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Abstract

Let G = ×n
i=1C�i

be a direct product of cycles. It is known that for any r � 1, and any n � 2, each
connected component of G contains a so-called canonical r-perfect code provided that each �i is a multiple
of rn + (r +1)n. Here we prove that up to a reasonably defined equivalence, these are the only perfect codes
that exist.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The study of codes in graphs presents a wide generalization of the problem of the existence of
(classical) error-correcting codes. In general, for a given graph G we search for a subset X of its
vertices such that the r-balls centered at vertices from X form a partition of the vertex set of G.
The study of codes in graphs was initiated by Biggs [1]. For more recent results on (perfect)
codes see [2,4,7,8,10,12–15]. The paper [11] gives an almost complete description of perfect
codes in the direct product of cycles. It is shown that if each �i is a multiple of rn + (r + 1)n,
then ×n

i=1C�i
has an r-perfect code, and a partial converse is established. The present article
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proves the converse in complete generality. We show that a direct product ×n
i=1C�i

of cycles
has an r-perfect code if and only if every �i is a multiple of rn + (r + 1)n. Moreover, we prove
that up to a reasonably defined equivalence the so-called canonical r-perfect codes are the only
r-perfect codes that are possible.

2. Preliminaries

For a graph G the distance dG(u, v), or briefly d(u, v), between vertices u and v, is defined
as the number of edges on a shortest path from u to v. A set C ⊆ V (G) is an r-code in G if
d(u, v) � 2r + 1 for any two distinct vertices u,v ∈ C. The code C is called an r-perfect code if
for any u ∈ V (G) there is exactly one v ∈ C such that d(u, v) � r .

Let G be a graph, u a vertex of G, and r � 0. The r-ball B(u, r) with center u and diameter
r is defined as B(u, r) = {x | dG(u, x) � r}. In this terminology C ⊂ V (G) is an r-perfect code
if and only if the r-balls B(u, r), where u ∈ C, form a partition of V (G).

The direct product G×H of graphs G and H is a graph defined on the Cartesian product of the
vertex sets of the factors. Two vertices (u1, u2) and (v1, v2) are adjacent whenever u1v1 ∈ E(G)

and u2v2 ∈ E(H). The direct product of graphs is commutative and associative in a natural way.
Hence, for graphs G1, . . . ,Gn we may write

G = G1 × · · · × Gn =
n×

i=1
Gi

without parentheses, and the vertices of G can be represented as vectors v = (v1, . . . , vn), where
vi ∈ V (Gi), 1 � i � n.

The direct product G = ×n
i=1C�i

is connected if and only if at most one of the �i ’s is even.
Otherwise, G consists of 2k−1 isomorphic connected components, where k is the number of �i ’s
that are even, see [9]. Since a direct product of cycles is vertex transitive we can, without loss
of generality, assume that v = 0 is a fixed arbitrary vertex of the product considered. For more
properties of graph products see [5].

Each n × n matrix can be associated with a directed graph with weighted directed edges.
(Entry aij corresponds to the weight of the directed edge from i to j and the diagonal entries
correspond to the weights of loops.) In particular, the skew-symmetric matrices with nondiagonal
entries |aij | = 1 are associated with tournaments. A tournament is a directed graph with an arc
between every pair of distinct vertices. Clearly, an arc from i to j can be understood as an arc
with weight 1 from u to v and arc from v to u with weight −1. Hence any skew-symmetric
matrix with nondiagonal entries |aij | = 1 gives rise to a tournament, and for any tournament T

and its adjacency matrix M , the matrix M − MT is skew-symmetric.
We will use combinatorial definition of determinant [3]

det(A) =
∑
F∈F

(−1)n+p(F )C(F )

where the sum runs over all factors F of the graph associated to the matrix A, and C(F) is the
cost of the factor F , i.e. the product of all weights of directed edges of F , and p(F) is the number
of cycles of F . A factor is a spanning subgraph in which all vertices have indegree and outdegree
one, i.e., is a union of directed cycles that cover all vertices.



J. Žerovnik / Advances in Applied Mathematics 41 (2008) 197–205 199
2.1. Construction of the standard codes in products of several cycles

It has been proved in [11] that (each connected component of) the direct product of n cycles
contains an r-perfect code, r � 1, if the length of each cycle is a multiple of rn + (r + 1)n. Here
we recall the construction from [11] and call the codes constructed this way canonical codes.

For a given r � 1 we define s = 2r + 1 and use this notation throughout the paper. For de-
scription of the canonical perfect codes, we use the following vectors bi ∈ Z

n:

b1 = (s, 1, 1, . . . , 1),

b2 = (−1, s, 1, . . . , 1),

b3 = (−1, −1, s, . . . , 1), (1)
...

. . .

bn = (−1, −1, −1, . . . , s).

Let us call the vectors b1, . . . ,bn canonical local vectors. The corresponding vertices 0+b1, . . . ,

0 + bn are called canonical local vertices for 0 in [11].
The canonical perfect code is the set

Qn =
{

0 +
n∑

i=1

αibi
∣∣∣ αi ∈ Z

}
,

where the arithmetic in coordinate i is done modulo �i . Note that due to vertex transitivity, any
vertex can be used instead of 0. (The resulting code would be Qn modulo a translation.)

Recall that an r-ball in the product has rn + (r + 1)n vertices. From the definition of a perfect
code, it follows directly that the number of vertices of a perfect code P is

|P | = �1 · �2 · · ·�n

rn + (r + 1)n
. (2)

It is known [11] that a perfect code P is totally determined by its local structure, i.e. by the
set of local vectors

b1(P) = (s, a12, a13, . . . , a1n),

b2(P) = (a21, s, a23, . . . , a2n),

b3(P) = (a31, a32, s, . . . , a3n), (3)
...

. . .

bn(P) = (an1, an2, an3, . . . , s).

where |aij | = 1 and aij = −aji .
We can now recall some of the results from [6,11]:

Theorem 1. (See [11].) Let r � 1, n � 2, and G = ×n
i=1C�i

, where each �i is a multiple of
rn + (r + 1)n. Then each connected component of G contains an r-perfect code.
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Theorem 2. (See [11].) Let P be an r-perfect code of a connected component of ×n
i=1C�i

, where
r � 2, n � 2, and �i � 2r + 2. Suppose that P contains 0 and the canonical local vertices for 0.
Then every �i is a multiple of rn + (r + 1)n.

Theorem 3. (See [6,11].) Let r � 2 and 2 � n � 4. Then (a connected component of ) ×n
i=1C�i

,
�i � 2r + 2, contains an r-perfect code if and only if every �i is a multiple of rn + (r + 1)n.

Our aim here is to generalize the last result to arbitrary n.
The matrix in which the rows are the coordinates of the local vectors of the code P will be

called the matrix of the code and denoted by B(P ). Note that from the properties of the local
structure of the code P we know that the off-diagonal elements form a matrix which is skew-
symmetric, i.e. BT = −B , where B = B(P ) − sI .

B(Qn) is thus the matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s 1 1 1 1
−1 s 1 1 1
−1 −1 s 1 1
...

. . .
...

−1 −1 s 1 1
...

. . .
...

−1 −1 s 1
−1 −1 −1 s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The determinant of B(Qn) is not difficult to compute, for example using the combinatorial
definition.

Lemma 4. det(B(Qn)) = 1
2 ((s + 1)n + (s − 1)n) = sn + (

n
2

)
sn−2 + (

n
4

)
sn−4 + · · · .

2.2. Embeddings into R
n

This section develops a formula for det(B(P )). We use the fact that a direct product of cycles
can be embedded in a torus, as follows.

The product of n infinite paths has 2n−1 components. This product can be embedded in R
n

by letting its vertices be the vectors with integer coordinates, and its edges be the line segments
between vertices (x1, x2, . . . , xn) and (x1 ±1, x2 ±1, . . . , xn±1). (Note that this is not technically
an embedding, because some edges cross, but it is an embedding of each component.) Now
define an equivalence relation ∼ on R

n by declaring x ∼ x̄ if the ith components are congruent
modulo �i . The quotient space R

n/ ∼ is an n-dimensional torus, and the direct product of paths
under this quotient operation is the product ×n

i=1C�i
locally embedded in the torus.

For each x in a perfect code P , there is a parallelepiped {x + ∑
αibi (P) | 0 � αi < 1} on the

torus. Locally, these |P | parallelepipeds tile the torus, but they cover it 2n−1 times. Since the torus
has volume �1 · �2 · · ·�n, the volume V of each parallelepiped satisfies |P | · V = �1�2···�n

rn+(r+1)n
V =

2n−1�1�2 · · ·�n. Hence

V = 2n−1(rn + (r + 1)n
) = 1

2

(
2nrn + 2n(r + 1)n

)
= �1 · �2 · · ·�n (

(2r)n + (2r + 2)n
) = 1 (

(s − 1)n + (s + 1)n
)
. (4)
2 2
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As the determinant of B(P ) corresponds to the volume of n-dimensional parallelepiped we
conclude

Lemma 5. For any perfect code P , det(B(P )) = 1
2 ((s − 1)n + (s + 1)n).

2.3. Codes, tournaments, determinants

Each perfect code in a direct product of cycles that is embedded into R
n/∼ can be associated

with a skew-symmetric matrix and consequently with a tournament. As a perfect code P is
uniquely determined by its local structure, it has a unique matrix B(P ) and in turn, properties of
B(P ) assure that B(P ) − sI gives rise to a tournament.

On the other hand, given a tournament T on n vertices, we can obtain a potential local struc-
ture as follows. First assign labels 1, . . . , n to vertices of the tournament. The elements of the
matrix A(T ) are then defined by the rule: aij = +1 if the edge between i and j is directed i → j

and aij = −1 if the edge between i and j is directed j → i. Clearly, the matrix obtained is
skew-symmetric and the nondiagonal elements have absolute value one. Matrix A(T ) + sI is a
potential local structure.

Obvious questions are: how the arbitrary labeling of the vertices of tournament affects the
result of the construction, what tournaments can be used to construct a local structure that cor-
responds to a perfect code, and are there different tournaments that give rise to the same perfect
code.

Before we answer these questions we will recall some facts on tournaments, and determinants
of the skew-symmetric matrices corresponding to tournaments. We will also define the notions
of equivalent codes and equivalent tournaments.

2.4. Determinants of the tournaments

The matrices corresponding to tournaments are skew-symmetric, i.e. aij = −aji . In particular,
they have zero diagonals. In addition, |aij | = 1. In the sequel we will use the following well-
known properties of determinants of such skew-symmetric matrices (see [16, pp. 65–77]). Let A

be a skew-symmetric matrix with n rows and columns. Then

• det(A) = 0 for odd n;
• det(A) = Pf(A)2 for n = 2k, where Pf(A) is the Pfaffian.

The Pfaffian is defined as

Pf(A) =
∑

sgn
{{i1, j1}, {i2, j2}, . . . , {ik, jk}

}
ai1,j1 · ai2,j2 · · ·aik,jk

,

where the sum extends over all possible partitions {{i1, j1}, {i2, j2}, . . . , {ik, jk}} of the set
{1,2, . . . ,2k} and sgn{{i1, j1}, {i2, j2}, . . . , {ik, jk}} is the signature of the corresponding per-
mutation. Pf(A) is a polynomial of the matrix elements, in particular, it has (2k)!

2kk! terms of the
form ±ai1,j1 · ai2,j2 · · ·aik,jk

. In our case, all nondiagonal matrix elements have absolute value
one, and the number of terms (2k)!

2kk! = (2k − 1) · (2k − 3) · · ·3 · 1 is odd. As a sum of odd number
of terms of the same absolute value cannot be zero, its square must be positive. Therefore
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Lemma 6. Let A be the adjacency matrix of a tournament on n vertices. Then det(A) = 0 for
odd n and det(A) � 1 for even n.

3. Equivalent codes and equivalent tournaments

The perfect code in a graph can correspond to different tournaments depending on different
embeddings because we can orient the embedding of each cycle in two ways yielding different
coordinates for the local vectors.

Clearly, two codes P1 and P2 are equivalent if one can be obtained from another by reversing
the orientation of one coordinate. Hence from the matrix B(P1) one obtains B(P2) by choosing
appropriate index, say i, and reversing the signs of all elements of ith row and ith column. Note
that this does not change the value of determinant, i.e. det(B(P1)) = det(B(P2)). On tourna-
ments, this operation means that all directed edges that meet the vertex i change the direction.

The second operation that obviously preserves the equivalence, is a permutation of the labels
of vertices of the tournament, which corresponds to a permutation of rows (and columns) of the
matrix, and to a reordering of the coordinate axes in the embedding of the code.

Definition 7. The relation � on the set of all tournaments on n vertices is the transitive and
reflexive closure of the relation R that is defined by the rule: two tournaments T1 and T2 are
in relation R, if T2 is isomorphic to a tournament which is obtained from T1 by reversing the
direction of all directed edges that meet one vertex.

The relation � is clearly symmetric, hence � is an equivalence relation, and we say tourna-
ments T1 and T2 are equivalent when T1 � T2.

Recall that two codes embedded in a torus are equivalent if one can be obtained from another
by reversing (some) axes and by permuting the coordinates. From the reasoning above it is clear
that

Lemma 8. Equivalent tournaments correspond to equivalent codes.

Furthermore,

Lemma 9. The matrices that correspond to equivalent codes have equal determinants.

We will later need some facts about tournaments on four vertices. There are four noniso-
morphic tournaments on four vertices that can be identified with their indegree sequences:
T (0,1,2,3), T (0,2,2,2), T (1,1,1,3), T (1,1,2,2) (see Fig. 1). The first tournament, with de-
gree sequence (0,1,2,3), is called the transitive tournament because it has no directed cycle.

Applying the transformations above it is easy to see

Lemma 10. T (0,1,2,3) � T (1,1,2,2), T (0,2,2,2) � T (1,1,1,3).

It may be of interest to note that the two equivalence classes are also characterized by the
corresponding determinants. More precisely,

Lemma 11. det(A(T (0,1,2,3))) = det(A(T (1,1,2,2))) = 1, and det(A(T (0,2,2,2))) =
det(A(T (1,1,1,3))) = 9.
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Fig. 1. The four possible tournaments on four vertices and their indegree sequences.

4. The main theorem

Lemma 12. Any r-perfect code in a product of n cycles is equivalent to the canonical code.

Proof. Suppose P is an r-perfect code in a product of n cycles, and let s = 2r + 1. From Lem-
mas 5 and 6, det(B(Qn)) = det(B(P )) = sn + (

n
2

)
sn−2 + (

n
4

)
sn−4 + (

n
6

)
sn−6 + · · · . Let T be the

tournament associated to the skew-symmetric matrix B(P ) − sI , and label the vertices of T as
1,2,3, . . . , n, where vertex i corresponds to row i of the matrix. By Lemma 9, the proof will be
complete if it can be shown that T is equivalent to the transitive tournament. To accomplish this,
we first show that any subtournament of T on 4 vertices is equivalent to the transitive tournament
on 4 vertices. We begin by examining the sn−4 term of det(B(P )). From the combinatorial def-
inition of the determinant, this term is the sum of the factors consisting of exactly n − 4 loops.
There are

(
n
4

)
ways to choose a subset X of n − 4 vertices for the loops. Consider such an X.

In extending loops based at X to a factor, we must append either a 4-cycle on the remaining 4
vertices, or a pair of 2-cycles. There are 6 ways to choose a 4-cycle and 3 ways to choose a pair
of 2-cycles. The sum of the costs of these 9 factors is easily seen to be sn−4 det(BX), where BX is
the matrix for the subtournament of T on vertices {1,2, . . . , n} − X. Now, sn−4 det(BX) � sn−4,
by Lemma 12. But as the degree sn−4 term of det(B(P )) is simultaneously

(
n
4

)
sn−4 and the sum

of
(
n
4

)
terms of the form sn−4 det(BX), we infer that det(BX) = 1 for any choice of X. Thus,

by Lemmas 11 and 12, it follows that any subtournament of T on 4 vertices is equivalent to the
transitive tournament on 4 vertices.

We will now prove by induction that P is equivalent to the standard code by proving that the
corresponding tournament is equivalent to the transitive tournament. Choose any four vertices
and consider the corresponding subtournament. As its determinant must be 1, it is equivalent to
the transitive tournament. Now assume a subtournament on k vertices is transitive, the first k ver-
tices are labeled according to the linear order defined by the transitive tournament, and consider
a new vertex. We claim that the new tournament is equivalent to the transitive tournament on
k + 1 vertices.

Observe the directions of directed edges from the new vertex. If there would exist three ver-
tices that are connected to the new vertex as depicted on Fig. 2(c) or (d), then the subtournament
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Fig. 2. From the proof of the main theorem.

would have degree sequence (1,1,1,3) or (0,2,2,2) and would have determinant equal to 9
(> 1), which is in contradiction to the assumption that all subtournaments on four vertices have
determinant 1. Hence the situation depicted on Fig. 2(c) and (d) is not possible. Therefore, either
the labels of all vertices with edges directed towards the new vertex are smaller than the labels of
vertices with edges directed from the new vertex or vice versa. But then the tournament is either
a transitive tournament (see Fig. 2(a)) or a tournament depicted on Fig. 2(b).

In the second case, we can reverse the directions of the directed edges meeting the new vertex
to obtain an equivalent tournament, which is clearly a transitive tournament. It is obvious where
in the linear order we have to put the new vertex. The resulting tournament is transitive, hence
the subtournament on k + 1 vertices is equivalent to the transitive tournament. �

Hence any perfect code is equivalent to the canonical perfect code, therefore from Theorem 2
we have

Theorem 13. Let r � 1 and n � 2. Then ×n
i=1C�i

, �i � 2r +2, contains an r-perfect code if and
only if every �i is a multiple of rn + (r + 1)n.
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