; ,′ on B(X)
such that E,;,′ ;0[5∗q(T0)]¡∞,

E,;,′ ;0[5∗k(T − 1)]6 �
q∑

l=0

Bk;lE,;,′ ;0[5∗l(T0)]: (47)

Remark 11. From Remark 10 and (47), it is easily seen that

E,;,′ ;0[5∗k(T − 1)]6 E,;,′ ;0[5∗k(T0)] + (1− �)
k−1∑
l=0

-(k−l)=q�−(k−l)E,;,′ ;0[5∗l(T0)]:

Proof. Eq. (47) is trivial for k = 0. We show, by induction on j, that for all
k ∈{1; : : : ; q},

E,;,′ ;0[5∗k(Tj)5{0}(dTj)]6
q∑

l=0

[Aj]k; l E,;,′ ;0[5∗l(T0)]: (48)
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For j = 0, Eq. (48) is obvious. Assume now that Eq. (48) holds for j¿ 0. The
induction assumption implies that Tj5{0}(dTj)¡∞ P,;,′ ;0-a.e. Note that {dTj+1 = 0}=
{dTj+1 = 0} ⊂ {dTj = 0}. Eq. (8) implies that

E,;,′ ;0[5∗k(Tj+1)5{0}(dTj+1)]

=
k∑

l=0

E,;,′ ;0[5∗l(Tj) 5∗(k−l)(Tj+1 − Tj) 5{0}(dTj+1)]

=
k∑

l=0

E,;,′ ;0[E,;,′ ;0
[
5∗(k−l)(Tj+1 − Tj)5{0}(dTj+1)|FTj

]
5∗l(Tj) 5{0}(dTj)]:

By construction, Tj+1 = 1 + Tj + T0 ◦ @ 1+Tj where @ is the usual shift operator, and,
for (x; x′)∈=, and any positive Borel function � : X ×X �→ R+,

Ex;x′ ;0[�(X1; X ′
1)5{0}(d1)] = (1− �)

∫
R(x; dz)R(x; dz′)�(z; z′):

The strong Markov property shows that, for any l∈{0; : : : ; q},
E,;,′ ;0[5∗l(Tj+1 − Tj)5{0}(dTj+1)|FTj ]

= E,;,′ ;0[E,;,′ ;0[5∗l(1 + T0)|FTj+1]5{0}(dTj+1)|FTj ]

= (1− �)
∫

R(XTj ; dz)R(X
′
Tj
; dz′)Ez; z′ ;0[5∗l(1 + T0)]6A(l);

which implies, by using the induction assumption

E,;,′ ;0[5∗k(Tj+1) 5{0}(dTj+1)]6
k∑

l=0

A(k − l)E,;,′ ;0[5∗l(Tj) 5{0}(dTj)]

6
q∑

l=0

[Aj+1]k; lE,;,′ ;0[5∗l(T0)]:

We now conclude the proof. Since P,;,′ ;0(dTj = 0) = (1− �) j, P,;,′ ;0(dTj = 0 in1nitely
often) = 0. Thus, the sets {{dTj = 0} ∩ {dTj+1 = 1}}, j¿ 0, de1ne a partition of :;
since P,;,′ ;0(dTj+1 = 1|FTj)5{0}(dTj) = �, then

E,;,′ ;0[5∗k(T − 1)] =
∑
j¿0

E,;,′ ;0[5∗k(Tj)5{0}(dTj)5{1}(dTj+1)]

= �
∑
j¿0

E,;,′ ;0[5∗k(Tj) 5{0}(dTj)]

6 �
q∑

l=0

Bk;l E,;,′ ;0[5∗l(T0)]:

Since B is lower triangular, E,;,′ ;0[5∗k(T−1)] is a linear combination of the moments
of the hitting time on the set =, E,;,′ ;0[5∗l(T0)] for l∈{0; : : : ; k}, and the estimation of
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the polynomial moments of the coupling time boils down to estimate the corresponding
moments of T0. Following the discussions in Section 1, these quantities can be estimated
from Proposition 3, provided that one can construct a set of drift functions satisfying
D[1; k; =] for the extended transition kernel P∗. Unfortunately, deriving drift conditions
for P∗ is hopeless: it is more appropriate to formulate drift conditions for the original
kernel P. The fact that drift conditions for P can be used to estimate moments of the
hitting time of Z to = is of course ultimately linked with the fact that, prior to entering
= (or between two visits to = before coupling), the extended chain Z behaves as two
independent copies of the original chain.
Let q be a positive integer and C;D∈B(X), C ⊆ D.

H2[q; C; D] There exist some measurable functions on X, 16V06 · · ·6Vq ¡∞
and some constants 0¡ak ¡ 1 and bk ¡∞, k ∈{0; : : : ; (q− 1)}, such that supD
Vq ¡∞ and for all k ∈{0; : : : ; (q− 1)},

PVk+16Vk+1 − Vk + bk5C; (49)

Vk ¿ bk + akVk on Dc: (50)

We know from Proposition 3 that Vk(x) is an upper bound of the moment Ex[5∗k(�C)]
of the hitting-time on C of the original chain �. The additional minorization condition
(50) is required to derive an upper bound of the hitting-time on = of the extended
chain Z starting from X ×X × {0}.

Proposition 7. Let C;D∈B(X), C ⊆ D and q be a positive integer. Assume H2
[q; C; D]. Then, for any l∈{0; : : : ; (q− 1)} and any (x; x′) �∈ =(

l∏
k=0

ak

)
Ex;x′ ;0

[
T0∑
k=0

5∗l(k + 1){V0(Xk) + V0(X ′
k )}
]
6Vl+1(x) + Vl+1(x′) (51)

so that

Ex;x′ ;0[5∗(l+1)(T0 + 1)]

6 5=(x; x′) + 5=c(x; x′)

(
l∏

k=0

ak

)−1

m(V0)−1(Vl+1(x) + Vl+1(x′));

where m(V0) := inf (x;x′)∈=c {V0(x) + V0(x′)}.

Proof. The 1rst step is to prove that for any l∈{0; : : : ; (q− 1)}, (x; x′)∈=c,

al Ex;x′ ;0

[
T0∑
k=0

{Vl(Xk) + Vl(X ′
k )}
]
6Vl+1(x) + Vl+1(x′): (52)

De1ne Wl(x; x′; d) =Wl(x; x′) : =Vl(x) + Vl(x′), d∈{0; 1}. Then for (x; x′) �∈ =,

P∗Wl+1(x; x′; 0)6Wl+1(x; x′)−Wl(x; x′) + bl{5C(x) + 5C(x′)}
6Wl+1(x; x′)−Wl(x; x′) + bl{5C×Dc(x; x′) + 5Dc×C(x; x′)}:
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Note that, for x∈Dc, bl6 (1− al)Vl(x). Thus,

P∗Wl+1(x; x′; 0)6Wl+1(x; x′)−Wl(x; x′); (x; x′)∈Cc × Cc;

P∗Wl+1(x; x′; 0)6Wl+1(x; x′)−Vl(x)−Vl(x′)+(1−al)Vl(x′); (x; x′)∈C × Dc;

P∗Wl+1(x; x′; 0)6Wl+1(x; x′)−Vl(x)− Vl(x′)+(1−al)Vl(x); (x; x′)∈Dc × C:

Combining these inequalities, we thus have for (x; x′)∈=c,

P∗Wl+1(x; x′; 0)6Wl+1(x; x′)− alWl(x; x′);

which implies Eq. (52) by use of the Comparison Theorem. Note that since Eq. (52)
T0 is 1nite Px;x′ ;0-a.e. The proof is concluded by induction: Eq. (52) establishes the
proposition for l=0. Assume that Eq. (51) holds for some l∈{0; : : : ; (q− 2)}, i.e. for
all (x; x′)∈=c,(

l∏
k=0

ak

)
Ex;x′ ;0

[
T0∑
k=0

5∗l(k + 1){V0(Xk) + V0(X ′
k )}
]
6Vl+1(x) + Vl+1(x′): (53)

Then, for (x; x′)∈=c, Eq. (52), the induction assumption Eq. (53) and the Markov
property imply

{Vl+2(x) + Vl+2(x′)}

¿ al+1Ex;x′ ;0

[
T0∑
k=0

{Vl+1(Xk) + Vl+1(X ′
k )}
]

¿ al+1

(
l∏

k=0

ak

)
Ex;x′ ;0


 T0∑

k=0

EXk ;X ′
k ;0


 T0∑

j=0

5∗l(j + 1){V0(Xj) + V0(X ′
j )}





¿

(
l+1∏
k=0

ak

)
Ex;x′ ;0

[
T0∑
k=0

5∗(l+1)(k + 1){V0(Xk) + V0(X ′
k )}
]
;

showing the induction hypothesis and thus concluding the proof.

We have now at hands all the necessary ingredients to evaluate the bound B(x; n).
De1ne W0(x; x′) := 1 and, for l∈{1; : : : ; q},

Wl(x; x′) := 5=(x; x′) + 5=c(x; x′)

(
l−1∏
k=0

ak

)−1

m(V0)−1{Vl(x) + Vl(x′)}; (54)

W (x; x′) := [W0(x; x′); : : : ; Wq(x; x′)]T: (55)

Set 'x ⊗ �(W ) :=
∫
'x(dy)�(dy′)W (y; y′). For l∈{0; : : : ; q}, denote by

Â(l) := (1− �) sup
(x;x′)∈=

∫
R(x; dy)R(x′; dy′)Wl(y; y′);
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and Â(l) := 0 otherwise. De1ne Â := [Âi; j]06i; j6q, where Âi; j := Â(i − j). Set B̂ :=
(I − Â)−1. As in Remark 10, it may be proved that for all 06 k6 q, �B̂k;k = 1, and
for 06 l¡k6 q, �B̂k; l6 (1− �) -̂(k−l) �−(k−l) where

-̂ := sup
l∈{1;:::;q};(x;x′)∈=

∫
R(x; dy)R(x′; dy′)Wl(y; y′)

6 sup
(x;x′)∈=

∫
R(x; dy)R(x′; dy′)Wq(y; y′): (56)

Finally, if l¿k, B̂k; l = 0.

Theorem 2. Assume that P is  -irreducible and aperiodic. Let q be a positive integer
and C;D∈B(X), C ⊆ D such that H1a[C;D] and H2[q; C; D] hold. There exists an
unique invariant probability measure � and for all x∈X, n¿ 1,

‖Pn(x; :)− �(:)‖TV6 2� min
k∈{0; ::: ;(q−1)}

{
U�;1(5∗k ; n)

q∑
l=0

B̂k; l'x ⊗ �(Wl)

}
; (57)

where U�;1(5∗k ; :) is given by Eq. (44).

The proof follows from Eq. (42), Lemma 4 and Proposition 6. U�;1(5∗k ; n) is equiv-
alent to n−k ; the maximum rate of convergence is thus of order n(q−1). In compar-
ison, application of Proposition 1 under the assumptions of Theorem 2 shows that
limn→∞ n(q−1)‖Pn(x; :)− �(:)‖TV = 0, which is indeed, stronger than Eq. (57) from an
asymptotic standpoint.
Computable bound for the NSS model. For the purpose of numerical illustration, it

is assumed that

F(x) := x(1− r=|x|); |x|¿M;

F(x) := 0:1x3 + (1− r=M − 0:1M 2)x; |x|6M;

with r := 3 and M := 2 (see Fig. 2). We assume in addition that 8 is Pareto in the
tails, i.e.

.(y)˙ M−(g+1)
. 5[−M.;M.](y) + |y|−(g+1)5[−M.;M.]c(y);

with M. := 1 and g := 4:1 (see in Figs. 1 and 2 a typical trace of 4000 samples). For
this model, the conditions (NSS1–3) are veri1ed since .(y) is continuous and positive
on R, and F is continuous on R; and the condition (NSS 4) holds for all 16 s∗ ¡g.
Lemma 3 shows that for all 16 s¡g, for all 0¡,¡ 1, there exist some constant
b¡∞ and a petite set C such that

∫
P(x; dy)|y|s6 |x|s − ,sr|x|s−1 + b5C(x).

Let , := 1=20. We set

V0(x) := 1 + |x|; V1(x) := (2r,)−1(0:33 + |x|2);
V2(x) := (2r,3r,)−1(0:16 + |x|3); V3(x) := (2r,3r,4r,)−1(0:11 + |x|4)
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Fig. 1. NSS model, Example 2.2: a path of the Markov chain {�n}, �n+1 = F(�n) + Wn+1 starting from
−8. {Wn} are i.i.d. Pareto samples (and independent of �0) with density p(y) ∼ |y|−5:1; F is plotted in
Fig. 2.

Fig. 2. F function: F(x) := x(1− 3=|x|) if |x|¿ 2 and F(x) = 0:1x3 − 0:9x otherwise.
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so that 16V06V16V26V3. The drift conditions PVk+16Vk+1 − Vk + bk5C , k ∈
{0; 1; 2}, are veri1ed with

b0 := 3:47; b1 := 13:9; b2 := 138; C := [− 2:06; 2:06]:

For ak := 3=7, the inequality Vk − bk ¿ akVk on Dc is veri1ed, for k ∈{0; 1; 2}, by
setting

D := [− 5:1; 5:1] ⊃ C:

For all x∈ [− a; a], it is easily seen that

P(x; dy)¿ 5(−∞;0](y) .(y − F∗) dy + 5[0;∞)(y) .(y + F∗) dy;

with F∗ := sup[−a;a] F=−min[−a;a]F . Hence, H1a[C;D] is veri1ed with � := 9:36×10−3

and

��(dy) := 5(−∞;0](y) .(y − 2:1) dy + 5[0;∞)(y) .(y + 2:1) dy:

We need 1nally to determine an upper bound for �(Vk), k ∈{1; 2}. Since � is not
known, it is required to use for such purpose drift conditions. Recall indeed that, for
a  -irreducible and aperiodic kernel P, if there exist a petite set K and two functions
0¡V;f¡∞ such that PV 6V−f+b5K for some b¡∞, then �(f)6 b (Meyn and
Tweedie, 1993, Theorem 14.3.7). We can of course use V =V2 (resp. V =V3), f=V1

(resp. f=V2) and K =C, but this choice does not necessarily provide the best bound.
Note indeed that the bound for �(Vk) does not depend upon the minorization constant
on the petite set K , whereas the choice of C results from a compromise (choosing C
too large yields vanishingly small minorization constant). By crude optimization on K ,
we obtain, �(V1)6 2:14 and �(V2)6 6:99.

In Figs. 3 and 4, we plot the bound given by Theorem 2 for diKerent values of
the number of iterations n and of the starting point x. For a given n, the bound is
an increasing function of x and for given x, the bound is a decreasing function of n.
For large x and small n, the computed bound does not improve the trivial one that is
B(x; n) = 2 (reached with l= 0 in Eq. (57)).
Interpolated rates. Assumption H2[q; C; D] does not imply �(Vq)¡∞; hence,∑q
l=0 B̂q; l 'x ⊗ �(Wl) may well be in1nite. If for some 0¡�6 1, �(V�

q )¡∞ it
is possible (similar to Proposition 5) to sharpen the bounds. De1ne for l∈{0; : : : ; q},

Â
(�)
(l) := (1− �) sup

(x;x′)∈=

∫
R(x; dy)R(x′; dy′)W�

l (y; y
′);

and Â
(�)
(l) := 0 otherwise. Denote by Â

(�)
:= [Â

(�)
i; j ]06i; j6q, Â

(�)
i; j := Â

(�)
(i−j). Finally,

set B̂
(�)

:= (I − Â
(�)
)−1. As in Remark 10, it may be proved that for all 06 k6 q,

�B̂
(�)
k;k = 1, and for 06 l¡k6 q, �B̂

(�)
k; l 6 (1− �) V-k−l �−(k−l) where

V- := sup
l∈{1; ::: ;q}

sup
(x;x′)∈=

∫
R(x; dy)R(x′; dy′)W�

l (y; y
′)

6 sup
(x;x′)∈=

∫
R(x; dy)R(x′; dy′)W�

q (y; y
′): (58)

Finally, if l¿k, B̂
(�)
k; l = 0.
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Fig. 3. NSS model, Example 2.2: control of ergodicity in total variation norm given by Theorem 2 for the
NSS Markov chain. The upper-bound B(x; n) is plotted for diKerent values of x∈ [0; 100] and diKerent
values of n∈ [1; 1000]. For large x and small n, the bound is not lower than 2, which is a trivial upper
bound.

Fig. 4. NSS model, Example 2.2: Evolution of the upper-bound B(x; n). (left) B(:; n) for diKerent values of
n; B(x; :) for diKerent values of x.

Theorem 3. Assume that P is  -irreducible and aperiodic. Let q be a positive integer
and C;D∈B(X), C ⊆ D such that H1a[C;D] and H2[q; C; D] hold, and assume that
�(V�

q )¡∞ for some 0¡�6 1. For all x∈X, n¿ 1,

‖Pn(x; :)− �(:)‖TV6 2� min
k∈{0; ::: ;q}

{
U�;1((5∗k)�; n)

q∑
l=0

B̂
(�)
k; l 'x ⊗ �(W�

l )

}
: (59)
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Proof. The proof is based on Eq. (42) and Lemma 4. As above, the moment of the
coupling time may be expressed as a series of the moments of the successive hitting
times on =

Ex;x′ ;0[5∗k(T − 1)�] =
∑
j¿0

Ex;x′ ;0[5∗k(Tj)�5{0}(dTj)5{1}(dTj+1)]

= �
∑
j¿0

Ex;x′ ;0[5∗k(Tj)�5{0}(dTj)]:

The proof follows provided that we may show that, for any non-negative integer j,

Ex;x′ ;0[5∗k(Tj)�5{0}(dTj)]6
q∑

l=0

[(Â
(�)
) j]k; l 'x ⊗ �(W�

l ):

This last equation can be established by induction along the same lines as in Proposition
6, using, for k¿ 1, n+ m¿ 1,

(5∗k(m+ n))�6
k∑

l=0

(5∗l(n))�(5∗(k−l)(m))�:

Remark 12. The order of U�;1((5∗q)�; n) is n−q�, and Eq. (59) gives an explicit bound
for supn¿1 n

q�‖Pn(x; :) − �(:)‖TV (which implies that limn n. ‖Pn(x; :) − �(:)‖TV = 0,
for all 06 .¡q�). Once again, application of Proposition 5 shows, under the stated
assumption, that limn nq�‖Pn(x; :)− �(:)‖TV = 0, which is stronger from an asymptotic
standpoint.

Remark 13. Successful coupling can be achieved in sets which are not necessarily
small. For example, instead of H1a[C;D], we may assume that there exists a kernel
3x;x′(:) from = to X such that, for all (x; x′)∈=, and all A∈B(X),

P(x; A) ∧ P(x′; A)¿ 3x;x′(A) and �− := inf
(x;x′)∈=

3x;x′(X)¿ 0: (60)

This condition is veri1ed by setting, for any kernel �x;x′(dy) from = to X,

3x;x′(A) :=
∫
A

dP(x; :)
d�x;x′

(y) ∧ dP(x′; :)
d�x;x′

(y) �x;x′(dy);

where dP(x; :)=d�x;x′ is the derivative of the absolutely continuous part of P(x; dy)
w.r.t. �x;x′(dy). By choosing �x;x′(dy) : =P(x′; dy), (60) is equivalently written as

�− := inf
(x;x′)∈=

∫ {
1 ∧ dP(x; dy)

dP(x′; dy)

}
P(x′; dy)¿ 0;

a condition referred to as a local Doeblin condition in Veretennikov (2000). Extensions
to local Doeblin conditions can be obtained along the same line as above, and yield
alternate bounds. This is addressed in Fort (2001).

Remark 14. In previous contributions on computational bounds for geometrical ergod-
icity, the set D is chosen to be equal to C, where C is �1-small. Assumption H2[q; C; D]
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is replaced by (a) a Foster–Lyapunov drift criterion, i.e. there exists some Borel func-
tion V ¿ 1 such that PV 6 ,V+b5C with 0¡,¡ 1 and b¡∞ and (b) a minorization
condition on Cc of the drift function V , which involves a rather tricky relation between
the seemingly unrelated constants ,, b and supC V ,

sup
C

V ¿
b

2(1− ,)
− 1; (61)

(see for example, Theorem 12 of Rosenthal, 1995a; and Eq. (49) of Roberts and
Tweedie, 1996). When the condition Eq. (61) is not checked, it is suggested to choose
a �1-small set larger than C, but there is no guarantee that Eq. (61) can be veri1ed: it is
generally diFcult to control the relative rate of growth of supC V and b as a function of
C (note that the drift function V itself may also depend on C). In addition, increasing
C has an adverse eKect on the minorizing constant � in the smallness condition, which
may become unacceptably small. Note 1nally that while for  -irreducible chain, the
state space can be covered by a countable family of small sets, there is no guarantee
that the state space can be covered by a �1-small set, which means that it is not possible
to choose arbitrarily large �1-small set.
We would like to argue that choosing C �= D answers some of the problems

outlined above. In most cases the minorization condition Eq. (50) holds by choos-
ing D ⊃ C large enough as V is often unbounded oK petite set; since C is 1xed
here, enlarging D does not modify the constants involved in the “basic” drift con-
dition (contrary to the solution outlined above). Nevertheless, it may happen that
increasing D in such a way that Eq. (50) above holds, yields to sets that are no
longer �1-small but rather �m-small for some m¿ 1. This problem is answered
below.

The adaptations to the case where D is �m-small instead of �1-small are not straight-
forward. The construction and the main results are derived below. We substitute the
assumption H1a[C;D] for the condition H1b[C;D]

H1b[C;D] C is accessible and D is �m-small: there exist m¿ 1, a constant �¿ 0
and a probability measure �m on B(X) such that

∀x∈D; ∀A∈B(X); Pm(x; A)¿ ��m(A): (62)

When D is �m-small, the coupling construction should be adapted (see e.g. Rosenthal,
2001 or Kalashnikov, 1994). We brieHy present the necessary adaptations. De1ne the
residual kernel

Rm(x; dy) := (1− �5D(x))−1(Pm(x; dy)− �5D(x)�m(dy)): (63)

The coupling construction is slightly more complicated, and involves the de1nition of
two processes on the extended probability space, Z and Z̃ . The process Z is a Markov
chain de1ned as above substituting the residual kernel R for Rm, but this time, Z
does not verify the condition Eq. (41). From this process Z , a companion process Z̃
is de1ned by an appropriately chosen random change of time in such a way that
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Eq. (41) holds. This construction is outlined below. Set Q0 := 0 and Z̃0 := Z0.
Then, Z̃ is de1ned from Z recursively as follows:

(1) if dn = 0,
• if (Xn; X ′

n) �∈ =, set Qn+1 :=Qn + 1 and Z̃Qn+1 :=Zn+1.
• if (Xn; X ′

n)∈=, set Qn+1 :=Qn + m and Z̃Qn+1 :=Zn+1. Sample {X̃ Qn+k}, for
k ∈{1; : : : ; (m − 1)} from the distribution of P(�1 ∈ :; : : : ; �m−1 ∈ :|
�m = Xn+1; �0 = Xn) where {�n} is a Markov chain with transition kernel
P; sample similarly and independently {X̃ ′

Qn+k}, k ∈{1; : : : ; (m− 1)} . Finally,
set d̃Qn+k := d̃Qn , k ∈{1; : : : ; (m− 1)}.

(2) if dn = 1, set Qn+1 :=Qn + 1 and Z̃Qn+1 :=Zn+1.

In words, every time Z ∈= × {0}, a gap of size (m − 1) is inserted and 1lled in
conditionally independently from the conditional distribution of the Markov chain given
the initial and :nal values. The resulting process Z̃ is no longer a Markov chain. We
denote respectively by P,;,′ ;0 and P̃,;,′ ;0 the probability distributions generated by the
processes Z and Z̃ on the canonical space. When Z0 ∼ ,⊗ ,′⊗ '0, it is easily veri1ed
that, for any n¿ 0, for any positive Borel function f,

Ẽ,;,′ ;0[f(X̃ n)] = ,Pnf and Ẽ,;,′ ;0[f(X̃
′
n)] = ,′Pnf:

The coupling-time is now de1ned as T := inf{n¿ 1; d̃n=1} : thus, T¿m P,;,′ ;0 a.e.,
and with this de1nition, the Lindvall’s inequality Eq. (42) still applies. De1ne

Am(l) := (1− �) sup
(x;x′)∈=

∫
Rm(x; dy)Rm(x′; dy′)Ey;y′ ;0[5∗l(T0 + m)]:

Using the property Eq. (8) of the sequence 5∗l, Proposition 7 and the de1nition
Eq. (54) of Wi, Am(l) is bounded for l¿ 1 by

Âm(l) := (1− �) sup
(x;x′)∈=

l∑
i=0

5∗(l−i)(m− 1)
∫

Rm(x; dy)Rm(x′; dy′)Wi(y; y′): (64)

Set Âm(0) := 1 − � and Âm(l) := 0 otherwise. Denote by Âm := [Âm; i; j]06i; j6q

where Âm; i; j := Âm(i − j). Set B̂m := (I − Âm)−1. An upper bound for B̂m;k; l can
be computed similarly to what is done for B̂k; l, by substituting -̂ given by (56) for

-̂m := sup
l∈{1; ::: ;q}

sup
(x;x′)∈=

l∑
i=0

5∗(l−i)(m− 1)
∫

Rm(x; dy)Rm(x′; dy′)Wi(y; y′):

Theorem 4. Let q be a positive integer and let C;D∈B(X), C ⊆ D. Assume that P
is  -irreducible aperiodic and that H1b[C;D] and H2[q; C; D] hold. There exists an
unique invariant probability measure � and for all x∈X; n¿m,

‖Pn(x; :)− �(:)‖TV6 2� min
k∈{0; ::: ;(q−1)}

{
U�;m(5∗k ; n)

q∑
l=0

B̂m;k; l'x ⊗ �(Wl)

}
:
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Proof. The proof follows from the coupling inequality Eq. (42) and Lemma 4 upon
showing

Ex;x′ ;0[5∗k(T − m)]6 �
q∑

l=0

B̂m;k; l Wl(x; x′): (65)

Set T ′
j :=Tj + j(m− 1), j¿ 0. We 1rst prove by induction that for all j¿ 0, and all

l∈{0; : : : ; q},

Ex;x′ ;0[5∗k(T ′
j ) 5{0}(dTj)]6

q∑
l=0

(Â
j
m)k; l Wl(x; x′): (66)

For j = 0, the property holds by Proposition 6. Assume that Eq. (66) holds for some
j¿ 0. Note that dTj+1 = dTj+1 and T ′

j+1 − T ′
j = Tj+1 − Tj + m − 1 = m + T0 ◦ @ 1+Tj .

Proceeding as above, we have

Ex;x′ ;0[5∗k(T ′
j+1)5{0}(dTj+1)]

=
k∑

l=0

Ex;x′ ;0[5∗l(T ′
j ) 5∗(k−l)(Tj+1 − Tj + m− 1) 5{0}(dTj+1)]

=
k∑

l=0

Ex;x′ ;0[Ex;x′ ;0[Ex;x′ ;0[5∗(k−l)(m+ T0 ◦ @ Tj+1)|FTj+1]5{0}(dTj+1)|FTj ]

×5∗k(T ′
j ) 5{0}(dTj)]:

The strong Markov property implies that

Ex;x′ ;0[5∗k(T ′
j+1) 5{0}(dTj+1)]

=
k∑

l=0

Ex;x′ ;0
[
(1− �)

∫
Rm(XTj ; dz)Rm(X ′

Tj
; dz′)

× Ez; z′ ;0[5∗(k−l)(m+ T0)]5∗l(T ′
j ) 5{0}(dTj)

]

6
k∑

l=0

Âm(k − l)Ex;x′ ;0[5∗l(T ′
j ) 5{0}(dTj)]

6
q∑

l=0

(Â
j
m)k; lEx;x′ ;0[5∗l(T ′

j ) 5{0}(dTj)]:

By use of the induction assumption, it holds

Ex;x′ ;0[5∗k(T ′
j+1) 5{0}(dTj+1)]6

q∑
l=0

[Â
j+1
m ]k; l Wl(x; x′):

We now conclude the proof as in Proposition 6. Px;x′ ;0-a.e., the sequence {dTj} is
equal to zero for 1nitely many values of j and {{dTj = 0} ∩ {dTj+1 = 1}} de1ne a
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partition of :. Thus,

Ex;x′ ;0[5∗k(T − m)] =
∑
j¿0

Ex;x′ ;0[5∗k(T ′
j )5{0}(dTj)5{1}(dTj+1)]

= �
∑
j¿0

Ex;x′ ;0[5∗k(T ′
j ) 5{0}(dTj)]6 �

q∑
k=0

B̂m;k; lWl(x; x′):

De1ne Â
(�)
m (0) := (1− �), for l∈{1; : : : ; q}

Â
(�)
m (l) := (1− �) sup

(x;x′)∈=

l∑
i=0

5∗(l−i)(m− 1)
∫

Rm(x; dy)Rm(x′; dy′)W�
i (y; y

′); (67)

and Â
(�)
m (l) := 0 otherwise. Denote by Â

(�)
m := [Â

(�)
m; i; j]06i; j6q where Â

(�)
m; i; j = Â

(�)
m (i− j).

Set B̂
(�)
m := (I − Â

(�)
m )−1. An upper bound for B̂

(�)
m;k; l can be computed similarly to what

is done for B̂
(�)
k; l , by substituting V- given by (58) for

V-m := sup
l∈{1; ::: ;q}

sup
(x;x′)∈=

l∑
i=0

5∗(l−i)(m− 1)
∫

Rm(x; dy)Rm(x′; dy′)W (�)
i (y; y′):

Theorem 5. Assume that P is  -irreducible aperiodic. Let q be a positive integer and
C;D∈B(X), C ⊆ D such that H1b[C;D] and H2[q; C; D] hold, and assume that there
exists 0¡�6 1 such that �(V�

q )¡∞. For all x∈X, n¿m,

‖Pn(x; :)− �(:)‖TV6 2� min
k∈{0; ::: ;q}

{
U�;m((5∗k)�; n)

q∑
l=0

B̂
(�)
m;k; l'x ⊗ �(W�

l )

}
:

The proof is omitted for brevity.

Remark 15. It is interesting to relate the conditions stated above and the single drift
conditions derived in Section 1. Let � be a Borel function, q be a positive integer and
C be a petite set. Assume S[�; q; C], and �0 ◦V is unbounded oK petite set (where �0

and V are de1ned in S[�; q; C]). The nested drift conditions Eq. (49) are veri1ed with
Vq := (

∏q−1
l=0 cl)�q ◦V , Vk := (

∏k−1
l=0 cl)�k ◦V , for k ∈{1; : : : ; (q− 1)}, V0 := �0 ◦V ,

bq−1 := cqb and bk := supx∈C[PVk+1−Vk+1 +Vk ], for k ∈{0; : : : ; (q−2)}. In addition,
since the constants ck are greater than 1, then V06V16 · · ·6Vq. For any ak ∈ (0; 1),
k ∈{0; : : : ; (q− 1)}, de1ne

D := C ∪
q−1⋃
k=0

{Vk 6 bk=(1− ak)}:

It is easily veri1ed that, with these de1nitions, H2[q; C; D] holds. Since Vk ¿V0, then
{Vk 6 l} ⊂ {V06 l}, k ∈{0; : : : ; (q − 1)}. By assumption, the level set {V06 l} is
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petite (for any l¿ 1), and thus all the level sets {Vk 6 l}, k ∈{0; : : : ; (q − 1)} are
petite. Hence, D is also petite (as a 1nite union of petite sets, Meyn and Tweedie, 1993,
Proposition 5.5.5.), and hence �m-small for some m¿ 1, which establishes H1b[C;D].

4. Computable bounds for polynomial f -ergodicity

Let W : X → [1;∞) be a Borel function. In this section, we focus on computable
bounds for the W -norm, ‖Pn(x; :)−�(:)‖W (we use here W instead of f to avoid confu-
sion with the function f used in the nested drift conditions). Let ,, ,′ be two probabil-
ity measures on B(X). Under H1a[C;D] or H1b[C;D], we can de1ne a coupling-time
T on a probability space (:;F; P,;,′ ;0) and write that for all measurable function
|g|6W 1−-, 06 -6 1,

|,Png− ,′Png|6
∫

,(dx),′(dx′)|Png(x)− Png(x′)|

6 E,;,′ ;0[{W 1−-(Xn) +W 1−-(X ′
n)}5T¿n];

that is

‖,Pn − ,′Pn‖W 1−- 6 E,;,′ ;0[{W 1−-(Xn) +W 1−-(X ′
n)}5T¿n]:

Then using the HQolder’s inequality, for all 0¡-¡ 1,

‖,Pn − ,′Pn‖W 1−- 6 2-E,;,′ ;0[{W (Xn) +W (X ′
n)}5T¿n]1−-P,;,′ ;0(T ¿n)-; (68)

and this inequality remains true for - = 0 (the case - = 1 was addressed in
Section 3). Remind that the bounds for polynomial ergodicity in total variation norm
given in Section 3, are computed from an estimation of the tail probability P,;,′ ;0(T ¿n).
Therefore, bounds for polynomial ergodicity in W -norm are determined under an ad-
ditional assumption, allowing to compute a bound for Ex;x′ ;0[{W (Xn) +W (X ′

n)}5T¿n],
for all (x; x′)∈X ×X (which has to be 'x ⊗ �-integrable).
Let W : X→ [1;∞) be a Borel function, q be a positive integer and C;D∈B(X),

C ⊆ D.

H3[W;C;D] supD W ¡∞ and there exist a Borel function 16w6W and a
constant b¡∞ such that

PW 6W − w + b5C;

w¿ b; on Dc:

Proposition 8. Let C;D∈B(X), C ⊆ D and W ¿ 1 be a Borel function. Assume that
H1b[C;D] and H3[W;C;D] hold. Then, for all (x; x′)∈X ×X, and all n¿ 0,

Ex;x′ ;0[{W (Xn) +W (X ′
n)}5T¿n]6M(W ; x; x′);

M(W ; x; x′) := W (x) +W (x′)
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+ �−1

(
(1− �) sup

(x;x′)∈=
{RmW (x) + RmW (x′)}

+ sup
(x;x′)∈=;k∈{1; ::: ;m−1}

{PkW (x) + PkW (x′)}
)

:

Proof. To simplify the notations, it is assumed here that m = 1. The 1rst step of the
proof consists in showing that, for all (x; x′)∈X ×X and all n¿ 0,

Ex;x′ ;0[(W (Xn) +W (X ′
n))5T0¿n]6W (x) +W (x′); (69)

where T0 is the hitting-time on = × {0} of Z . The proof is by induction on n. The
induction assumption Eq. (69) is obvious for n= 0. Assume now that Eq. (69) holds
for some n¿ 0. We have

Ex;x′ ;0[(W (Xn+1) +W (X ′
n+1)) 5T0¿n+1]

= Ex;x′ ;0[(W (Xn+1) +W (X ′
n+1))5T0¿n5=c×0(Zn)];

= Ex;x′ ;0[EZn [(W (X1) +W (X ′
1))]5T0¿n5=c×0(Zn)]: (70)

For (x; x′) �∈ =, we may write

Ex;x′ ;0[(W (X1) +W (X ′
1))5{0}(d1)]

=PW (x) + PW (x′)

6W (x) +W (x′)− (w(x)− b5C(x′))− (w(x′)− b5C(x)):

Under the stated assumption w(x)−b5C(x′)¿ 0 and w(x′)−b5C(x)¿ 0 for (x; x′) �∈ =
showing that

Ex;x′ ;0[(W (X1) +W (X ′
1))5{0}(d1)]5=c(x; x′)6W (x) +W (x′): (71)

Plugging this relation into Eq. (70) yields the desired result. Write

Ex;x′ ;0[{W (Xn) +W (X ′
n)}5T¿n]

= Ex;x′ ;0[{W (Xn) +W (X ′
n)}506n6T0 ]

+
∑
j¿1

Ex;x′ ;0[{W (Xn) +W (X ′
n)}5Tj−1¡n6Tj5{0}(dTj)]: (72)

Note that Tj = Tj−1 + 1 + T0 ◦ @ Tj−1+1 and dTj = dTj−1+1. For j¿ 1,

Ex;x′ ;0[{W (Xn) +W (X ′
n)}5Tj−1¡n6Tj5{0}(dTj)] =

∫
U (!; @ 1+Tj−1 (!)) dPx;x′ ;0(!);

where

U (!1; !2) := {W (Xn−(Tj−1(!1)+1)(!2)) +W (X ′
n−(Tj−1(!1)+1)(!2))}

×506n−(Tj−1(!1)+1)6T0(!2)5{0}(dTj−1+1(!1)):
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Applying a variant of the strong Markov property (see Lemma 6 in Appendix B) with
�= Tj−1 + 1 yields

Ex;x′ ;0[{W (Xn) +W (X ′
n)}5Tj−1¡n6Tj5{0}(dTj)]

6
∫
5{0}(dTj−1+1(!1))

∫
{W (Xn−(Tj−1(!1)+1)(!2)) +W (X ′

n−(Tj−1(!1)+1)(!2))}

×5T0(!2)¿n−(Tj−1(!1)+1)¿0 dPX1+Tj (!1);X ′
1+Tj

(!1);0(!2) dPx;x′ ;0(!1):

Then, using Eq. (69) and the strong Markov property

Ex;x′ ;0[{W (Xn) +W (X ′
n)}5Tj−1¡n6Tj5{0}(dTj)]

6
∫
5{0}(dTj−1+1(!1)){W (X1+Tj (!1)) +W (X ′

1+Tj
(!1))} dPx;x′ ;0(!1)

6 Ex;x′ ;0[5{0}(dTj−1+1){W (X1+Tj−1 ) +W (X ′
1+Tj−1

)}]

6 Ex;x′ ;0[5{0}(dTj−1 ) sup
(x;x′)∈=

(1− �)
∫

R(x; dy)R(x′; dy′){W (y) +W (y′)}]

6 (1− �)j−1(1− �) sup
(x;x′)∈=

∫
R(x; dy)R(x′; dy′){W (y) +W (y′)}: (73)

The proof is concluded by combining Eqs. (72) and (73).

If P is  -irreducible and aperiodic, then under H1b[C;D] and H3[W;C;D], P has
an unique invariant probability measure � and M(W ; x; x′) is 'x ⊗ �-integrable if and
only if �(W )¡∞.

Theorem 6. Assume that P is  -irreducible and aperiodic. Let q be a positive inte-
ger and C;D∈B(X), C ⊆ D, and W ¿ 1 be a Borel function. Assume H1b[C;D],
H2[q; C; D] and H3[W;C;D]. Then, P has an unique invariant probability measure �,
and for all x∈X, n¿m and 06 -6 1,

‖Pn(x; :)− �(:)‖W 1−-

6 2-�- min
k∈{0; ::: ;(q−1)}

{
U�;m(5∗k ; n)-

∫
'x(dy)�(dy′) {M(W ;y; y′)}1−-

×
{ q∑

l=0

B̂m;k; lWl(y; y′)

}-}
;

where (�; m), the sequence U�;m(5∗k ; :), the vector Wk , the matrix B̂m := (I − Âm)−1,
are given by Eqs. (62), (44), (54), (64), respectively. Assume in addition that there
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exists 0¡�6 1 such that �(V�
q )¡∞. Then for all x∈X, n¿m, 06 -6 1,

‖Pn(x; :)− �(:)‖W 1−-

6 2-�- min
k∈{0; ::: ;q}

{
U�;m((5∗k)�; n)-

∫
'x(dy)�(dy′){M(W ;y; y′)}1−-

×
{ q∑

l=0

B̂
(�)
m;k; lW

�
l (y; y

′)

}-}
;

where the matrix B̂
(�)
m := (I − Â

(�)
m )−1 is de:ned in Eq. (67).

Theorem 6 is a consequence of Eq. (68), Proposition 8 and of Theorems 4 and 5.
For - = 1, the bounds above coincides with the one given in Theorems 4 and 5 for
total variation norm. Note that the bounds above are of interest only if �(W )¡∞.
Rates of convergence. Assume that there exist a drift function V unbounded oK

petite set, some 0¡'¡ 1=2, a petite set C and some constants b¡∞, c¿ 0, such
that supC V ¡∞ and PV 6V − cV 1−' + b5C .

Set q := �1='� and �(x) := |x|1−'. Then, for any 0¡56 1 − q' Eq. (31) shows
that the function V5+q' satis1es the condition S[�; q; C]. As 5¿ 0, the function �0 ◦
V5+q' ˙ V5 is unbounded oK petite set and (see Remark 15), there exist (a) a
�m-small set D5 ⊇ C such that H1b[C;D5] holds and (b) some functions Vk ˙ V5+k'

satisfying H2[q; C; D5]. In addition, the JR drift condition implies that �(V 1−')¡∞
that is �(V�

q )¡∞ with � := (1 − ')=(5 + q'). Finally, as '¡ 1=2, the condition
H3[V 1−'; C; D5] also holds.
Hence, when P is  -irreducible and aperiodic, Theorem 6 applies and by setting

- := (/ − 1)'=(1− '), we have, for all x∈Rl, /∈ [1; 1='],

sup
n

(n+ 1)q(/−1)'=(5+q')‖Pn(x; :)− �(:)‖V 1−/' ¡∞:

By taking 5 ↓ 0, we 1nally obtain for all x∈Rl, /∈ [1; 1='] and 0¡.¡/,

sup
n

(n+ 1).−1‖Pn(x; :)− �(:)‖V 1−/' ¡∞: (74)

In comparison, application of Proposition 5 under the same assumptions shows
(see Eq. (32)) that limn→∞ n/−1‖Pn(x; :)−�(:)‖V 1−/'=0, which is indeed, stronger than
Eq. (74) from an asymptotic standpoint. Eq. (74) allows however to evaluate an explicit
upper bound for the f-norm.
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Appendix A. Proofs of Section 2

A.1. Proof of Lemmas 1 and 2

A.1.1. A general result
Let P be the transition kernel of a Hastings Metropolis algorithm on R with proposal

density (w.r.t. the Lebesgue measure) k(y) and target density p(y). Assume that p is
such that

(i) there exist 06 5¡ 1, some measurable functions l̇ : R → R, 3 : R → [0;∞),
lim|x|→∞|3(x)|=0, and some constants C ¡∞, M ¡∞ such that for all |x|¿M ,
and all y∈R(x)− x,∣∣∣∣p(x + y)

p(x)
− 1− l̇(x)y

∣∣∣∣6C|x|5−13(x)y2;

|x|1−5 |l̇(x)|6C:

Assume that the proposal density k is such that

(ii) there exist 0¡-¡ 1 and �∈R if 5¿ 0, and �¿ 2 if 5= 0 such that∫
{|y|�+25+2 exp(-|y|5) + |y|3}k(y) dy¡∞:

Lemma 5. Assume (i–ii). Set V (x) := |x|� exp(-|x|5) if 5 �= 0 and V (x) := |x|�
otherwise. Then

PV (x)− V (x)6
∫

Ĩ 1(x; y)k(y) dy +
∫

Ĩ 2(x; y)k(y) dy + |x|25−2V (x)�(x)

where lim|x|→∞ �(x) = 0 and

Ĩ 1(x; y) := (-5|x|5−1 + �|x|−1)V (x)sign(x)y

+
(
�(� − 1)

2
|x|−2 +

-252

2
|x|25−2

)
V (x)y2;

Ĩ 2(x; y) := 5R(x)−x(y)(-5|x|5−1 + �|x|−1)V (x) sign(x) l̇(x)y2:

Proof. We will use the following two results, the proofs of which are omitted. (a) For
all y∈R,

V (x + y)− V (x) = (-5|x|5−1 + �|x|−1)sign(x)V (x)y

+(-252=2|x|25−2+�(�−1)=2|x|−2)V (x)y2+|x|25−2V (x)�(x)

and lim|x|→∞�(x) = 0. (b) There exist some 1nite constants K;M ′ such that for all
|x|¿M ′, y∈R,

V (x + y)− V (x) = (�|x|−1 + -5|x|5−1) sign(x)V (x)y + R(x; y); (A.1)
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where |R(x; y)|6K |x|25−2V (x)|y|�+25 exp(-|y|5). In order to prove the lemma, we
write

PV (x)− V (x) =
∫
(V (x + y)− V (x))k(y) dy

+
∫
R(x)−x

(V (x + y)− V (x))
(
p(x + y)

p(x)
− 1
)

k(y) dy

=:
∫

I1(x; y)k(y) dy +
∫

I2(x; y)k(y) dy

and show that
∫ {Ii(x; y)− Ĩ i(x; y)}k(y) dy = |x|25−2V (x)�(x), i = 1; 2, and lim|x|→∞ �

(x)= 0; more precisely, we show that
∫
Hi(x; y)k(y) dy= �i(x), lim|x|→∞ �i(x)= 0, by

setting

Hi(x; y) := |x|−25+2V−1(x){Ii(x; y)− Ĩ i(x; y)}:
We deduce easily that for all y∈Rl, H1(x; y) = �(x). In addition, from (A.1), it holds
that for all |x|¿M ′,

H1(x; y) = |x|−25+2V−1(x)R(x; y)− (�(� − 1)=2|x|−25 + -252=2)y2:

Thus, there exists a 1nite constant K ′ such that for all |x|¿M ′, |H1(x; y)|6K ′{|y|2+
|y|�+25 exp(-|y|5)} and this upper bound is k(y) dy-integrable. It follows from the
dominated convergence Theorem that

∫
H1(x; y)k(y) dy=�1(x) and lim|x|→∞ �1(x)=0.

Similarly, there exist some constants K ′′; M ′′ ¡∞ such that for all |x|¿M ′′

|H2(x; y)|6K ′′{(1 + |x|−5)|y|33(x) + |x|5−1|y|�+25+2e-|y|
5}:

Thus lim|x|→∞ H2(x; y) = 0 for any given y and sup|x|¿M ′′ |H2(x; y)| is k(y) dy-
integrable, and the dominated convergence theorem again yields

∫
H2(x; y)k(y) dy =

�2(x) and lim|x|→∞ �2(x) = 0.

A.1.2. Proof of Lemma 1
Under (A1), the conditions (i–ii) of Lemma 5 are veri1ed by setting 5 = 0

and l̇(x) =−sx−1. (A2ii) implies (ii) for all 26 �6 4+ 1. Note 1nally that, since k
is symmetric,∫

yk(y) dy = 0 and lim
|x|→∞

∫
R(x)−x

y2k(y) dy = �2
k =2;

and the result follows.

A.1.3. Proof of Lemma 2
Under (A3), the condition (i) of Lemma 5 holds with 5 equal to the shape parameter

of the Weibull distribution and l̇(x)=−5x5−1. Finally, (A4ii) implies (ii) for all �∈R
and the proof follows from the symmetry of k.
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A.2. Proof of Lemma 3

For |x|6M , we have∫
P(x; dy)|y|s =

∫
|y + F(x)|s.(y) dy6 2(s−1)∨0

{
sup

|x|6M
|F(x)|s + 8(s)

}
¡∞:

Assume now that |x|¿M . We write

|F(x) + y|s6 (|F(x)|2 + |y|2 + 2〈F(x); y〉)s=2

6 (|x|2(1− r|x|−d)2 + |y|2 + 2〈F(x); y〉)s=2 =:N (x; y)

and we determine an upper bound for N (x; y). The following inequalities hold .(y)
dy-a.e.
(i) If s6 1, the sub-additivity of the function t �→ |t|s implies |F(x)+y|s6 |F(x)|s+

|y|s. If s¿ 1, we adapt here the proof of AngoNze (2000, Theorem 2). We write(∫
|F(x) + y|s8(dy)

)1=s
6 |F(x)|+ 8(s)1=s6 ‖x|(1− r|x|−d)|+ 8(s)1=s

6 |x|(1− {r − 8(s)1=s|x|d−1}|x|−d):

As 8(s)¡∞, there exists a 1nite constant C such that∫
P(x; dy)|y|s6 |x|s(1− {r − 8(s)1=s|x|d−1}|x|−d)s

6 |x|s(1− sr|x|−d + C|x|−d�(x))

and lim|x|→∞�(x) = 0. Hence Lemma 3(i) follows.
(ii) If d6 s6 2,

|F(x) + y|s

6 ‖x|(1− r|x|−d)|s

+ s=2(|y|2 + 2〈F(x); y〉)
∫ 1

0
(|x|2(1−r|x|−d)2+u|y|2+2u〈F(x); y〉)s=2−1 du

6 ‖x|(1− r|x|−d)|s + s=2(|y|2 + 2〈F(x); y〉)‖x|(1− r|x|−d)|s−2

and the result follows since
∫ 〈F(x); y〉8(dy) = 0.

If s¿ 2, we write

|F(x) + y|s6 ‖x|(1− r|x|−d)|s + s=2(|y|2 + 2〈F(x); y〉)‖x|(1− r|x|−d)|s−2

+ (s=2− 1)(|y|2 + 2〈F(x); y〉)2
∫ 1

0
(1− u)(|x|2(1− r|x|−d)2

+ u|y|2 + 2u〈F(x); y〉)s=2−2 du:
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Observe that if s¿ 4, then there exists a 1nite constant C such that∫ 1

0
(|x|2(1− r|x|−d)2 + u|y|2 + 2u〈F(x); y〉)s=2−2 du6C|x|s−4|y|s−4 (A.2)

and if 2¡s6 4; (|x|2(1 − r|x|−d)2 + u|y|2 + 2u〈F(x); y〉)¿ (1 − u)|x|2(1 − r|x|−d)2

so that Eq. (A.2) still holds. Hence,

|F(x) + y|s6 ‖x|(1− r|x|−d)|s + s=2(|y|2 + 2〈F(x); y〉)‖x|(1− r|x|−d)|s−2

+C|x|s−2|y|s:
And Lemma 3(ii) follows.
(iii) If s = 2, |F(x) + y|2 = |F(x)|2 + |y|2 + 2〈F(x); y〉 and Eq. (35) follows since∫ 〈F(x); y〉8(dy) = 0.
If 2¡s6 6, we write

|F(x) + y|s6 ‖x|(1− r|x|−2)|s + s=2(|y|2 + 2〈F(x); y〉)‖x|(1− r|x|−2)|s−2

+ s=2(s=2−1)(|y|2+2〈F(x); y〉)2
∫ 1

0
(1−u)(|x|2(1−r|x|−2)2

+ u|y|2 + 2u〈F(x); y〉)s=2−2 du:

If 2¡s6 4, since |x|2(1 − r|x|−2)2 + u|y|2 + 2u〈F(x); y〉¿ (1 − u)|x|2(1 − r|x|−2)2,
there exists a 1nite constant C such that

(|y|2 + 2〈F(x); y〉)2
∫ 1

0
(1− u)(|x|2(1− r|x|−2)2 + u|y|2 + 2u〈F(x); y〉)s=2−2 du

6 (|y|2 + 2〈F(x); y〉)2‖x|(1− r|x|−2)|s−4
∫ 1

0
(1− u)s=2−1 du

6 8=s|x|s−2|y|2 + C|x|s−3|y|4:
Hence,

|F(x)+y|s6 ‖x|(1−r|x|−2)|s+s=2|x|s−2|y|2+s〈F(x); y〉‖x|s−2(1− r|x|−2)|s−2

+ 4(s=2− 1)|x|s−2|y|2 + C|x|s−3|y|4:
If 4¡s6 6, since

(|x|2(1− r|x|−2)2 + u|y|2 + 2u〈F(x); y〉)s=2−2

6 ‖x|(1− r|x|−2)|s−4 + ‖y|2 + 2〈F(x); y〉|s=2−2

then there exists a 1nite constant C such that

s=2(s=2− 1)(|y|2 + 2〈F(x); y〉)2
∫ 1

0
(1− u)(|x|2(1− r|x|−2)2

+ u|y|2 + 2u〈F(x); y〉)s=2−2 du

6 s=2(s=2− 1)|x|s−2|y|2 + C|x|s=2|y|s:
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Hence,

|F(x) + y|s6 ‖x|(1− r|x|−2)|s + s=2|x|s−2|y|2 + s〈F(x); y〉‖x|(1− r|x|−2)|s−2

+ s=2(s=2− 1)|x|s−2|y|2 + C|x|s=2|y|s: (A.3)

Finally, if s¿ 6, we write

|F(x) + y|s

6 ‖x|(1− r|x|−2)|s + s=2(|y|2 + 2〈F(x); y〉)‖x|(1− r|x|−2)|s−2

+ s=4(s=2−1)(|y|2+2〈F(x); y〉)2‖x|(1−r|x|−2)|s−4

+ s=4(s=2−1)(s=2−2)(|y|2 + 2〈F(x); y〉)3
∫ 1

0
(1− u)2(|x|2(1−r|x|−2)2

+ u|y|2 + 2u〈F(x); y〉)s=2−3 du:

Since s=2− 3¿ 0, there exists a 1nite constant C such that

s=4(s=2− 1)(|y|2 + 2〈F(x); y〉)2‖x|(1− r|x|−2)|s−4

6 s(s=2− 1)|x|s−2|y|2 + C|x|s−3|y|4

and

(|y|2 + 2〈F(x); y〉)3
∫ 1

0
(1− u)2(|x|2(1− r|x|−2)2 + u|y|2

+ 2u〈F(x); y〉)s=2−3 du6C|x|s−3|y|s:
We then conclude as in Eq. (A.3).

Appendix B. Proof of Lemma 6

The following lemma is a strengthening of the strong Markov property (see Dynkin,
1963, Lemma 5.5.); we have included it for the sake of completeness.

Lemma 6. Let � = (:;F; {Fn}; Px; {�n}) be a Markov process. Let � be a Fn-
stopping-time and U be a F�⊗F-measurable positive function. Then for any initial
probability measure ,,∫

{�(!)¡∞}
U (!; @ �!) dP,(!) =

∫
{�(!1)¡∞}

∫
U (!1; !2) dP��(!1)(!2) dP,(!1):

Proof. It is suFcient to prove the lemma for U (!;!′) := U1(!)U2(!′) for U1; U2

two positive random variables and U1 F�-measurable. In that case, we have∫
�¡∞

U1(!)U2(@ �!)P,(d!) =
∫
�¡∞

U1(!)E,[U2(@ �)|F�]:
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Using the strong Markov property,∫
�¡∞

U1(!)U2(@ �!)P,(d!) =
∫
�¡∞

U1(!)E��(!)[U2]P,(d!)

=
∫
�¡∞

U1(!)
∫

U2(!′)P��(d!
′)P,(d!)

which concludes the proof.
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