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Abstract

We consider a speci�c class of satis�ability (SAT) problems, the conjunctions of (nested)
equivalencies (CoE). It is well known that CNF (conjunctive normal form) translations of CoE
formulas are hard for branching and resolution algorithms. Tseitin proved that regular resolution
requires a running time exponential in the size of the input. We review a polynomial time
algorithm for solving CoE formulas, and address the problem of recognizing a CoE formula by
its CNF representation. Making use of elliptic approximations of 3SAT problems, the so-called
doubly balanced 3SAT formulas can be seen to be equivalent to CoE formulas. Subsequently, the
notion of doubly balancedness is generalized by using polynomial representations of satis�ability
problems, to obtain a general characterization of CoE formulas. We briey address the problem of
�nding CoE subformulas, and �nally the application of the developed theory to several DIMACS
benchmarks is discussed. ? 2000 Elsevier Science B.V. All rights reserved.

Keywords: Satis�ability; Conjunctive normal form; Polynomial functions; Polynomial-time
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1. Introduction

The satis�ability problem of propositional logic (SAT) is the original NP-complete
problem [6]. Thus, no algorithms are known that can solve each instance of SAT
in polynomial time. However, there are various classes of speci�c SAT formulas for
which polynomial time algorithms exist. For example, 2SAT formulas (i.e. formulas in
which each clause contains at most two literals), and Horn formulas (in which each
clause contains at most one positive literal) are solvable in linear time [1,7], while
various generalizations of these classes are polynomially solvable as well [3–5,10].
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In this paper we discuss another class of polynomially solvable SAT problems,
the conjunctions of (nested) equivalencies (CoE), that arise from so-called balanced
(CNF) formulas [8]. In the literature, CoE formulas are also known as XOR (‘exclusive
or’) SAT formulas, which were shown to be polynomially solvable by Schaefer [15].
Balanced formulas are balanced with respect to the number of variable occurrences,
and positive and negative occurrences of individual variables. The notion of doubly
balancedness [13] is related to occurrences of pairs of variables. Doubly balanced
formulas can be seen to be equivalent to CoE formulas by means of their elliptic ap-
proximation. Elliptic approximations of 3SAT formulas were introduced in [13,14,18].
By making use of polynomial representations of satis�ability problems such as used
by Gu [11], a general characterization of CNF translations of CoE formulas is ob-
tained. This involves balanced polynomial representations, a concept that we de�ne
later on.
Tseitin [16] introduced a speci�c kind of CoE formulas (in which each variable

occurs exactly twice) to prove an exponential lower bound on the running time of
regular resolution. In general, balanced formulas are hard for branching and other
resolution-like algorithms [8]. We review a special purpose algorithm for solving CoE
formulas. It turns out that several of the well-known DIMACS benchmarks [12] are in
fact equivalent to CoE formulas and thus can be solved e�ciently using this algorithm.
It may be noted that speci�c CoE formulas, namely those arising from a particular

kind of doubly balanced formulas, can also be solved e�ciently by making use of the
notion of symmetry as introduced by Benhamou and Sais [2,9]. A CNF formula is said
to contain symmetries if it remains invariant under a permutation of variable names.
However, in general the CoE formulas need not be symmetric in this sense.
This paper is organized as follows. In the next section we introduce some notation

and discuss the preliminaries. Subsequently, we review an algorithm for solving CoE
formulas. In Section 4 we consider doubly balanced formulas and show that by their
elliptic approximation these can be seen to be equivalent to CoE formulas. Section 5
is concerned with generalizing the notion of doubly balancedness by making use of
polynomial representations of satis�ability problems. In the subsequent section we
briey address the problem of �nding CoE (or unsatis�able) subformulas, and in the
�nal section preliminary computational results on DIMACS benchmarks are given.

2. Preliminaries and notation

We consider the satis�ability problem in conjunctive normal form. A propositional
formula � in CNF is the conjunction of n clauses, where each clause is a disjunction
of literals. Each literal is an atomic proposition (or variable) or its negation (@). Let
m be the number of atomic propositions. Thus

�= C1 ∧ C2 ∧ · · · ∧ Cn =
n∧
k=1

Ck ;
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where each clause Ck is of the form

Ck =
∨
i∈Ik
pi ∨

∨
j∈Jk

@pj

with Ik ; Jk ⊆{1; : : : ; m} disjoint. The satis�ability problem of propositional logic is to
assign truth values to the variables, such that each clause evaluates to true (i.e. one of
its literals is true) and so the whole formula evaluates to true, or it must be proved
that no such assignment exists.
Let us associate a {−1; 1}-variable xi with each proposition letter pi. Then a clause

Ck may be written as a linear inequality in the following way:

Ck(x) =
∑
i∈Ik

xi −
∑
j∈Jk

xj¿2− l(Ck); (1)

where l(Ck) denotes the length of clause k, i.e. l(Ck)= |Ik∪ Jk |. Using matrix notation,
the integer linear programming formulation of the satis�ability problem can be stated
as

(IPSAT) �nd x ∈ {−1; 1}m such that Ax¿b;

where A ∈ Rn×m and b ∈ Rn. We have that aTk x = Ck(x), where by aTk we denote the
kth row of the matrix A. Obviously, aki = 1 if i ∈ Ik ; aki =−1 if i ∈ Jk , while aki = 0
for any i 6∈ Ik ∪ Jk . Furthermore, bk = 2− l(Ck).
In an instance of 3-satis�ability (3SAT) all clauses have length equal to 3, so

b = −e. By e we denote the all-one vector of length n.
Let us now introduce the concept of CoE formulas, which are also known as

XOR SAT formulas. Such formulas are solvable in polynomial time [15] as op-
posed to CNF formulas which are in general NP-complete [6]. In the next section
a polynomial-time algorithm for CoE formulas is reviewed. A CoE formula 	 is the
conjunction of t equivalency-clauses, where each equivalency-clause Q k is a (nested)
equivalency of literals or its negation. In the �rst case we refer to Q k as a positive
equivalency-clause, otherwise it is called a negative equivalency-clause. An example
of a (negative) equivalency-clause is @(p2 ↔ p4 ↔ p7) which is true if either one
or all three of its variables are false. An equivalency-clause is denoted as

Q k = [@]
i∈S k

pi; (2)

where the square brackets indicate the optionality of the negation operator. Note that
for a positive equivalency-clause to be true, an even number of variables must be false,
while for a negative one an odd number of variables must be false. In the following
we associate an indicator �(k) with an equivalency-clause Q k , and let �(k)= 1(−1) if
Q k is a positive (negative) equivalency-clause.

3. Solving conjunctions of equivalencies

Let us now review an algorithm for solving CoE formulas, which is in fact Gaussian
elimination in Z2 [15]. Suppose we are given a CoE formula 	. Obviously, for any
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satisfying assignment it holds that

pj ↔
(
i∈S k\{j}

pi

)
; (3)

for a positive equivalency-clause Q k ; 16k6t, and any j ∈ Sk . If Q k is a negative
equivalency-clause, the right-hand side of (3) must be negated. This observation can
be used to obtain a polynomial-time algorithm. All but one occurrences of pj can be
eliminated by making use of equivalency (3), to obtain a formula 	′ that is equivalent
to formula 	. Note that the value of pj is uniquely determined by the values of the
other variables in Q k . We call such a variable pj a dependent variable. Initially, all the
variables are said to be independent and contained in the set of independent variables
I. Let us use the notation

Sk ⊕ Sl = (Sk ∪ Sl) \ (Sk ∩ Sl):
This is convenient, since when we use expression (3) to eliminate pj from equivalency-
clause Ql we obtain

pj ↔
(
i∈Sl\{j}

pi

)
≡
(
i∈S k\{j}

pi

)
↔
(
i∈Sl\{j}

pi

)
≡

i∈S k⊕Sl
pi:

Note that if Sk={ j}, this substitution performs unit resolution; the length of equivalency-
clause Ql then reduces by one. If Sk ⊕ Sl = ∅, while �(k) = −�(l) an inconsistency
is detected, implying that the formula under consideration is unsatis�able. If no incon-
sistency is detected, the algorithm terminates when the CoE formula is rewritten to
a form where each equivalency-clause contains exactly one dependent variable. After
termination of the algorithm, all satis�able solutions can be constructed by assign-
ing all possible combinations of truth values to the independent variables. Algorithm
SOLVE CoE is summarized in Fig. 1. In the outer loop each equivalency-clause is con-
sidered at most once; after it is considered it is labelled. Note that at the end of each
outer loop, unlabelled clauses consist of only independent variables, while any labelled
clause either contains a dependent variable or is empty. The algorithm returns that 	
is a contradiction, or the rewritten formula 	 and the set of independent variables I
using which all satisfying assignments can be constructed.

Example 1. Let the formula 	 be given by

	 = (p1 ↔ p2 ↔ p3) ∧ (p2 ↔ p3 ↔ p4) ∧@(p1 ↔ p3 ↔ p4):

Initializing, we have I = {p1; p2; p3; p4} and all clauses are unlabelled.

Iteration 1. We choose l=1; j=1. For k=3; j ∈ Sk , so we carry out the substitution.
We have that S1 ⊕ S3 = {2; 4} and �(1) �(3) =−1, so

	 := (p1 ↔ p2 ↔ p3) ∧ (p2 ↔ p3 ↔ p4) ∧@(p2 ↔ p4)

and I = {p2; p3; p4}.
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Fig. 1. Algorithm SOLVE CoE.

Iteration 2. Now let us choose l = 2; j = 2 thus I := {p3; p4}. Performing the sub-
stitution for k = 1 and k = 3 we �nd

	 := (p1 ↔ p4) ∧ (p2 ↔ p3 ↔ p4) ∧@p3:

Iteration 3. Finally, l= 3; j = 3, so I := {p4}. We �nd
	 := (p1 ↔ p4) ∧@(p2 ↔ p4) ∧@p3:

The single independent variable p4 can be arbitrarily set, and substituting it in 	 we
can construct two satisfying assignments, corresponding to p4 and @p4, respectively,
(p1 ∧@p2 ∧@p3 ∧ p4) and (@p1 ∧ p2 ∧@p3 ∧@p4).

Let us consider the complexity of the algorithm. It requires min{m; t} iterations,
since each time the outer loop is executed, the number of independent variables and
the number of unlabelled clauses decrease. In each iteration all equivalency-clause are
considered once, and the length of these clauses is bounded by m. Thus we have the
following complexity bound.

Lemma 2. The algorithm runs in O(mt ·min{m; t}) time.

We conclude that this algorithm solves CoE formulas in polynomial time. Let us
now turn to the issue of recognizing CoE formulas by their CNF translation.
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4. A special case: doubly balanced formulas

In this section we restrict ourselves to 3SAT formulas. We consider a speci�c class
of 3SAT CNF formulas and show that these are equivalent to CoE formulas. Let us
consider the CNF translation of an equivalency-clause of length 3, say p ↔ q ↔ r.
Then

�= (p ∨@q ∨@r) ∧ (@p ∨ q ∨@r) ∧ (@p ∨@q ∨ r) ∧ (p ∨ q ∨ r):
Note the particular structure of this CNF formula. A formula with this structure is
called doubly balanced [8,13]. Doubly balanced formulas are de�ned as follows.

De�nition 3. A 3SAT formula � is called doubly balanced if
(i) Of each proposition pi, the number of unnegated and negated occurrences are

equal, or equivalently
n∑
k=1

aki = 0 for all i = 1; : : : ; m:

(ii) For any two propositions pi and pj, the number of clauses in which both appear
simultaneously with the same sign (i.e. both negated or both unnegated) is equal
to the number of clauses in which both appear simultaneously with opposite signs
(i.e. one appears negated and the other unnegated), or equivalently

n∑
k=1

akiakj = 0 for all i; j = 1; : : : ; m; i 6= j:

It appears that doubly balanced formulas are equivalent to CoE formulas. That this
is indeed the case is the main result of the present section. Let us state it as a theorem.

Theorem 4. A doubly balanced formula is equivalent to a CoE formula and as such
can be solved in polynomial time.

The remainder of this section is concerned with proving this theorem. In the proof
we make use of elliptic approximations of satis�ability problems, which were earlier
introduced in [13,14,18].

Lemma 5. Let � be a 3SAT-formula with integer linear description (IPSAT ). The
ellipsoid

E= {x ∈ Rm | xTATAx − 2eTAx63n}
contains all satisfying assignments of �.

Proof. For each clause k it holds that Ck(x) ∈ {−3;−1; 1; 3}, for all x ∈ {−1; 1}m. The
clause is satis�ed if and only if Ck(x) ∈ {−1; 1; 3}. Thus x ∈ {−1; 1}m is a satis�able
assignment if and only if Ax ∈ {−1; 1; 3}n. Subtracting e on both sides and taking
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squares, we �nd that for any satis�able assignment it holds that (Ax−e)T(Ax−e)64n.
Expanding this product yields the desired result, noting that eTe = n.

Considering the ellipsoid, it is clear that certain contradictory assignments x ∈ {−1; 1}m
may also be contained in it; therefore we speak of an approximation. In general most
contradictory assignments are not contained in the ellipsoid, and thus using speci�c
properties of the ellipsoid such as its eigenvalue structure and its center, e�ective
branching rules and satis�ability tests are obtained; see [14,18].
If the ellipsoid is normalized and centered, i.e. it is centered at the origin and its axes

are parallel to the unit vectors, these heuristics do not distinguish between the variables
and thus are of no use. However, the structure of such ellipsoids can be exploited in a
di�erent way. Note that for these ellipsoids ATA is diagonal, and ATe ≡ 0. Let us �rst
establish the following easy lemma.

Lemma 6. � is doubly balanced if and only if ATA is a diagonal matrix and ATe ≡ 0.

Proof. It follows straightforwardly from De�nition 3.

We conclude that the elliptic approximation of a doubly balanced formula is normal-
ized and centered. Let us denote by �i the number of occurrences of the proposition pi
in a formula �, in other words, �i denotes the number of clauses in which pi appears.
Normalized, centered ellipsoids have the following property.

Lemma 7. If the ellipsoid E is normalized and centered; then any vector x ∈ {−1; 1}m
lies on its boundary.

Proof. Using that ATA is diagonal, ATe ≡ 0 and x2i = 1 for xi ∈ {−1; 1}, we �nd that

xTATAx − 2eTAx =
m∑
i=1

�ix2i =
m∑
i=1

�i = 3n:

The last equality follows from the fact that the total number of variable occurrences
in a 3SAT formula is equal to three times the number of clauses.

We have the following corollary.

Corollary 8. If all assignments lie on the boundary of E; then for any satisfying
assignment x ∈ {−1; 1}m; aTk x = Ck(x) equals either −1 or 3 for each k = 1; : : : ; n.

Proof. First note that for any satisfying assignment Ck(x) ∈ {−1; 1; 3}. Next, assume
that for a satisfying assignment aTk x=Ck(x)=1, for some k. Then (Ax− e)T(Ax− e)6
4(n− 1), implying that xTATAx − 2eTAx¡ 3n, thus arriving at a contradiction.

So for each clause a satisfying assignment either satis�es exactly one of its literals
or all three. This implies that each clause k can be regarded as a nested equivalence
of its three literals. Let us state this in a lemma.
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Table 1
Proof of Lemma 9

p q r p↔ q↔ r @(p↔ q↔ r) |Jk | = 0 |Jk | = 1 |Jk | = 2 |Jk | = 3
T T T T F T F T F
T T F F T F T F T
T F T F T F T F T
T F F T F T F T F
F T T F T F T F T
F T F T F T F T F
F F T T F T F T F
F F F F T F T F T

Lemma 9. The requirement that of a clause of length three Ck either one or all three
literals are satis�ed is expressed by the equivalency-clause

Q k = [@]
i∈S k

pi;

where Sk = Ik ∪ Jk and the negation operator is present (and �(k) =−1) if and only
if |Jk | is odd.

Proof. The correctness of the lemma is veri�ed by the truth table in Table 1. The
�rst three columns show all possible truth valuations of the three variables involved
(denoted by p; q; r). The subsequent two columns indicate whether the associated
equivalency-clauses under the given assignments evaluate to true (T) or false (F). The
last four columns indicate whether the associated clauses with |Jk |= 0; 1; 2; 3 negative
literals and the additional requirement that exactly one or all three literals are true,
evaluate to true (T) or false (F).

So we conclude that a CoE formula can be constructed that is fully equivalent to
the original doubly balanced CNF formula, thus completing the proof of Theorem 4.
Let us return for a moment to the example of the beginning of this section. The CNF
formula � is doubly balanced and so (by Lemma 9) it is equivalent to

	 = (p↔ q↔ r) ∧ (p↔ q↔ r) ∧ (p↔ q↔ r) ∧ (p↔ q↔ r):

Thus, indeed, 	 = p↔ q↔ r.
Note that the complexity of constructing the elliptic approximation is linear in the

number of clauses, and thus checking whether a formula is doubly balanced can be
done e�ciently. In the next section we address the issue of recognizing CoE formulas
in CNF formulas in general (i.e. not restricted to 3SAT and doubly balancedness).

5. A general characterization of CoE formulas

In the previous section we have only considered 3SAT and its elliptic approxima-
tion, as a special class of CNF formulas that are equivalent to CoE formulas. The
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ellipsoid is in fact the second-order Taylor truncation of a full representation [14] of
satis�ability problems. We now investigate full polynomial representations of general
CNF formulas which enable us to give a general characterization of CNF translations
of CoE formulas. Similar polynomial representations are used by (among others) Gu
[11], to obtain e�cient approximation algorithms for large satis�ability problems.
Let us �rst consider a polynomial representation of a CoE formula. Recall that

with each proposition letter pi a {−1; 1}-variable xi is associated. It holds that the
equivalency-clause Q k is satis�ed if and only if (see (2))

Qk(x) = �(k)
∏
i∈S k

xi = 1; (4)

since this equation is satis�ed if and only if �(k)=1 (−1) and an even (odd) number of
xi; i ∈ Sk , variables is equal to −1. Note that for any assignment x ∈ {−1; 1}m; Qk(x)=
±1. Thus we have a concise alternative formulation of 	.

(CoE) �nd x ∈ {−1; 1}m such that
t∑
k=1

Qk(x) =
t∑
k=1

�(k)
∏
i∈S k

xi = t:

Conversely, it is easy to see that any problem of the form (CoE) can be directly
translated into a CoE formula. Let us now derive a condition under which a CNF
formula � can be reduced to the form (CoE) (and thus is polynomially solvable).
Let � be a SAT formula consisting of n clauses and m variables. Consider a clause

and associated linear inequality as given by (1), and the integer linear description
(IPSAT). A {−1; 1}-vector x satis�es (1) if and only if

Pk(x) =
∏
i∈Ik
(1− xi)

∏
j∈Jk

(1 + xj) =
m∏
i=1

(1− akixi) = 0: (5)

If x is not a satisfying assignment it holds that Pk(x) = 2|Ik∪Jk |¿ 0. Denote M =
{1; : : : ; m}. In general, x ∈ {−1; 1}m is a satis�able assignment of a formula �, if and
only if

P(x) =
n∑
k=1

Pk(x) = n+
∑
I ⊆M

(−1)|I |
n∑
k=1

∏
i∈I
akixi = 0;

where in principal I runs through all possible subsets of M (I 6= ∅). Note that the
number of subsets that has to be taken into account can be restricted substantially,
since in fact only subsets I ⊆M for which I ⊆ Ik ∪ Jk for some k =1; : : : ; n need to be
considered. In general, for a clause with length l(Ck), 2l(Ck ) − 1 coe�cients need to
be computed.
Let us use the notation

cI = (−1)|I |
n∑
k=1

∏
i∈I
aki; (6)

where I ⊆M . Then the satis�ability problem has the following polynomial representa-
tion.
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(PR) �nd x ∈ {−1; 1}m such that P(x) = n+
∑
I ⊆M

cI
∏
i∈I
xi = 0:

Observe that by construction P(x)¿0 for any x ∈ {−1; 1}m. Strict inequality implies
that the corresponding CNF formula is unsatis�able.
Now we can generalize the notion of doubly balancedness (that is restricted to 3SAT)

to a notion of balancedness for general SAT formulas. Let us give a de�nition.

De�nition 10. Consider the polynomial representation (PR). We call the polynomial
function P(x) balanced if∑

I ⊆M

|cI |= n: (7)

Furthermore, P(x) is called (strictly) positive if∑
I ⊆M

|cI |¡n: (8)

Assume we are given a SAT formula � and its polynomial representation (PR). If
P(x) is balanced, we say that � has a balanced polynomial representation. Similarly,
if P(x) is positive, we say that � has a positive polynomial representation.
We have the following lemma.

Lemma 11. If � has a balanced polynomial representation; it is equivalent to a con-
junction of equivalencies.

Proof. We need to show that for balanced polynomials P(x), (PR) (and hence �) can
be reduced to the form (CoE). Note that if P(x) is balanced, then for any feasible
vector x ∈ {−1; 1}m it must hold that

cI
∏
i∈I
xi =−|cI |

for all I ⊆M . This implies that for all subsets I ⊆M for which cI 6= 0,∏
i∈I
xi =

{
1 if cI ¡ 0;
−1 if cI ¿ 0:

Enumerating the k =1; : : : ; t6n sets I ⊆M for which cI 6= 0, we take �(k)=−sgn(cI )
and Sk = I to prove the lemma.

Let us now state a theorem.

Theorem 12. Given are a propositional formula � and its polynomial representation
(PR).
• If � has a positive polynomial representation; it is unsatis�able.
• If � has a balanced polynomial representation; it is equivalent to a CoE formula
and can be solved in O(mn ·min{m; n}) time; using algorithm SOLVE COE.
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• More generally; using a modi�ed version of algorithm SOLVE COE; if∑
I ⊆M

|cI |= n+ 2z; (9)

a satisfying solution; or proof that no solution exists; can be found in

O

((
n+ 2z
z

)
mn ·min{m; n}

)
time.

Proof. The �rst statement follows from the fact that P(x)¿ 0 for any x ∈ {−1; 1}m;
the second statement is clear from Lemma 11. Let us now consider the third statement.
Assume that all nonzero coe�cients cI equal ±1, and consider (PR). For any satisfying
assignment exactly z of the terms cI

∏
i∈I xi must equal ‘1’ instead of ‘−1’ to imply

that P(x) = 0. So z out of n + 2z sets I ⊆M (with cI 6= 0) need to be chosen to
contribute ‘+1’ to P(x), and subsequently algorithm SOLVE COE can be applied. This
concludes the proof.

Obviously, � having a positive polynomial representation is merely a su�cient
condition for its unsatis�ability. Furthermore, concerning the third statement of this
theorem, it may be interesting to mention that in speci�c cases, by making use of the
particular numerical values of the coe�cients cI , the complexity bound given might
turn out to be somewhat pessimistic. We do not pursue this here.
For a moment, let us consider 3SAT formulas. Then

P(x) = n−
n∑
k=1


 m∑
i=1

akixi −
m∑
i=1

∑
j 6=i
akiakjxixj +

m∑
i=1

∑
j 6=i

∑
l6=i; j

aki akj akl xi xj xl


 :

From this it is clear that doubly balanced formulas either have a balanced or posi-
tive polynomial representation; the linear and bilinear terms vanish, while at most n
(trilinear) terms remain (see De�nition 3). However, 3SAT formulas need not be dou-
bly balanced to have such a representation. Consider the following example.

Example 13. Given is the formula �.

�= (p ∨ q ∨ r) ∧ (p ∨ q ∨@r) ∧ (@p ∨@q ∨@s) ∧ (@p ∨@q ∨ s):
Obviously, � is not doubly balanced in the sense of De�nition 3, but

P�(x) = 4 + 4xp xq;

so condition (7) is satis�ed implying that P�(x) is balanced.

Thus the notion of balanced polynomial representations is stronger than that of dou-
bly balancedness. Obviously, checking the �rst is, in general, also computationally
more involved. If the maximum clause length is bounded by l it requires computing
(at most) (2l− 1)n coe�cients; doubly balancedness can be checked by computing 4n
coe�cients.
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6. Detecting CoE subformulas

To help solving or to solve satis�ability problems, it may be helpful to detect CoE
subformulas, or even unsatis�able subformulas. If an unsatis�able subformula is iso-
lated, obviously the full formula is also unsatis�able.
It may be noted that in random formulas the occurrence of CoE subformulas is

highly unlikely; in SAT translations of practical problems on the other hand, often
structure is present that might be detected in this way.
Let us consider the problem of �nding an unsatis�able or CoE subformula �′ of

�. This can be formulated as an absolute value integer program in the following way.
Introduced are the {0; 1} decision variables yk ; 16k6n,

yk =

{
1 if clause k is in �′;

0 if clause k is in � \ �′:

We have the following optimization problem.

(AIP)

min
∑
I ⊆M

∣∣∣∣∣
n∑
k=1

(∏
i∈I
aki

)
yk

∣∣∣∣∣−
n∑
k=1

yk

s:t:
n∑
k=1

yk¿1;

yk ∈ {0; 1}n:
Note that a constraint is added to ensure the optimal solution does not induce the
empty subformula. Let us denote the optimal value of (AIP) by v∗ and the optimal
solution vector by y∗.

Lemma 14. If v∗¡ 0 the subformula �′ ⊆� induced by y∗ is unsatis�able. If v∗=0
the subformula �′ ⊆� is solvable in polynomial time.

Proof. Let us assume that n∗ variables y∗k are nonzero, hence subformula �
′ contains

n∗ clauses. Note that

∑
I ⊆M

∣∣∣∣∣∣
∑
y∗k =1

(∏
i∈I
aki

)∣∣∣∣∣∣= v∗ + n∗:
So by Theorem 12 it follows that �′ is unsatis�able if v∗¡ 0 (since then it has a pos-
itive polynomial representation), and that �′ has a balanced polynomial representation
if v∗ = 0 (thus allowing it to be solved in polynomial time).

Unfortunately, in general it is hard to solve (AIP) exactly; if the absolute values
are eliminated from the objective function using auxiliary variables, the constraint ma-
trix will in general no longer be totally unimodular. Solving it to optimality using a
mathematical programming procedure does not make sense, since that is as di�cult as
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solving the SAT instance itself (at least theoretically; in practice it might even be much
more di�cult). Therefore, we resort to using a very simple local search procedure to
try to �nd CoE or unsatis�able subformulas.
The idea is to start from the full formula (i.e. yk = 1 for all k). The e�ect on the

objective function of removing clause k from the formula (setting variable yk to ‘0’) is
computed for all clauses k, and subsequently the best choice in terms of objective value
is taken. This process continues until either the empty formula remains, or until the
objective value is equal to or smaller than zero; then a CoE or unsatis�able subformula
is isolated. Even though this procedure is very simple, and many possible improve-
ments could be incorporated (backtracking, randomization, etc.) it was successful on a
particular set of benchmarks (see next section).
If an unsatis�able subformula is found, we are done since the full formula must

also be unsatis�able. If a CoE subformula is obtained, it can be solved e�ciently
by algorithm SOLVE COE. In this way a number of dependent variables are identi�ed;
subsequently, these variables do not need to be considered explicitly when setting up
a search tree. Thus the number of variables is reduced considerably. Let us try to
illustrate with an example the possible merits of this approach.

Example 15. Assume that we are given a propositional formula � and by applying
the simple heuristic procedure it is discovered that � is equivalent to

	= (p1 ↔ p2 ↔ p3) ∧ (p1 ↔ p4 ↔ p5) ∧ (p2 ↔ p6 ↔ p7) ∧

@(p2 ↔ p4 ↔ p6) ∧ (� \ �′):

Solving (or rather, rewriting) the CoE subformula we �nd

	 :=@(p1 ↔ p5 ↔ p7) ∧ (p2 ↔ p6 ↔ p7) ∧@(p3 ↔ p5 ↔ p6) ∧

@(p4 ↔ p7) ∧ (� \ �′);

and I = {p5; p6; p7}. So there are three independent variables left to branch on (as-
suming no additional independent variables occur in �), implying that the search tree
needs to contain at most 23 − 1 nodes; if the CoE subformula had not been solved
at �rst, the tree might be considerably larger. Note that one can completely remove
all dependent variables from the problem; for example, suppose that � contains a
clause p3 ∨ p4. This clause is equivalent to @(p5 ↔ p6) ∨@p7. Observe that the
(equivalency-) clausal structure is destroyed in this way; such a clause can be trans-
formed to CNF again, but in general this cannot be done e�ciently without auxiliary
variables.

In the next section we consider some actual benchmarks.
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7. Application to DIMACS benchmarks

In the set of DIMACS benchmarks 2 [12] there are several formulas that are both
doubly balanced and have a balanced polynomial representation. It turns out that the
dubois∗.cnf and the pret∗ ∗.cnf (which are all 3SAT formulas) can be proved
unsatis�able by Lemma 16. Also if this lemma is not used, these instances are solved
within seconds by algorithm SOLVE COE.

Lemma 16. Let 	 be a conjunction of equivalencies. If
• each variable occurs an even number of times in 	; and
• the number of negative equivalency-clauses is odd;
	 is unsatis�able.

Proof. Consider problem (CoE). A relaxation of this is, to �nd x ∈ {−1; 1}m that
satis�es

t∏
k=1

�(k)
∏
i∈S k

xi = 1:

If the number of occurrences of each variable is even, this reduces to the product
over all �(k)’s. If the number of negative equivalency-clauses is odd, a contradiction
follows, so the formula under consideration is not satis�able.

In fact these formulas can be considered as special cases of the propositional formulas
associated with Tseitin graphs [16], which Tseitin used to prove an exponential lower
bound on the running time of regular resolution. For branching and other resolution-like
algorithms these formulas are very hard, and the number of nodes required in the tree
grows exponentially with the size of the formula.
Yet another interpretation of these formulas is, that they are 3SAT translations of

formulas of the form

([@]pn ↔ (· · · ([@]p2 ↔ ([@]p1 ↔ ([@]pn ↔ (· · · ([@]p2 ↔ [@]p1)) · · ·):
Here ‘[@]’ denotes that the negation operator is optional. Such formulas without
any negations are known as Urquhart formulas [17]. To obtain dubois∗.cnf- and
pret∗.cnf-like formulas, an odd number of proposition letters must be negated, and
subsequently the formula must be translated to 3SAT using auxiliary variables. Since
the number of negations is odd, the resulting formula is clearly unsatis�able.
Finally, let us turn to the par∗-c.cnf instances. These are not doubly balanced,

nor do they have a balanced polynomial representation. However, they contain doubly
balanced subformulas that are detected by applying the local search procedure described
in the previous section. We solve the instances by �rst solving the CoE subformulas
and subsequently setting up a search tree over the remaining variables. In Table 2
the results are reported. It may be stressed that all computational results are obtained

2 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/.
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Table 2
Solution times for the par∗-c.cnf instances. Given is the initial size of the formula and the time tdb
required to detect and solve its CoE subformula; the size of the remaining formula, and the time tbr and
number of nodes to solve that. All instances are satis�able

Name m n tdb �m �n tbr nodes

par8-1-c 64 254 1.1 8 30 .8 39
par8-2-c 68 270 1.2 8 30 1.0 51
par8-3-c 75 298 1.3 8 30 .9 45
par8-4-c 67 266 1.2 8 30 .2 8
par8-5-c 75 298 1.3 8 30 .2 8
par16-1-c 317 1264 11.6 47 184 732 5913
par16-2-c 349 1392 13.2 47 184 9.6 72
par16-3-c 334 1332 12.5 47 184 25.5 198
par16-4-c 324 1292 11.6 47 184 28.5 227
par16-5-c 341 1360 12.9 47 184 71 573

with an ad hoc MATLABTM implementation; computation times could be improved
substantially using more sophisticated implementations.
We also tried to solve the larger par32-∗-c.cnf instances, that contain large dou-

bly balanced subformulas as well. These instances have over 5000 clauses and more
than 1300 variables. After solving the CoE subformula, 622 clauses and 157 variables
remain. Unfortunately, this remaining problem still appeared to be too large to solve
using the simple branching algorithm that was used to solve the smaller instances.
In a more recent paper we managed to solve the {\tt par 32-×-c.cnf} instances

as well [19].
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