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Abstract

We discuss the problem of nonlinear oscillations of a clamped plate in the presence of t
effects in a subsonic gas flow. The dynamics of the plate is described by von Kármán system
presence of thermal effects, in which rotational inertia is accounted for. To describe influence
gas flow we apply the linearized theory of potential flows. Our main result states that each
solution of the problem considered tends to the set of the stationary points of the problem.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the present paper we study stabilization of a coupled system of partial differ
equations, consisting of an undamped wave equation, defined on the half-spaceR

3+, and
a nonlinear thermoelastic plate equation, defined on a two-dimensional bounded s
domainΩ ⊂ {x = (x1, x2, x3): x3 = 0}.

Nonlinear oscillations of a clamped plate in the presence of thermal effects are des
by the following equations:

Pαutt + ∆2u − [u,v + η] + ∆θ = p(x ′, t), x ′ ∈ Ω, (1)

θt − ∆θ − ∆ut = 0, (2)

u|∂Ω = ∂u

∂n

∣∣∣∣
∂Ω

= θ |∂Ω = 0, (3)
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u(0) = u0, ut (0) = u1, θ(0) = θ0, (4)

wherev = v(u) is Airy’s stress function defined by

∆2v = −[u,u], v|∂Ω = ∂v

∂n

∣∣∣∣
∂Ω

= 0. (5)

Ω is a smooth bounded domain inR2, n is the outward unit normal vector to∂Ω ,
∆ is the Laplace operator,Pα = (1 − α∆). The von Kármán brackets are defined
[u,v] = ∂2

x1
u · ∂2

x2
v + ∂2

x2
u · ∂2

x1
v − 2∂2

x1x2
u · ∂2

x1x2
v. The functionu = u(x ′, t) describes

transverse displacement of the plate, the functionθ = θ(x ′, t) denotes the temperatur
η(x ′) ∈ H 4(Ω) is a given function determined by mechanical loads.The parameterα > 0
accounts for rotational inertia.

In this paper we consider interaction of the plate with the linearized flow of gas.
gas moves over the plate in the direction ofx1-axis, the aerodynamic pressure on the p
is given by the formula (see, e.g., [1])

p(x ′, t) = p0(x
′) + ν(∂t + U∂x1)rΩγ [φ], x ′ ∈ Ω, (6)

wherep0 ∈ L2(Ω). Here and belowγ [φ] denotes a trace ofφ onto the plane{x: x3 = 0},
rΩ is the operator of restriction fromR2 ontoΩ . The parameterν > 0 is proportional to
the intensity of interaction between the gas and the plate,U > 0 (U �= 1) is the velocity
of the unperturbed flow andφ(x, t) is the potential of the velocity of the perturbed flow.
satisfies the following equations:

(∂t + U∂x1)
2φ = ∆φ, x = (x ′, x3) ∈ R

3+ = {x: x3 > 0}, (7)

∂φ

∂x3

∣∣∣∣
x3=0

=
{

(∂t + U∂x1)u(x ′, t), x ′ ∈ Ω,

0, x ′ /∈ Ω,
(8)

φ(0) = φ0, φt (0) = φ1. (9)

In recent years problems relatedto the stability of thermoelastic plates without transver
sal loads (i.e., withp(x ′, t) = 0) were studied by many authors. In particular, G. Ava
and I. Lasiecka in [2,3] showed exponential stability of linear thermoelastic systems with
various boundary conditions. Uniform decay ofsolutions to the nonlinear thermoelastic
systems of the type (1)–(5) with various boundary conditions andη = 0, p(x ′, t) = 0 was
established in [4]. For a survey of other thermoelastic models we refer to [2,3].

Only recently several authors have addressed problems of stability of interactive mod
els consisting of wave and plate equations coupled at the interface. In particular, hybr
PDE systems that arise from structural acoustic models were studied by I. Lasiec
C. Lebiedzik in [5–7]. In this case the undamped wave equation of type (7) withU = 0 is
defined on a bounded three-dimensional domainO and the thermoelastic plate equation
defined on an interfaceΩ , the flat part of∂O. The domainO represents an acoustic cha
ber andΩ represents a vibrating wall. The coupling between the acoustic and the stru
medium takes place onΩ . Asymptotic behaviour of solutions of such systems was stu
in [5–7]. The first paper is devoted to a linear model with free boundary conditions
others deal with nonlinear models. It was shown in [5–7] that such systems are unif
stable if some additional boundary dissipation is placed on a suitable portion of∂O \ Ω .
Moreover, in the case of a nonlinear thermoelastic system withfree boundary condition
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(see [7]) some additional mechanical damping acting on∂Ω is assumed, but there is n
need for such damping in the case of clamped or hinged boundary conditions (see [6]).

The rigorous mathematical study of the PDE system that describes nonlinear
lations of an isothermal plate in a subsonic gas flow first appears in [8]. This sy
corresponds to the problem of aeroelasticity. Further it was addressed in [9,10]. I
another approach to the problem was suggested, that enables to treat both subso
supersonic flows simultaneously. In this work it is also shown that, provided initial
have compact supports, the problem can be reduces to a retarded PDE. The tech
considering retarded PDEs is another approach to the problem of aeroelasticity, w
aid of which existence of a global attractor for the plate can be achieved, for both
sonic and supersonic flows (see, e.g., [11,12]), but no information can be obtained
the behaviour of the gas flow. The result concerning stabilization of entire structur
presented by I.D. Chueshov in [13]. The problem of type (1)–(9) with additional dam
termεPα∂tu and without thermal effects was considered there and for genericη,p0 it was
proved that for any weak solution of the problem there exists stationary point(ū,0, φ̄,0)

such that

lim
t→+∞

{∥∥u(t) − ū
∥∥2

2,Ω
+ ∥∥ut (t)

∥∥2
1,Ω

+ ∥∥∇(
φ(t) − φ̄

)∥∥2
B+

R
+ ∥∥φt (t)

∥∥2
B+

R

} = 0 (10)

for anyR > 0, whereB+
R = {x ∈ R

3+: |x| < R}, ‖ · ‖O is the norm inL2(O) and‖ · ‖i,Ω is
the Sobolev norm of orderi onΩ .

The main novelty of the present paper is that no mechanical damping (interior or b
ary) is included in the model. The stabilization obtained is of the same character as i
In contrast to [13], structural damping (that is described byεPα∂tu) is replaced with “less
strong” thermal damping. The main result of the present paper can also be regard
complement to the results of [5–7] for the case of unbounded domainO = R

3+. In our case
the stabilization obtained is not uniform, but there is no need for damping acting on∂O.

This work relies on some results and ideas from [2,9,10]. To achieve our goal we d
pose the solutionW(t) = (u,ut , θ,φ,φt )(t) to (1)–(9) into the sumW(t) = W1(t)+W2(t)

such thatW1(t) → 0, t → +∞, and W2(tk) is compact for every initial data an
tk → +∞. We use the following decomposition:W1(t) = (u1, u1

t , θ
1, φ∗, φ∗

t )(t), W2(t) =
(u2, u2

t , θ
2, φ∗∗, φ∗∗

t )(t), where components ofW1,W2 solve the problems

(E1):




Pαu1
t t + ∆2u1 + ∆θ1 = 0,

θ1
t − ∆θ1 − ∆u1

t = 0,

u1(0) = u0, u1
t (0) = u1, θ1(0) = θ0,

(E2):




Pαu2
t t + ∆2u2 + ∆θ2 = p0 + [u,v + η] + ν(∂t + U∂x1)rΩγ [φ∗ + φ∗∗],

θ2
t − ∆θ2 − ∆u2

t = 0,

u2(0) = u2
t (0) = θ2(0) = 0,

wherev solves (5). The functionsuj , θj , j = 1,2 satisfy boundary conditions (3);

(E3):




(∂t + U∂x1)
2φ∗ = ∆φ∗,

∂φ∗
∂x3

∣∣
x3=0 =

{
(∂t + U∂x1)u

1, x ′ ∈ Ω,

0, x ′ /∈ Ω,
∗ ∗
φ (0) = φ0, φt (0) = φ1,
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(E4):




(∂t + U∂x1)
2φ∗∗ = ∆φ∗∗,

∂φ∗∗
∂x3

∣∣
x3=0 =

{
(∂t + U∂x1)u

2, x ′ ∈ Ω,

0, x ′ /∈ Ω,

φ∗∗(0) = φ∗∗
t (0) = 0.

This decomposition enables us to prove our main result on stabilization which state
every weak solution to (1)–(9) tends to the set of stationary points of this problem. T
in addition to convergence of type (10), the temperatureθ(t) tends to zero inL2(Ω)-norm.

The paper is organized as follows. In Section 2 we introduce notations we nee
state our main results. In Section 3 we establish results concerning the potentialφ that
satisfies (7)–(9) with a given functionu(t). In Section 4 we prove theorem of existen
uniqueness and continuity of solutions to the problem (1)–(9) and in Section 5 we
our stabilization theorem.

2. Notations and main results

Before formulating our main results we introduce the following notations. In addition
the classical notations and the norms used for the Sobolev spaces we define an equiva
norm and inner product inH 1

0 (Ω): (u, v)1,α = (u, v)Ω + α(∇u,∇v)Ω , ‖u‖2
1,α = ‖u‖2

Ω +
α‖∇u‖2

Ω .
To describe behaviour of the plate, we will use the spaceX = H 2

0 (Ω) × H 1
0 (Ω) ×

L2(Ω) with the norm‖(u,ut , θ)‖2
X = ‖∆u‖2

Ω + ‖ut‖2
1,α + ‖θ‖2

Ω , whereu(·, t) ∈ H 2
0 (Ω),

ut (·, t) ∈ H 1
0 (Ω), θ(·, t) ∈ L2(Ω) for almost allt .

We define a homogeneous Sobolev spaceH1(R3) (see, e.g., [14]) as a closure
C∞

0 (R3) with respect to the norm‖u‖H1(R3) = ‖∇u‖R3. ForH1(R3+) defined as a space o
restrictions of functions fromH1(R3) ontoR

3+ we will use the equivalent norm‖∇φ‖
R

3+ .

We use two spaces to describe behaviour of the gas flow. The spaceY = H1(R3+) ×
L2(R3+) with the norm‖(φ0, φ1)‖2

Y = ‖∇φ0‖2
R

3+
+ ‖φ1‖2

R
3+

, whereφ(·, t) ∈ H1(R3+) and

φt(·, t) ∈ L2(R3+).
For (φ0, φ1) ∈ Y we define the local energy by

ER(φ0, φ1) =
∫

B+
R

∣∣∇φ0(x)
∣∣2 dx +

∫
B+

R

∣∣φ1(x)
∣∣2 dx, (11)

whereB+
R = {x: |x| < R, x3 > 0}. We define the spacẽY as the setY with the following

convergence, which will be referred to as a local energy convergence:

(
φn

0, φn
1

) Ỹ→ (φ0, φ1) if and only if ER

(
φn

0 − φ0, φ
n
1 − φ1

) → 0 ∀R > 0.

We also introduce the energy functional

E (1)(t) = Epl
(
u(t), ut (t), θ(t)

) + νE
(1)
fl

(
φ(t),φt (t)

) + Eint
(
u(t),φ(t)

)
,

whereEpl(u(t), ut (t), θ(t)) is the energy of the thermoelastic plate given by
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a

re
Epl
(
u(t), ut (t), θ(t)

) = 1

2

(∥∥ut (t)
∥∥2

1,α
+ ∥∥∆u(t)

∥∥2
Ω

+ 1

2

∥∥∆v
(
u(t)

)∥∥2
Ω

+ ∥∥θ(t)
∥∥2

Ω
− ([

u(t), u(t)
]
, η

)
Ω

− 2
(
p0, u(t)

)
Ω

)
,

the symbolE(1)
fl (φ(t), φt (t)) denotes the energy of the gas flow and is defined by

E
(1)
fl

(
φ(t),φt (t)

) = 1

2

(∥∥φt(t)
∥∥2

R
3+

+ ∥∥∇φ(t)
∥∥2

R
3+

− U2
∥∥∂x1φ(t)

∥∥2
R

3+

)
and the energyEint(u(t), φ(t)) of interaction of the plate and the flow is given by

Eint
(
u(t),φ(t)

) = νU
(
rΩγ [φ](t), ∂x1u(t)

)
Ω

.

Our energy functional should be compared to the energy functionalEα(t) used in [13].
Note that in the absence of the mechanical damping we need toincorporate the therma
energy term‖θ(t)‖2

Ω .
Our first result is the following theorem.

Theorem 1 (Existence and uniqueness of weak solution).For everyW0 = (u0, u1, θ0, φ0,

φ1) ∈X ×Y andT > 0 there exists precisely one weak solutionW(t) = (u(t), ut (t), θ(t),

φ(t), φt (t)) to (1)–(9).

(i) The solutionW(t) possesses the properties

u(t) ∈ C
(
0, T ;H 2

0 (Ω)
)
, ut (t) ∈ C

(
0, T ;H 1

0 (Ω)
)
,

θ(t) ∈ C
(
0, T ;L2(Ω)

) ∩ L2(0, T ;H 1
0 (Ω)

)
,

φ(t) ∈ C
(
0, T ;H1(

R
3+
))

, φt (t) ∈ C
(
0, T ;L2(

R
3+
))

.

(ii) The following energy relation holds:

E (1)(t) = E (1)(0) −
t∫

0

∥∥∇θ(τ )
∥∥2

Ω
dτ. (12)

(iii) The problem(1)–(9) generates the evolution operatorSt , defined by the formul
StW0 = W(t), whereW(t) is the weak solution to(1)–(9) with the initial value
W0 ∈ X × Y . The operatorSt is continuous inX × Y and in X × Ỹ in the fol-
lowing sense. LetWj(t), j = 1,2, be two weak solutions to(1)–(9)with the initial
dataW

j

0 , respectively, such that‖Wj

0 ‖2
X×Y � Q2. Then the following estimates a

valid for all t < T :∥∥W1(t) − W2(t)
∥∥2
X×Y � C(T ,Q)

∥∥W1
0 − W2

0

∥∥2
X×Y ,∥∥(

u1(t), u1
t (t), θ

1(t)
) − (

u2(t), u2
t (t), θ

2(t)
)∥∥2

X
+ ER

(
φ1(t) − φ2(t), φ1

t (t) − φ2
t (t)

)
� C(T ,Q,R)

(∥∥(
u1

0, u
1
1, θ

1
0

) − (
u2

0, u
2
1, θ

2
0

)∥∥2
X + ER1

(
φ1

0 − φ2
0, φ1

1 − φ2
1

))
,

whereR1 depends only onR,T ,U,Ω .
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Remark 2. It is easy to see, that stationary solutions to the problem (1)–(9) have the
(u(x ′),0,0, φ(x),0), whereu(x ′) andφ(x) solve the problem

∆2u − [u,v + η] = p0 + νU∂x1rΩγ [φ], x ′ ∈ Ω,

∆φ − U2∂2
x1

φ = 0, x = (x ′, x3) ∈ R
3+,

u|∂Ω = ∂u

∂n

∣∣∣∣
∂Ω

= 0,

∂φ

∂x3

∣∣∣∣
x3=0

=
{

U∂x1u(x ′), x ′ ∈ Ω,

0, x ′ /∈ Ω,
(13)

wherev is defined by (5). Solutions to the problem (13) were studied in [9]. Using
Sard–Smale theorem (see, e.g., [15]) it is possible to prove that for genericp0, η the set of
the stationary solutions to (1)–(9) is finite.

Our main result is the stabilization theorem for subsonic flows.

Theorem 3 (Stabilization).Let 0 < U < 1. Then for everyW0 = (u0, u1, θ0, φ0, φ1) ∈
H 2

0 (Ω) × H 1
0 (Ω) × L2(Ω) ×H1(R3+) × L2(R3+) the solutionStW0 tends to the setM of

the stationary solutions to the problem(1)–(9)in the local energy topology, i.e.,

inf
(u∗,φ∗)∈M

(∥∥∆
(
u(t) − u∗)∥∥2

Ω
+ α

∥∥∇ut (t)
∥∥2

Ω
+ ∥∥ut (t)

∥∥2
Ω

+ ∥∥θ(t)
∥∥2

Ω

+
∫
B

(∣∣∇(
φ(x, t) − φ∗(x)

)∣∣2 + ∣∣φt(x, t)
∣∣2)dx

)
→ 0, t → +∞,

for every bounded setB ⊂ R
3+. HereM is a set of solutions to(13).

Corollary 4. If the setM is finite, then for everyW0 = (u0, u1, θ0, φ0, φ1) ∈ H 2
0 (Ω) ×

H 1
0 (Ω) × L2(Ω) × H1(R3+) × L2(R3+) there exists a unique point(u∗, φ∗) ∈ M, such

thatStW0 → (u∗,0,0, φ∗,0) in the local energy topology, i.e.,

lim
t→+∞

(∥∥∆
(
u(t) − u∗)∥∥2

Ω
+ α

∥∥∇ut (t)
∥∥2

Ω
+ ∥∥ut (t)

∥∥2
Ω

+ ∥∥θ(t)
∥∥2

Ω

+
∫
B

(∣∣∇(
φ(x, t) − φ∗(x)

)∣∣2 + ∣∣φt(x, t)
∣∣2)dx

)
= 0

for every bounded setB ⊂ R
3+.

Remark 5. Theorem 1 is valid for allU �= 1, but stabilization is established only for su
sonic flows. The proof of stabilization is heavily dependent on the boundedness of so
to the problem (1)–(9), but in the case of supersonic flow boundedness is not guar
as the energyE (1)(·) is not bounded below. We also note that the main mechanism
sponsible for the stabilization of the entire structure are thermal effects on the plate a
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effects, is still an open question.

3. Preliminary results

The main goal of this section is description of properties of the problem (7)–(9) w
givenu(t). More precisely, we consider the potential gas flow equation inR

3+,

(∂t + U∂x1)
2φ = ∆φ, x ∈ R

3+, (14)

φ(0) = φ0, φt (0) = φ1,
∂φ

∂x3

∣∣∣∣
x3=0

= h(x ′, t), x ′ ∈ R
2, (15)

whereφ0 ∈H1(R3+), φ1 ∈ L2(R3+), h ∈ L
p
loc(R+; H 1(R2)) for somep > 2. The results o

this section are close to the ones of [10].
In the caseh ≡ 0 this equation has precisely one solution for every(φ0, φ1) ∈ Y (the

proof is similar to the one for the caseU = 0, see, e.g., [16]), for which the energy cons
vation law is valid:

E(2)
(
φ(t),φt (t)

) = E(2)(φ0, φ1) = 1

2

(‖φ1 + U∂x1φ0‖2
R

3+
+ ‖∇φ0‖2

R
3+

)
.

The problem (14)–(15) withh ≡ 0 generates the evolution semigroupGt : Ỹ → Ỹ in the
following way:Gt(φ0, φ1) = (φ(t), φt (t)), where(φ(t), φt (t)) is the solution to (14)–(15
with the initial values(φ0, φ1) and the boundary conditionsh ≡ 0 at the momentt . For the
proof of continuity ofSt onX × Ỹ we need continuity ofGt on Ỹ .

Lemma 6. The evolution semigroupGt generated by the problem(14)–(15)with h ≡ 0 is
continuous onỸ .

The proof is based on the following representation of the solution to (14)–(15)
[10]):

φ(x, t) = 1

4π

∫
S

dSξ

[
φ̄0 − t0(ξ − Ue1,∇φ̄0) + t0φ̄1

](
x − (ξ + Ue1)t

)
, (16)

whereS is a unit sphere inR3, e1 = (1,0,0) and φ̄j are even extensions ofφj on R
3,

j = 0,1. It is easy to see that, forx ∈ B+
R and t � T , values ofφ(x, t) depend only on

values of(φ0, φ1) in B+
R1

, whereR1 = R + (1+ U)T .
The following result on the decay of the local energy is well known for the caseU = 0.

To study problem (E3) we need similar result for the caseU > 0 (U �= 1). The following
lemma can be proved by the methods presented in [16], for instance.

Lemma 7. For every solution(φ(t), φt (t)) to the problem(14)–(15)with the initial data
(φ0, φ1) ∈ Y andh ≡ 0 the local energyER(φ(t),φt (t)) → 0 whent → +∞ for all R > 0.



I. Ryzhkova / J. Math. Anal. Appl. 294 (2004) 462–481 469

lt
As it was shown in [10], the solution to (14)–(15) withφ0 = φ1 = 0 is given by

φ(x, t) = −χ(t − x3)

2π

t∫
x3

ds

2π∫
0

dθ h
(
x1 − k1(θ, s, x3), x2 − k2(θ, s, x3), t − s

)
, (17)

where

k1(θ, s, x3) = Us +
√

s2 − x2
3 sinθ, k2(θ, s, x3) =

√
s2 − x2

3 cosθ.

If h has compact support in̄Ω , it vanishes fors � t∗(U,Ω,x3). An argument similar to the
one given in [10] shows that we can assumet∗(U,Ω,x3) = max(t̄ (U,Ω),ω(U)x3), where
ω = 1/

√
1− (U + 1)2/4 forU < 1 andω = 1 forU > 1. We now have the following resu

which will be widely used in Sections 4 and 5.

Lemma 8. For the solution to the problem(14)–(15)with φ0 = φ1 = 0 and providedh
has compact support in̄Ω the following estimates are valid for everyR > 0 and t � t∗ =
t∗(U,Ω,R):

(i) if h(x ′, τ ) ∈ C(t − t∗, t;H 1
0 (Ω)), then

ER

(
φ(t),φt (t)

)
� C(R)

{(
max

τ∈[0,t∗]
∥∥∇h(t − τ )

∥∥
Ω

)2 +
(

max
τ∈[0,t∗]

∥∥h(t − τ )
∥∥

Ω

)2}; (18)

(ii) if h(x ′, τ ) ∈ Hs(t − t∗, t;H 1
0 (Ω)), 0 < s < 1/2, then∥∥∇φ(t)

∥∥2
B+

R
+ ∥∥φt (t)

∥∥2
B+

R
� C(R)‖h‖2

Hs (t−t∗,t;H1
0 (Ω))

; (19)

(iii) if h(x ′, τ ) ∈ Hs(t − t∗, t;H 2
0 (Ω)), hτ (x

′, τ ) ∈ Hs(t − t∗, t;H 1
0 (Ω)), 0 < s < 1/2,

then∥∥∇φ(t)
∥∥2

1,B+
R

+ ∥∥φt(t)
∥∥2

1,B+
R

� C(R)
{‖h‖2

Hs(t−t∗,t;H2
0 (Ω))

+ ‖hτ ‖2
Hs(t−t∗,t;H1

0 (Ω))

}; (20)

(iv) if h(x ′, τ ) ∈ C(t − t∗∗, t;H 1
0 (Ω)), wheret∗∗ = inf{t : (x1− (U +sinθ)s, x2− s cosθ)

/∈ Ω for all (x1, x2) ∈ Ω, θ ∈ [0,2π], s > t}, then

∥∥(∂t + U∂x1)γ [φ](t)∥∥
Ω

�
∥∥h(t)

∥∥
Ω

+
min{t,t∗∗}∫

0

∥∥∇h(t − τ )
∥∥

Ω
dτ. (21)

Proof. In the proof of each inequality we fixR and assumet � t∗ = t∗(U,Ω,R), so we
can replace the upper integration limit in (17) witht∗.

Inequality(i). Similarly as in [10] we obtain∥∥∂xj φ(·, t)∥∥2
B+ � C(R)

(
max∗

∥∥∇h(t − τ )
∥∥

Ω

)2
(22)
R τ∈[0,t ]
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is

e-
for j = 1,2. Further we denote

h∗(x, t, s, θ) = h
(
x1 − Us −

√
s2 − x2

3 sinθ, x2 −
√

s2 − x2
3 cosθ, t − s

)
.

Using (17) and the formula

∂th
∗(x, t, s, θ) = − d

ds
h∗(x, t, s, θ) − U∂x1h

∗(x, t, s, θ)

− s√
s2 − x2

3

[Mθh
∗](x, t, s, θ), (23)

whereMθ = sinθ∂x1 + cosθ∂x2, we obtain

∂x3φ(x, t) = h(x1 − Ux3, x2, t − x3)

− 1

2π

t∗∫
x3

x3 ds√
s2 − x2

3

2π∫
0

dθ [Mθh
∗](x, t, s, θ) (24)

and

∂tφ(x, t) = −h(x1 − Ux3, x2, t − x3)

+ 1

2π

{
U

t∗∫
x3

ds

2π∫
0

dθ ∂x1h
∗(x, t, s, θ)

+
t∗∫

x3

s ds√
s2 − x2

3

2π∫
0

dθ [Mθh
∗](x, t, s, θ)

}
.

It is easy to see, that for∂x3φ(t) and∂tφ(t) estimates similar to (22) are valid. Hence (i)
proved.

Inequality (ii). In what follows we assume thath(x ′, τ ) ∈ C∞(t − t∗, t;H 1
0 (Ω)). To

prove (ii), we need another estimate for norms ofφt and∂x3φ. Using Hölder’s inequality
with p > 2, 1/p + 1/q = 1, similarly as in [10] we obtain∥∥∂x3φ(·, x3, t)

∥∥
R2 + ∥∥φt(·, x3, t)

∥∥
R2

� C(R,p)Q(x3)

( t∗∫
x3

∥∥h(t − τ )
∥∥p

1,Ω

)1/p

+ C(R)
∥∥h(t − x3)

∥∥
Ω

,

whereQ(x3) is a square-integrable on(0,R) function. Squaring this inequality and int
grating with respect tox3 along(0,R), we get∥∥∇φ(·, t)∥∥2

B+
R

+ ∥∥φt (·, t)
∥∥2

B+
R

� C(R,p)
(‖h‖2

p ∗ 1 + ‖h‖2
2 ∗ 1

)
. (25)
L (t−t ,t;H0 (Ω)) L (t−t ,t;H0 (Ω))



I. Ryzhkova / J. Math. Anal. Appl. 294 (2004) 462–481 471

tain

h

y

Due to the Sobolev embedding theoremHs(t − t∗, t;H 1
0 (Ω)) ⊂ Lp(t − t∗, t;H 1

0 (Ω)) for
p � 2/(1−2s) (see, e.g., [14]). AsC∞(t − t∗, t;H 1

0 (Ω)) is dense inHs(t − t∗, t;H 1
0 (Ω)),

(ii) is proved.
Inequality(iii). In what follows we assumeh(x ′, τ ) ∈ C∞(t − t∗, t;H 2

0 (Ω)). Differen-
tiating (24) with respect toxj , j = 1,2, and repeating previous argumentation, we ob
that ∥∥∂xixj φ(·, t)∥∥2

B+
R

� C(R,p)‖h‖2
Hs (t−t∗,t;H2

0 (Ω))

for i = 1,2,3 andj = 1,2.
After a simple calculation we get that

∂2
x3

φ(x, t) = −U∂x1h(x1 − Ux3, x2, t − x3) − ∂th(x1 − Ux3, x2, t − x3)

+ 1

2π

{
−

t∗−x3∫
0

τ + x3√
τ (τ + 2x3)3/2

dτ

2π∫
0

dθ [Mθh̄](x, t, τ, θ)

+
t∗−x3∫
0

x3√
τ(τ + 2x3)1/2

dτ

2π∫
0

dθ
[
(U∂x1 + ∂t )Mθ h̄

]
(x, t, τ, θ)

+
t∗−x3∫
0

x3

(τ + 2x3)
dτ

2π∫
0

dθ
[
M2

θ h̄
]
(x, t, τ, θ)

}
, (26)

whereh̄(x, t, τ, θ) = h∗(x, t, τ + x3, θ). Then we apply to (26) Hölder’s inequality wit
p > 2, 1/q +1/p = 1 and integrate the inequality obtained along(0,R) with respect tox3.
Using Sobolev’s embedding theorem, we get the estimate∥∥∂2

x3
φ(·, t)∥∥2

B+
R

� C(R,p)
{‖h‖2

Hs(t−t∗,t;H2
0 (Ω))

+ ‖hτ‖2
Hs(t−t∗,t;H1

0 (Ω))

}
.

It is easy to see thatφt (x, t) is a solution to (14)–(15) withφ0 = φ1 = 0 and the boundar
conditionshτ (x ′, τ ). As the part (ii) of the lemma is proved, using (19) we get∥∥∇φt (t)

∥∥2
B+

R
� ‖hτ ‖2

Hs(t−T ,t;H1
0(Ω))

.

We finish the proof of (iii) by applying the density argument.
Proof of (iv) can be found in [10]. �
In the proof of Theorem 1 we will use the following property of the operator(∂t +

U∂x1)rΩγ [φ], which occurs in the aerodynamic pressurep(x ′, t).

Lemma 9. LetΩ ⊂ {x ′: |x ′| < R} = BR and

φ ∈W =
{
φ(t) ∈ C

(
0, T ;H1(

R
3+
))

,
d

dt
φ(t) ∈ C

(
0, T ;L2(

R
3+
))}

.

Then(∂t + U∂x1)rΩγ [φ](t) ∈ C(0, T ;H−1/2−δ(Ω)) for everyδ > 0, T > 0 and∥∥(∂t + U∂x1)rΩγ [φ](t)∥∥2 � ER

(
φ(t), ∂tφ(t)

)
. (27)
−1/2−δ,Ω
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o

rges to
Proof. First we prove, that∂t rΩγ [φ](t) exists and belongs toL∞(0, T ;H−1/2−δ(Ω))

for all δ > 0. Let w ∈ (H−1/2−δ(Ω))∗ = H
1/2+δ

0 (Ω). Then the extension by zer

l0 :H 1/2+δ

0 (Ω) → H 1/2+δ(R2) and the lifting operatorl :H 1/2+δ(R2) → H 1+δ(R3+) are
continuous operators. Ifα(x) ∈ C∞

0 (R3) and α(x ′,0) = 1 for x ′ ∈ Ω , α(x) = 0 for
x /∈ B+

R , we obtain the operatorL = α(x) · l ◦ l0, such thatrΩγ [Lw] = w, ‖Lw‖1+δ,R3+ �
C‖w‖1/2+δ,Ω and suppLw ⊂ B+

R . Using integration by parts, we obtain the equality

(∂x3φ,Lw)B+
R

+ (φ, ∂x3Lw)B+
R

= −(
γ [φ],w)

Ω
(28)

for somew ∈ H
1/2+δ

0 (Ω) andφ ∈H1(R3+). Let the sequencestm, sn → 0 asm,n → +∞.
Using (28), we get∣∣∣∣

(
γ [φ](t + tm) − γ [φ](t)

tm
− γ [φ](t + sn) − γ [φ](t)

sn
,w

)
Ω

∣∣∣∣
� C

∥∥∥∥φ(t + tm) − φ(t)

tm
− φ(t + sn) − φ(t)

sn

∥∥∥∥−δ,B+
R

‖w‖1/2+δ,Ω → 0,

n,m → +∞.

This implies thatrΩγ [φ](t) is differentiable with respect tot in H−1/2−δ(Ω). Similarly
we obtain the inequality∥∥∂t rΩγ [φ](t)∥∥−1/2−δ,Ω

� C
∥∥φt (t)

∥∥
B+

R
. (29)

To estimate∂x1rΩγ [φ](t), we consider the function̄φ(t) defined by{∇φ̄(t) = ∇φ(t), x ∈ B+
R ,

∇φ̄(t) = 0, x /∈ B+
R ,

such thatφ̄(t) = 0, x /∈ B+
R . Thus,φ̄(t) has compact support in̄B+

R andφ(t) − φ̄(t) = C.
Then∥∥∂x1rΩγ [φ](t)∥∥−1/2,Ω

= ∥∥∂x1rΩγ [φ̄](t)∥∥−1/2,Ω
� C

∥∥∇φ(t)
∥∥

B+
R
. (30)

Combining (29) and (30) we obtain the inequality (27). Continuity with respect tot easily
follows from (29) and (30). �

For the proof of stabilization we need the following criterion of compactness inỸ .

Lemma 10. Let {(φm
0 , φm

1 )}∞m=1 be a bounded sequence inY and let the constantβ > 0. If
for everyR > 0 there existsN(R) ∈ N andC(R) > 0 such that∥∥∇φm

0

∥∥2
β,B+

R
+ ∥∥φm

1

∥∥2
β,B+

R
� C(R) for m � N(R), (31)

then{(φm
0 , φm

1 )}∞m=1 is compact inỸ .

Proof. As the sequence is bounded we can extract a subsequence that conve
(φ̄0, φ̄1) weakly in Y . Let r + be the operator of restriction fromL2(R3+) to L2(B+).
BR R
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ere
s

ss and
es the

)

The sequences{rB+
R
∇φm

0 }m�N(R) and{rB+
R
φm

1 }m�N(R) are compact inL2(B+
R ), therefore

(rB+
R
∇φm

0 , rB+
R
φm

1 )) → (rB+
R
∇φ̄0, rB+

R
φ̄1) by norm inL2(B+

R ) × L2(B+
R ) for every fixed

R > 0. Thus we have that(φm
0 , φm

1 ) → (φ̄0, φ̄1) in Ỹ . �
The next lemma will be used in our proof of stabilization.

Lemma 11. Let f (t) � 0, f (t) ∈ AC[0,+∞), f ′(t) � C or f ′(t) � −C almost every-
where and

∫ ∞
0 f (t) dt < ∞. Thenf (t) → 0 whent → +∞.

Proof. We consider the casef ′(t) � C only. Let the statement be false, i.e., assume th
exist a > 0 and the sequencexn → +∞ such thatf (xn) � a. We introduce the set
Bn = {x ∈ [xn − 1, xn + 1]: f (x) > a/2}. Their measuresµn = µ(Bn) → 0, as far as∫ ∞

0 f (t) dt < ∞. We fix ε > 0 andN such thatµn < ε for n > N and chooseyn < xn

such thatxn − yn < 2ε andf (yn) � a/2 for n > N . Sincef (t) is absolutely continuous,

f (xn) = f (yn) +
xn∫

yn

f ′(t) dt � f (yn) + 2εC � a

2
+ 2εC.

Choosingε < a/8C we get thatf (xn) < a. This contradicts the assumptionf (xn) � a.
The lemma is proved. �

4. Existence, uniqueness and continuity

This section is devoted to a proof of Theorem 1. To prove existence, uniquene
continuity of solutions to problem (1)–(9) we use the same method as in [10]. It us
regularized variant of Galerkin’s method for findingu(x ′, t).

Let {ek} be eigenvectors of the positive self-adjoint operatorA in H 1
0 (Ω) with the do-

mainH 3(Ω)∩H 2
0 (Ω) defined by(Au,v)1,α = (∆u,∆v). Let {ēk} be eigenvectors of−∆

with the Dirichlet boundary conditions, that is a positive self-adjoint operator inL2(Ω). In
what followsPN andP̄N are orthogonal projections onto Lin({ek}Nk=1) and Lin({ēk}Nk=1),
respectively,J is the operator fromH−1(Ω) to H 1

0 (Ω) such that(Ju, v)1,α = (u, v).
Similarly as in [10] we define an approximate solution of orderN to the problem (1)–(9

as a triple of the functions{uN(t), θN(t), φN(t)},

uN(t) =
N∑

k=1

gk(t)ek ∈LN
T ≡ C1(0, T ;PNH 1

0 (Ω)
)
,

θN (t) =
N∑

k=1

ḡk(t)ēk ∈ L̄N
T ≡ C1(0, T ; P̄NH 1

0 (Ω)
)
,

which satisfy the following relations inH 1(Ω):
0
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e

uN(t) = uN(0) +
t∫

0

∂tuN(τ) dτ, (32)

∂tuN(t) = ∂tuN(0)

+
t∫

0

{−AuN(τ) + PNJ
([

uN(τ), v
(
uN(τ)

) + η
] − ∆θ(τ) + p0

)}
dτ

+ νPNJ rΩ
(
γ
[
φN(t)

] − γ [φ0]
) + νU

t∫
0

PNJ rΩ∂x1γ
[
φN(τ)

]
dτ, (33)

θN(t) = θN(0) +
t∫

0

{
∆θN(τ) + P̄N∆∂tuN(τ)

}
dτ (34)

for all 0 � t < T , whereuN(0) = PNu0, ∂tuN(0) = PNu1, θN(0) = P̄Nθ0; v(uN ) is de-
fined in terms ofuN by (5);φN is a solution to (14)–(15) with the initial data(φ0, φ1) ∈ Y
and the boundary conditions

∂φN

∂x3

∣∣∣∣
x3=0

= hN(x ′, t) =
{

(∂t + UχN(x ′)∂x1)uN(x ′, t), x ′ ∈ Ω,

0, x ′ /∈ Ω,
(35)

whereχN(x ′) ∈ C∞
0 (Ω) is chosen so that 0� χN(x ′) � 1,χN(x ′) → 1 almost everywher

and|∇χN(x ′)|dist(x ′, ∂Ω) � C for x ′ ∈ Ω with the constantC independent onN .

Theorem 12 (Existence and uniqueness of approximate solutions).For every(u0, u1, θ0)

∈ X , (φ0, φ1) ∈ Y there exists precisely one approximate solution of orderN to the
problem(1)–(9). If (uN(t), θN(t), φN(t)) is an approximate solutions such that‖(uN(0),

∂tuN(0), θN(0),φ0, φ1)‖2
X×Y � Q2, then fort < T ,∥∥(

uN(t), ∂tuN(t), θN(t)
)∥∥2

X + ∥∥(
φN(t), ∂tφN(t)

)∥∥2
Y � C(T ,Q). (36)

Approximate solutions depend continuously on initial data inX ×Y . The following energy
relation is valid:

E (1)
N (t) = E (1)

N (0) −
t∫

0

∥∥∇θN(τ)
∥∥2

Ω
dτ

− νU

t∫
0

dτ

∫
Ω

(1− χN)∂x1∂tuN(τ)γ [φN ](τ ) dx ′, (37)

where

E (1)
N (t) = Epl

(
uN(t), ∂tuN(t), θN(t)

) + Efl
(
φN(t), ∂tφN(t)

)
+ νU

(
γ [φN ](t),χN∂x1uN(t)

)
Ω

.
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. To
(9) we
The proof of this theorem is similar to the one in [10] and therefore it is omitted
obtain existence, uniqueness and continuity of weak solutions to the problem (1)–
pass to the limit in the same way as in [10]. LettingN → +∞ in (37), similarly as in [10]
we obtain (12).

Theorem 13 (Continuity of approximate solution inX × Ỹ). Let (uj,N (t), θj,N (t),

φj,N (t)), j = 1,2, be two approximate solutions such that‖(uj,N (0), ∂tuj,N (0), θj,N (0),

φj,0, φj,1)‖2
X×Y � Q2. Then for allt < T andR > 0,

∥∥∂t

(
u1,N (t) − u2,N(t)

)∥∥2
1,Ω

+ ∥∥∆
(
u1,N(t) − u2,N(t)

)∥∥2
Ω

+ ∥∥θ1,N(t) − θ2,N(t)
∥∥2

Ω

� C(T ,Q)
{∥∥∂tu1,N(0) − ∂tu2,N(0)

∥∥2
1,Ω

+ ∥∥∆
(
u1,N (0) − u2,N(0)

)∥∥2
Ω

+ ∥∥θ1,N(0) − θ2,N(0)
∥∥2

Ω
+ ER1(φ1,0 − φ2,0, φ1,1 − φ2,1)

}
, (38)

ER

(
φ1,N (t) − φ2,N(t), ∂tφ1,N(t) − ∂tφ2,N (t)

)
� C(T ,R,Q)

{∥∥∂tu1,N (0) − ∂tu2,N(0)
∥∥2

1,Ω
+ ∥∥∆

(
u1,N(0) − u2,N (0)

)∥∥2
Ω

+ ∥∥θ1,N(0) − θ2,N(0)
∥∥2

Ω
+ ER1

(
φ1,0 − φ2,0, φ1,1 − φ2,1

)}
, (39)

whereC(T ,R,Q) andC(T ,Q) do not depend onN andR1 depends only onR,U,T ,Ω .

Proof. We denotewN = u1,N −u2,N , ζN = θ1,N −θ2,N , ϕN = φ1,N −φ2,N . The functions
wN , ζN satisfy the relations

∂twN(t) = ∂twN(0) +
t∫

0

{−AwN(τ) + PNJ
([

u1,N (τ ), v
(
u1,N(τ )

) + η
]

− [
u2,N(τ ), v

(
u2,N (τ )

) + η
] − ∆ζN(τ)

)}
dτ

+ ν

t∫
0

PNJ rΩ(∂t + U∂x1)γ [ϕN ](τ ) dτ, (40)

ζN(t) = ζN(0) +
t∫

0

{
∆ζN(τ) + P̄N∆∂twN(τ)

}
dτ. (41)

Taking in (40) the scalar product with∂twN in H 1
0 (Ω) and in (41) withζN in L2(Ω), we

get

∥∥∂twN(t)
∥∥2

1,α
+ ∥∥ζN(t)

∥∥2
Ω

+ 1

2

∥∥∆wN(t)
∥∥2

Ω

= (
∂twN(0), ∂twN(t)

)
1,α

+ 1

2

∥∥∆wN(0)
∥∥2

Ω

+
t∫ ([

u1,N(τ ), v
(
u1,N(τ )

) + η
] − [

u2,N(τ ), v
(
u2,N(τ )

) + η
]
, ∂twN(τ)

)
Ω

dτ
0
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5),
we

uding

),
+ (
ζN(0), ζN(t)

)
Ω

−
t∫

0

∥∥∇ζN(τ)
∥∥2

Ω
dτ

+ ν

t∫
0

(
rΩ(∂t + U∂x1)γ [ϕN ](τ ), ∂twN(τ)

)
Ω

dτ. (42)

For the components of this expression the following estimates are valid:∣∣(∂twN(0), ∂twN(t)
)
1,α

∣∣ � δ
∥∥∂twN(t)

∥∥2
1,α

+ Cδ

∥∥∂twN(0)
∥∥2

1,α
, (43)∣∣(ζN(0), ζN(t)

)
Ω

∣∣ � δ
∥∥ζN(t)

∥∥2
Ω

+ Cδ

∥∥ζN(0)
∥∥2

Ω
. (44)

Using Lemma 2.2 from [10] and the estimate (36), we obtain∣∣([u1,N(τ ), v
(
u1,N(τ )

) + η
] − [

u2,N(τ ), v
(
u2,N(τ )

) + η
]
, ∂twN(τ)

)
Ω

∣∣
� C(Q,T )

(∥∥∆wN(τ)
∥∥2

Ω
+ ∥∥∂twN(τ)

∥∥2
1,α

)
. (45)

To estimate the last term in (42), we representϕN asϕ∗
N + ϕ∗∗

N , whereϕ∗
N is a solution to

(14)–(15) withh ≡ 0 and the initial dataϕ∗
N(0) = φ1,0 − φ2,0, ∂tϕ

∗
N(0) = φ1,1 − φ2,1 and

ϕ∗∗
N is a solution of (14)–(15) with zero initial values and the boundary conditions (3

whereuN is replaced withwN . Due to Lemma 9 and the energy conservation law (3)
have∣∣(rΩ(∂t + U∂x1)γ

[
ϕ∗

N

]
(τ ), ∂twN(τ)

)
Ω

∣∣
� C

(
ER1(φ1,0 − φ2,0, φ1,1 − φ2,1) + ∥∥∂twN(τ)

∥∥2
Ω

)
. (46)

Due to Lemma 8 and Theorem 12 we have the following estimate for the term incl
φ∗∗

N :

t∫
0

∣∣(rΩ(∂t + U∂x1)γ
[
ϕ∗∗

N

]
(τ ), ∂twN(τ)

)
Ω

∣∣dτ

� C(T ,Q)

t∫
0

(∥∥∂twN(τ)
∥∥2

Ω
+ ∥∥χN(x ′)∂x1wN(τ)

∥∥2
Ω

)
dτ

+ C(T ,Q)

t∫
0

dτ

min{τ,t∗∗}∫
0

ds
(∥∥∇∂twN(τ − s)

∥∥2
Ω

+ ∥∥∇(χN∂x1wN)(τ − s)
∥∥2

Ω

)
.

Since forv ∈ H 1
0 (Ω) the estimate‖χNv‖1,Ω � ‖v‖1,Ω is valid (see Theorem 11.8 in [19]

after a simple calculation we obtain

t∫ ∣∣(rΩ(∂t + U∂x1)γ
[
ϕ∗∗

N

]
(τ ), ∂twN(τ)

)
Ω

∣∣dτ
0
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(38).

1)–(9)
the
f

e

we

ility

to the
� C(T ,Q)

t∫
0

(∥∥∆wN(τ)
∥∥2

Ω
+ ∥∥∂twN(τ)

∥∥2
1,Ω

)
dτ. (47)

Applying the estimates (43)–(47) to (42) and using Gronwall’s lemma, we obtain
Taking into account Lemmas 6, 8 and (38), we have proved (39).�

This theorem and the properties of weak convergence imply that solutions to (
depend continuously on initial data inX × Ỹ . Thus, the problem (1)–(9) generates
continuous evolution operatorSt onX × Ỹ described in (iii) of Theorem 1. The proof o
Theorem 1 is now complete.

5. Stabilization in the case of subsonic flow

In this section we prove Theorem 3. As we consider only subsonic flows (0< U < 1),
the energyE (1)(·) is bounded below byC1(E0(·) + ‖ · ‖2

Y ) − C2, whereE0(u0, u1, θ0) =
1/2(‖u1‖2

1,α +‖∆u0‖2
Ω +1/2‖∆v(u0)‖2

Ω +‖θ0‖2
Ω) (see Lemma 3.2 from [17]). Thus, th

energy of a solution to (1)–(9) is bounded by the initial data energy

E0
(
u(t), ut (t), θ(t)

) + ∥∥(
φ(t),φt (t)

)∥∥2
Y

� C1
(
E0(u0, u1, θ0) + ∥∥(φ0, φ1)

∥∥2
Y

) + C2 (48)

and the energy equality (12) implies that

+∞∫
0

∥∥∇θ(t)
∥∥2

dt < +∞. (49)

Now we study problems (E1)–(E4) in detail.
Exponential stability of solutions to problem (E1) was shown in [2]. In particular

have that there existδ > 0, Mδ � 1 such that‖(u1, u1
t , θ

1)(t)‖X � Mδe
−δt‖(u0, u1, θ0)‖X

for every(u0, u1, θ0) ∈ X . To study problem (E2) we need a result on exponential stab
in stronger norms.

Lemma 14. LetX β = H 2
0 (Ω) ∩ H 2+β(Ω) × H

1+β

0 (Ω) × H
2β

0 (Ω), 0 � β � 1 (note, that
X 0 = X ), and let(u(t), ut (t), θ(t)) be a solution to(E1) with the initial data(u0, u1, θ0)

∈X β . Then the following estimate is valid:∥∥(
u(t), ut (t), θ(t)

)∥∥2
X β � CMδe

−δt
∥∥(u0, u1, θ0)

∥∥2
X β . (50)

Proof. The idea presented in [18] is used here. We define an approximate solution
problem (E1) as the functionsum(t) = ∑m

k=1 fk(t)ek , θm(t) = ∑m
k=1 gk(t)ēk (for notations

see Section 4) satisfying the relations(
Pαum

tt , ek

)
Ω

+ (∆um,∆ek)Ω − (∇θm,∇ek)Ω = 0, k = 1, . . . ,m, (51)(
θm
t , ēk

) + (∇θm,∇ ēk)Ω + (∇um
t ,∇ ēk

) = 0 (52)

Ω Ω
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)

rator

iple,

, we
with the initial valuesum(0) = Pmu0, um
t (0) = Pmu1, θm(0) = P̄mθ0. Obviously,fk(t),

gk(t) are infinitely differentiable. Differentiating (51)–(52) with respect tot and denot-
ing wm = um

t , ζm = θm
t we obtain that(wm(t),wm

t (t), ζm(t)) satisfy system (51)–(52
with the initial valueswm(0) = um

t (0) = Pmu1, wm
t (0) = um

tt (0), ζm(0) = θm
t (0). Let

(u0, u1, θ0) ∈X 1. Then

um
tt (0) = −APmu0 − PmJ∆θ0 → −Au0 − J∆θ0 = utt (0) in H 1

0 (Ω),

θm
t (0) = ∆P̄mθ0 + ∆P̄mu1 → ∆θ0 + ∆u1 = θt (0) in L2(Ω).

Similarly to [18] we obtain∥∥um(t)
∥∥2

3,Ω
+ ∥∥∆um

t (t)
∥∥2

Ω
+ ∥∥∆θm(t)

∥∥2
Ω

� CMδe
−δt

∥∥(u0, u1, θ0)
∥∥2
X 1.

Hence, we can extract the subsequence(um(t), um
t (t), θm(t)) → (u(t), ut (t), θ(t))

∗-weakly in L∞(0, T ;X 1), where (u(t), ut (t), θ(t)) is a solution to (E1) with initial
data (u0, u1, θ0) ∈ X 1. Thus, the problem (E1) generates the linear evolution ope
S1

t ∈ L(X ,X ) ∩ L(X 1,X 1) such that‖S1
t ‖X � Mδe

−δt , ‖S1
t ‖X 1 � CMδe

−δt . Due to
the interpolation Theorem 5.1 from [19],S1

t ∈ L([X ,X 1]β, [X ,X 1]β) = L(X β,X β) and
‖S1

t ‖X β � CMδe
−δt , 0� β � 1, for someδ > 0. Inequality (50) is proved. �

For problem (E2) the following result is true.

Lemma 15. The trajectory(u2(t), u2
t (t), θ

2(t)) is compact and Lipschitz inX β for 0 �
β < 1/2.

Proof. Obviously, every solution to (E2) can be written by means of Duhamel’s princ
i.e.,

(
u2(t), u2

t (t), θ
2(t)

) =
t∫

0

S1
t−τ

(
0,P−1

γ

([
u(τ), v

(
u(τ)

) + η
] + p0

)
,0

)
dτ

+
t∫

0

S1
t−τ

(
0,P−1

γ

(
νrΩ(∂t + U∂x1)γ [φ](τ )

)
,0

)
dτ, (53)

whereS1
t is the evolution operator generated by (E1). Using Lemma 2.1 from [10]

obtain the estimate for von Kármán brackets,∥∥[
u(t), v

(
u(t)

) + η
]∥∥2

−ε,Ω
� C

(
E0(u0, u1, θ0) + ∥∥(φ0, φ1)

∥∥2
Y

)
, ε > 0.

SinceP−1
α is a bounded linear operator fromHs(Ω) to Hs+2(Ω) ∩ H 1

0 (Ω) for s � −1,
using (53) and Lemma 9, we obtain∥∥(

u2(t), u2
t (t), θ

2(t)
)∥∥

X β

�
t∫
Mδe

−δ(t−τ )
∥∥(

ν(∂t + U∂x1)γ [φ])(τ )
0
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ns to

nt

(19) and
om
nted

of the
+ [
u(τ), v

(
u(τ)

) + η
] + p0

∥∥−1+β,Ω
dτ

� C
(
E0(u0, u1, θ0) + ∥∥(φ0, φ1)

∥∥2
Y

)1/2
, 0 � β < 1/2. (54)

Hence, the trajectory(u2(t), u2
t (t), θ

2(t)) is compact inX β . Similarly we obtain that it is
also Lipschitz inX β and∥∥(

u2(t), u2
t (t), θ

2(t)
)∥∥2

Cµ(0,T ;X β)
� C

(
E0(u0, u1, θ0) + ∥∥(φ0, φ1)

∥∥2
Y

)
, (55)

whereCµ(0, T ;X β) is a space ofµ-Hölder continuousX β -valued functions. �
Due to Lemma 7 and inequality (18) we have the following estimate for the solutio

problem (E3): for everyR > 0,

ER

(
φ∗(t), φ∗

t (t)
)
� C(R)

(
f (t) + max

τ>t−t∗
∥∥u1

t (τ )
∥∥2

1,Ω
+ max

τ>t−t∗
∥∥∆u1(τ )

∥∥2
Ω

)
,

wheref (t) → 0, t → +∞ and t∗ = t∗(U,Ω,R) (see Section 3). Taking into accou
exponential decay of the solutions tothe problem (E1) we obtain that(φ∗(t), φ∗

t (t)) → 0
in Ỹ ast → +∞.

It is left to show that any sequence of the form(φ∗∗(tk), φ∗∗
t (tk)), tk → +∞, is compact.

To prove that such sequence satisfies conditions of Lemma 10 we use the estimates
(20), so we need to interpolate functional spaces used there. Applying Theorem 13.1 fr
[19, Chapter 1] about interpolation of intersections and the standard techniques prese
in [20] we obtain that[

Hs
(
(a, b);H 2

0(Ω)
) ∩ Hs+1((a, b);H 1

0(Ω)
)
,H s

(
(a, b);H 1

0(Ω)
)]

θ

= Hs
(
(a, b);H 2−θ

0 (Ω)
) ∩ Hs+1−θ

(
(a, b);H 1

0(Ω)
)
.

This result and Lemma 8 imply that

∥∥∇φ∗∗(t)
∥∥2

β,B+
R

+ ∥∥φ∗∗
t (t)

∥∥2
β,B+

R

� C(R)
(∥∥u2

t (t)
∥∥2

Hs+β (t−t∗,t;H1+β
0 (Ω))

+ ∥∥u2(t)
∥∥2

Hs+β (t−t∗,t;H2+β
0 (Ω))

)
(56)

for s + β < 1/2 and t > t∗ = t∗(U,Ω,R). Due to the embeddingCµ(0, T ;X) ⊂
Hs(0, T ;X), 0< s < µ < 1/2, and estimates (54)–(56) we get

∥∥∇φ∗∗(t)
∥∥2

β,B+
R

+ ∥∥φ∗∗
t (t)

∥∥2
β,B+

R

� C
(
E0(u0, u1, θ0) + ∥∥(φ0, φ1)

∥∥2
Y

)
, t > t∗, β < 1/2.

Thus(φ∗∗(tk), φ∗∗(tk)), tk → +∞ is compact.
The analysis of problems (E1)–(E4) shows that there exists the decomposition

solution we described in Introduction. Indeed,StW0 = (u,ut , θ,φ,φt )(t) = (u1, u1
t , θ

1,

φ∗, φ∗
t )(t) + (u2, u2

t , θ
2, φ∗∗, φ∗∗

t )(t), where(u1, u1
t , θ

1, φ∗, φ∗
t )(t) → 0 in X × Ỹ ast →

+∞ and(u2, u2
t , θ

2, φ∗∗, φ∗∗
t )(tk) is compact inX × Ỹ for any tk → +∞. Thus, for an
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ce

se-

quence

that

d

argu-
arbitraryW0 ∈ X × Ỹ andtk → +∞ the sequenceStkW0 contains convergent subsequen

StmW0
X×Ỹ−→ W̄ . Now we prove that‖θ(t)‖2

Ω → 0 whent → +∞. Note that

d

dt

∥∥θ(t)
∥∥2

Ω
� −∥∥∇θ(t)

∥∥2
Ω

+ ∥∥∇θ(t)
∥∥

Ω
· ∥∥∇ut (t)

∥∥
Ω

� 1

4

∥∥∇ut (t)
∥∥2

Ω
.

Thus by (48) we have(d/dt)‖θ(t)‖2
Ω � C(E0(u0, u1, θ0) + ‖(φ0, φ1)‖2

Y ). Therefore the

convergence‖θ(t)‖2
Ω → 0 follows from (49) and Lemma 11. Thus, any convergent

quence of the formStkW0, tk → +∞, tends to a pointW̄ = (ū0, ū1,0, φ̄0, φ̄1). SinceSt

is a continuous operator,Sτ W̄ = limtm→+∞ Stk (Sτ W0) for every fixedτ . Thus,Sτ W̄ =
(ũ0(τ ), ũ1(τ ),0, φ̃0(τ ), φ̃1(τ )). This implies that for the trajectorySt W̄ θ(t) ≡ 0. Equa-
tion (2) implies, thatut (t) ≡ 0 for this trajectory too. Hence,̄W = (ū0,0,0, φ̄0, φ̄1). As
far asW0 was chosen arbitrary, the result obtained means that any convergent se
StmW0, wheretm → +∞, converges to a point of the form(ū0,0,0, φ̄0, φ̄1). Using the
standard contradiction argument we can prove thatut (t) → 0 whent → +∞.

To prove thatW̄ is a stationary solution to the problem (1)–(9), it is enough to show
φ∗∗

t (t) → 0 in Ỹ along the trajectory. Obviously,

φ∗∗
t (x, t) = − 1

2π

t∫
x3

ds

2π∫
0

dθ (∂t + U∂x1)u
∗
t (x, t, s, θ),

whereu∗
t (x, t, s, θ) = ut (x1 − k1(θ, s, x3), x2 − k2(θ, s, x3), t − s). Let R > 0 be a fixed

value,x3 < R, andt > t∗ = t∗(U,Ω,R). Using formula (23), we obtain

φ∗∗
t (x, t) = 1

2π

{ 2π∫
0

dθ u∗
t (x, t, t∗, θ) −

2π∫
0

dθ u∗
t (x, t, x3, θ)

+ U

t∗∫
x3

ds

2π∫
0

dθ
[
∂x1u

∗
t

]
(x, t, s, θ)

+
t∗∫

x3

s ds√
s2 − x2

3

2π∫
0

dθ
[
Mθu

∗
t

]
(x, t, s, θ)

}
.

Repeating arguments from the proof of Lemma 8, part (i), we get∥∥φ∗∗
t (·, t)∥∥2

B+
R

� C(R) max
τ>t−t∗

∥∥ut (τ )
∥∥2

1,Ω
→ 0, t → +∞.

Hence,φ∗∗
t (t) → 0 in Ỹ whent → +∞ andW̄ = (ū0,0,0, φ̄0,0). Thus, we have prove

that every convergent sequenceStkW0 converges to a stationary pointW̄ astk → +∞.
Now we complete the proof of Theorem 3 by applying the standard contradiction

ment.



I. Ryzhkova / J. Math. Anal. Appl. 294 (2004) 462–481 481

in this

961,

nd.

he

ry,

cts

the

al

sonic
91,

of

Ross.

5–

ial

ed

lls,

.

Acknowledgments

The author is grateful to Prof. I.D. Chueshov for illuminating discussions of the problem considered
paper and to reviewers for advices that helped to improve the manuscript.

References

[1] V.V. Bolotin, Non-Conservative Problems of the Theory of Elastic Stability, Fizmatgiz, Moscow, 1
English transl.: Pergamon Press, Oxford, 1963.

[2] G. Avalos, I. Lasiecka, Exponential stability of thermoelastic system without mechanical dissipation, Re
Istit. Mat. Univ. Trieste 28 (1997) 1–28.

[3] G. Avalos, I. Lasiecka, Exponential stability of thermoelastic system without mechanical dissipation II: t
case of simply supported boundary conditions, SIAM J. Math. Anal. 29 (1998) 155–182.

[4] G. Avalos, I. Lasiecka, Uniform decays in nonlinear thermoelastic systems, in: Optimal Control: Theo
Algorithms, and Applications, Kluwer Academic, Dordrecht, 1998, Appl. Optim. 15 (1998) 1–23.

[5] I. Lasiecka, C. Lebiedzik, Decay rates of interactive hyperbolic–parabolic PDE models with thermal effe
on the interface, Appl. Math. Optim. 42 (2000) 127–167.

[6] I. Lasiecka, C. Lebiedzik, Boundary stabilizabilityof nonlinear acoustic models with thermal effects on
interface, C. R. Acad. Sci. Paris 328 (2000) 187–192.

[7] I. Lasiecka, C. Lebiedzik, Asymptotic behaviour ofnonlinear structural acoustic interactions with therm
effects on the interface, Nonlinear Anal. Ser. A 49 (2002) 703–735.

[8] I.D. Chueshov, Construction of solutions in a problem of the oscillation of a shell in a potential sub
flow, in: V.A. Marchenco (Ed.), Operator Theory, Subharmonic Functions, Naukova Dumka, Kiev, 19
pp. 147–154 (in Russian).

[9] A. Boutet de Monvel, I.D. Chueshov, The problem ofinteraction of von Kármán plate with subsonic flow
gas, Math. Methods Appl. Sci. 22 (1999) 801–810.

[10] L. Boutet de Monvel, I.D. Chueshov, Oscillation of von Kármán’s plate in a potential flow of gas, Izv.
Akad. Nauk Ser. Mat. 63 (1999) 219–244.

[11] I.D. Chueshov, On a certain system with delay, occurring in aeroelasticity, J. Soviet Math. 58 (1992) 38
390.

[12] I.D. Chueshov, A.V. Rezounenko, Global attractor for aclass of retarded quasilinear partial different
equations, C. R. Acad. Sci. Paris Ser. I 321 (1995) 607–612.

[13] I.D. Chueshov, Dynamics of von Karman plate ina potential flow of gas: rigorous results and unsolv
problems, in: Proceedings of 16th IMACS World Congress, 2000, pp. 1–6.

[14] H. Triebel, Theory of Functional Spaces, Birkhäuser, Basel, 1983.
[15] A. Babin, M. Vishik, Attractors of Evolutional Equations, North-Holland, Amsterdam, 1992.
[16] P.D. Lax, R.S. Phillips, Scattering Theory, Academic Press, New York, 1967.
[17] I.D. Chueshov, Finite-dimensionality of the attractor in some problems of the nonlinear theory of she

Math. USSR Sb. 61 (1988) 411–420.
[18] I.D. Chueshov, Strong solutions and attractor ofa system of von Kármán equations, Math. USSR Sb. 69

(1991) 25–36.
[19] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968
[20] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976.


