Early protein E2 of human papillomaviruses (HPV), that are associated with cervical and anogenital cancers, regulates viral DNA replication and transactivation of procaspase-8, a component of the death-inducing signaling complex (DISC) in the extrinsic cell death pathway. This interaction bypasses the requirement of upstream adaptor proteins which are essentially required for DISC formation, thereby representing a novel adaptor-independent caspase activation pathway.

In this work, we dissected the binding interface of E2-procaspase-8 interaction using an interdisciplinary approach employing techniques such as in silico, mutational, biochemical and biophysical analyses. In vitro pull-down and coexpression studies show that E2 specifically interacts with procaspase-8 death effector domain (DED) B. We further delineated the minimal binding region in DED B using different deletion constructs. Based upon docking analyses, site-directed mutagenesis of E2 was carried out and critical residues involved in this protein-protein interaction were identified. Our results provide a molecular basis of this novel E2-procaspase-8 interaction and help in providing a model for E2-induced apoptosis in high risk HPV types. This information may be utilized in future studies to design E2 analogs so as to modulate procaspase-8 activation and hence promote apoptosis.

Intrinsically Disordered Proteins

3194-Pos Board B55

Polypeptide Chain Collapse of Amyloidogenic Intrinsically Disordered Proteins

Samrat Mukhopadhyay, Neha Jain, Mily Bhattacharya.

Indian Institute of Science Education and Research (IISER), Mohali, Mohali, India.

My laboratory utilizes a diverse array of biophysical tools to unravel the mechanisms of protein misfolding and aggregation leading to amyloid fibril formation [1-4]. Polypeptide chain collapse of amyloidogenic intrinsically disordered proteins (IDPs) has important consequences in protein aggregation. Using a variety of prediction and spectroscopic tools, we have first established that an archebacterial IDP namely κ-casein adopts a collapsed ‘pre-molten-globule’ like conformational ensemble under physiological condition [1]. Our results indicated a change in the mean hydrodynamic radius from ~4.6 nm to ~1.9 nm upon chain collapse.

We then took the advantage of two cysteines that are separated by 77-amino acid residues and labeled them using thiol-reactive pyrene maleimide. This dual-labeled protein demonstrated a strong excimer formation upon renaturation providing a compelling evidence of polypeptide chain collapse under physiological conditions (Figure 1). I will also discuss our recent results on biologically important amyloidogenic IDPs such as α-synuclein and disordered segment of human prion protein.