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This paper continues the joint work of the authors begun in the article “On 
Strong Product Integration” [J. Functional Analysis, submitted]. We consider 
product integrals along contours; the point of view and development is analogous 
to the usual complex variable theory of ordinary contour integrals. Our main 
results are Theorem 2.3 (homotopy invariance of product integrals, an analog 
of Cauchy’s integral theorem) and Theorem 3.4 (an analog of Cauchy’s integral 
formula or the residue theorem). 

INTRODUCTION 

In a previous article [l], the product integral, ni eAtsJds of an integrable 
function A(s) from a Q s < b to a(Z), the Banach space of bounded linear 
operators on a complex Banach space 3, was defined and studied. Given 
u,, E 3 and setting u(t) = nz eA(s)ds . u0 , u(t) satisfies the integral equation 

u(t) = %J + j” A(s) u(s) ds, a<t<b. 
a 

If A(s) is continuous, then (0.1) is equivalent to 

dujdt = A(t) u(t), a<t<b, 

u(u) = uo . 

The utility of the product integral consists primarily in its applications to 
Eqs. (0.1) and (0.2). 

In the present paper we study the notion of product integral along a contour, 
from a point of view substantially parallel to the ordinary complex variable 
theory of contour integration. Some of the results of the present article, at 
least in the case that % is finite dimensional, have been known for some time 
in the guise of results concerning systems of differential equations; however, 
the case of % infinite dimensional does not seem to have been discussed in 
the literature, and we feel that the systematic employment of the product 
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integral notion may cause some of these results to appear in a new light. Contour 
product integrals have been investigated by Volterra [3]; however, the cited 
work apparently contains some inaccuracies. 

1. THE DEFINITION OF CONTOUR PRODUCT INTEGRALS 

1.1. DEFINITIONS. A contour is a continuous, piecewise continuously 
differentiable mapping, y(t), from an interval a < t < b of the real numbers 
to the complex plane @. (Explicitly, this means that y(t) is continuous on [a, b], 
and there is a partition a < si < sa < ... < s, < 6 of [a, b] such that y(t) 
is continuously differentiable on each of the subintervals [a, s,], [sl , ~a],..., [sn , b], 
the endpoint derivatives being right or left derivatives.) If r is the image of 
y(t) we denote the contour by (r, y(t)) or sometimes just by r if the particular 
mapping y(t) has been identified or is unimportant. The points r(a) and r(b) 
are, respectively, the initial and termid points of the contour. If (r, y(t)) is a 
contour, we denote by r-r the contour defined by y(u + b - t), a < t < b. 
If r(u) = r(b) and (r, y(t)) has no other self-intersections (so that r is a Jordan 
curve, i.e., a homeomorphic image of a circle) we say r has positive orientation 
if for some (hence, every) point z,, in the bounded component of C\r we have 
(l/2+) Jr dz/(z - x0) = 1. Finally, if y(t) is a contour, we define p(t) to be 
the derivative of y at t if this exists and 0 otherwise. 

Now suppose that D C @ is a domain (nonempty, open, connected subset) 
and A(z) is a continuous function from D to 99(X), the Banach space of bounded 
linear operators on a complex Banach space .5?. (We shall be primarily interested 
in the case that A(z) is an analytic function.) Let (r, y(t)), a < t < b be a 
contour in D. 

1.2. DEFINITION. nr eA(z)dz = n", ed(y(t))+(t)dt, 

1.3. Remarks. (1) Since A(y(t)) f(t) is continuous except perhaps at finitely 
many points, it follows from Theorem 1, Corollary 2 of [l] that 

where b = t, > t, > . .. > t,-, > t, = a is a partition P of [u, b], (At)( = 
ti - t,-1 , and p(P) = maxi{(nt)i}. 

(2) I-Ii- eAfz)dz = lim,(,),, J-J:=, eA(sk)(dz)k where P is as in (l), zlc = y(tk), 
(d~)~ = z, - ,~-r . This is easily proved using the fact that except at points tk 
of nondifferentiability of y(t), (4~)~ = +(tk)(dt)k + o((dt)J. This shows in 
what sense the product integral is independent of the particular form of y(t). 
However, in what follows, we shall always assume that any contour referred 
to is defined by some particular y(t). 
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(3) Since (1.2) defines the product integral in terms of a product integral 
along a real interval, the results of [I] are applicable, and we shall make use 
of these. For example, Theorem 2 and Definition 9 of [I] imply that 

2. THE PRODUCT INTEGRAL OF AN ANALYTIC FUNCTION AND THE ANALOG OF 
CAUCHY'S INTEGRAL THEOREM 

2.1. DEFINITION. Let D C Cc be a domain, A(z) a mapping from D to &V(Z). 
A(z) is analytic in D if lim,,, I+(A(z + h) - A(z)) exists in a(%“) for every 
.ZED. 

Now suppose D is a domain and A(z) is analytic in D with values in B(s). 
Let (r, y(t)), a < t < b, be a contour in D. For x E r with y(t) = z and 
r(h) = z,, we denote si A(r(s)) 9(s) ds by I$r’(z). We may write In? = 
St0 A(c) d[ with the understanding that the integration is performed along r. 
We define inductively 

IF)(,) = s’: A(() IF-l)([) d[, n = 2, 3,... 
% 

where the integration is performed along l? By Theorem 1 and Property 6 
of [I] we have the formula 

(2.2) 

2.3. THEOREM. Let D CC be a domain, A(z) analytic in D with values 
in a(X), and (F, , yl(t)), (r, , yz(t)), a < t < b two contours in D with rl(a) = 
rd4 q = x0 I n(b) = 744 = x1 . 

Suppose r, and r, are homotopic with jixed 
endpoints in D. Then 

Proof. We will assume first that D is simply-connected. Define I(l)(z) = 
& A(c) d[ where the integration is along any contour, and inductively, 
I(“)(z) = & A(<) I(+l)(?J d[. Each I(“)(z) is well defmed and analytic in D 
by the ordmary form of Cauchy’s theorem. Now for z E r, , I(r)(a) = 1$(z). 
Assume inductively that I(“)(z) = 1$:)(z) for z E I’, . Then we have I(“+l)(,a) = 
.I-:, A(5) W5) d5 w ere the integration is along any contour; if we require h 
the contour to be r, , this shows that I(“+r)(x) = IT)(z). Hence I(“)(z) = $)(z) 
for n = 1, 2, 3 ,..., z E I’, . The same is true with r, replaced by r, , and this 
fact together with (2.2) proves the theorem in the simply-connected case. 

580/28/3-6 
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We remark that what has been proved so far together with Theorem 1 of [l] 
shows that if D is simply-connected, then there is an analytic solution of 
B’(z) B-l(z) = A(z) in D. (The p rime denotes differentiation with respect 
to 2.) A solution is given by the product integral of ,4 from any initial point 
to z. Now we remove the hypothesis that D is simply-connected. Let h(t, u): 
[a, b] x [0, l] --t D be the homotopy between yI and yz (h(t, 0) = rr(t), 
h(t, 1) = us). We claim that there is a continuous @(%)-valued function 
9Y(t, U) in S = [a, b] x [0, l] such that for each point (to , us) E S, there is a 
neighborhood U of h(ta , uO) and a g(Z)-valued analytic function B in L’ 
with 3Y(t, U) = B(h(t, u)) for h(t, U) E U, and B’B-l = A in U. Once estab- 
lished, this together with Theorem 7 of [l], will finish the proof, for then 

n eAczJdz = &?(b, 0) +l(a, 0) = g(b, 1) ZPl(a, 1) = n eA@jdz. 
r1 l-2 

(The middle equality is true because h(b, 0) = h(b, l), h(a, 0) = h(a, l).) 
To prove the existence of 3Y(t, u), subdivide [a, b] by points ti and [0, l] ,by 
points ui so that for each i, j, h([ti , &+r] x [z+ , z++J) is contained in an open 
disk Uij in which there exists an analytic Bii with BijB$ = A. Fix j. Since 
7Jij r\ Ui+l,i is nonempty and connected, we can multiply each Bij (j fixed) 
on the right by an element of B’(Z) so that B,,? and B,+l,j agree in Ui,j n U,+l,j ; 
this is possible due to the fact that solutions of BIB-l = A are determined 
up to right multiplication by an element of B(X) [ 1, Theorem 4, Corollary 21. 
For u E [z+ , z++r], define gj(t, U) = BJh(t, u)), t E [ti , ti+J. 9Yj(t, ZL) is con- 
tinuous in [a, b] x [uj , z++r]. We remark that it may happen that U,,i and 
Ui,z,i may intersect, and B,,j, Bi+z,j may not agree in the intersection, but 
Bj(t, U) is well defined by the above prescription. Finally we can multiply 
each gj on the right by an element of g’(3) so that %j and ai+r agree when 
u = uj+l . Then put g(t, U) = 9Yj(t, U) for u E [z+ , z++r]. 

The following corollary has been proved in the above. 

2.4. COROLLARY. If D is simply-connected, zO E D, and if for all z E D, 
we define U(z) = n:, eA(L)dc where the integration is along any contour in D, 
then U(z) is well defined and U’(z) = A(z) U(z). 

2.5. COROLLARY. If r is null homotopic in D, then 

We prove one more corollary which describes the relation between the 
product integrals along concentric contours of an analytic A(z). Suppose D 
is a domain, r, , r, contours in D which are Jordan curves with initial points 
zr , za , respectively. Suppose that I’, , r, are positively oriented, r, is contained 
in the interior of r, , and that the region between I’, and r, is contained in D. 
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Suppose A(z) is analytic in D. Then jr1 A(5) d5 = Jr, A({) d{ by a simple 
application of Cauchy’s theorem. For product integrals, we do not obtain 
simple equality. We have, in fact: 

2.6. COROLLARY. PI = J&, eAt6jdC and Pz = nr, eAcgjdc are similar operators, 
i.e., there exists an invertible operator, S, with PI = SP,,!F. 

Proof. Consider Fig. 2.7. We adopt the following notation: If ri, rj are 
contours with terminal point of rj = initial point of ri , then riri denotes 

D 

FIGURE 2.7. 

the contour consisting of ri followed by rj . Now from the diagram and 
Theorem 2.3, we have 

n e JJ eA(cjdc. A(CM6 = 

rz-3 r3r2 

Using Theorem 3 of [l] and Remark 3 of 1.3, we can rewrite the last 
equation as 

F 2 eA(C)dC Q eActjdi (I$ eA(Odc)-‘. eAKMC = 

Taking S = n, eA(C)dt provides the claimed similarity relation. 

3. A CAUCHY INTEGRAL FORMULA FOR PRODUCT INTEGRALS 

Throughout the present section the following notation will be in effect: 
D is a simply-connected domain in C, r is a positively oriented contour in D 
which is a Jordan curve, z,, is a point of D which lies inside r, A(z) denotes an 
analytic g(X)-valued function in D\{x,} ( see Fig. 3.1). In the situation described 

above, Jr A(5) d5 can be evaluated in the following way: since Jr A([) dt; 
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r r 

(yrr-) (yrr-) 

D D 

‘zo ‘zo 

FIGURE 3.1. FIGURE 3.1. 

is unchanged if the contour I’ is “shrunk” toward the point x0 , we can assume 
that r is contained in an annulus in D in which A(z) has the convergent Laurent 
expansion A(z) = C,“=-, A,(z - zJn; then Jr A([) d[ = 2~iA-, . If (A(z)},,, 
is a commutative family, then by Corollary 3 of [l], 

If the commutativity assumption is dropped, it is no longer true in general 
that J& eA(odr and ezRiA-l are equal; however, if A(z) has a pole of order at 
most one at z,, , and a technical condition concerning the spectrum of A-, 
is satisfied, then J& eA(cJdt and ezniA-1 are similar. We remark that in general 
it seems quite difficult to compute I& eA(rJdr or even to determine if this integral 
is the identity operator, I. The latter question is equivalent to asking when 
solutions of (duldz = A(z) U(Z), u(x): D\{z,} --+ %“} are single valued; this 
need not be the case even when 

A(z) = f A& - zJn 
n=-1 

and eBniA-l = I. 

We give an example illustrating some of these remarks. 

3.2. EXAMPLE. Let 

S(z) = (; ;), R = (;: ‘y:,, 

and let T(z) be the (multivalued in general) function T(z) = S(z)zR = 
S(a)eR1osz defined in C\(O). Set 

A(z) = $ . T-l(x) = z-2 (OS 8, + z-1 (’ ; rl r$ + (; ;) 
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which is analytic in C\(O). Let r be the contour given by y(t) = eit for 
0 < t < 25~. By picking a branch of the logarithm along y(t), 0 < t < 2~ 
and applying Theorem 7 of [l], we have I& eA(c)d( = j&er’(r)r-l(r)dC = 
T(cPi) T-l(@) = e2niR. We have also 

so that 

PniA-1 _ ( 
e277i7* 0 

e - 
0 1 e2niT4 * 

In general, eaniA-l and ePniR are not equal and are not even similar. For example, 
if r3 = 0, or = r, = -4, then 

A-, = (t -J, esniAel = -1, 

eZniR = ezn 

(the two matrices commute) 

= -1. (I + (8 2F)) = (-:, -y, 

which is not similar to --I unless r2 = 0. Notice that in this case, A(z) has 
only a pole of order 1 at z = 0; we also note for later reference that ]I A, 11 = + . 
If we take ra = 0, r1 = r, = 1, we get an example with e2niA-1 = 1, A(z) has 
a pole of order 1 at 0 and 

e2niR = (:, “T) 

which is not similar to I unless r2 = 0. 
The example indicates that to prove an analog of the Cauchy integral formula 

for product integrals even for the case A(z) = A-,/(z - z,,) + B(x), B(z) 
analytic in D, additional assumptions are necessary. One assumption which 
is sufficient is that the difference set a(&) - o(&) of the spectrum o(&) 
of A-, does not contain positive integers. We state a technical result concerning 
this condition. 

3.1. LEMMA. Let A E B’(3) and let ad A: 39(X) -+ W(X) be the operator 
dejned by ad A(T) = AT - TA. Let a(A) and a(ad A) denote the spectra of A, 
ad A, YespectiveZy. Then o(ad A) = o(A) - a(A) = (h - p: h, p E o(A)}. 
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Proof. We refer to [4] and [5] for th e g eneral proof in the Banach space 
case. We give a proof for the case .5? = 17~ is finite dimensional, in which 
case the spectra of the operators in question consist of finite sets of eigenvalues. 
Let a(A) = {X, ,..., h,), and let At be the transpose of A. The characteristic 
equations of A and At are the same, so i2 and -F have the same spectrum. 
Choose column vectors {X,},=, ,.,,, I , { Yk}k=l ,.,,, I with ilX, = &Xi , AtYk = 
hkYk , (YktA = hkYkt). Let Z,, be the nonzero n >< n matrix X,.Y,t (where 
Y,t is the row vector with the same components as Y,). Then (ad A)Z,, = 
AX,Y,1- X,Y,tA = (h, - ,I,)&, . Hence a(A) - a(A) C CT (ad A). Next we 
prove the reverse inclusion. The space @” on which il acts can be decomposed 
as Pz = V, @ ... @ V’l where in each PI, there is a basis (fi ,..., fr,) with 

(Jordan decomposition) 

Let p be an eigenvalue of ad A with eigenmatrix 2. Assume p + A, $ a(A); 
then A - TV - h, is invertible. Now we have AZ = ZA + PZ and so 
(A - p - &.)Z = Z(A - &) or 

z = (A - ,L - h&-l Z(A - h,). (*) 

Applying Z to vectors on V, and using (*), we have: 

Zfi=(A-p---h,)-1Zf,=(A-p-&-2Zf3=... 

= (A - CL - XJTkfl Zfr, = 0. 

Thus Z annihilates V, . But Z cannot annihilate all the V, so for some k, 
p + hk E o(A). This proves o(ad A) C o(A) - a(A) and finishes the proof. 

We return to the situation described at the beginning of Section 3. 

D 
2 

(pq % 

rz 

FIGURE 3.3. 
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3.2. DEFINITION. For x # zO , A(z) = JJTrz eA(r)dr where r, is any positively 
oriented contour in D which is a Jordan curve, starting at x circling x,, once, 
and returning to z (see Fig. 3.3). By a simple application of Theorem 2.3, 
A(x) is independent of which such contour r, is used, i.e., A(x) is well defined. 

3.3 PROPOSITION. A(x) is analytic in D\(z,}. If A(z) = A-,/(z - zO) + B(z), 
B(x) analytic in D, then A(x) has a removable singularity at q, and lim,,,O A(z) = 
&riA-1 

FIGURE 3.4. 

Proof. Consider Fig. 3.4. From the figure and Theorem 3 of [l] we have: 

Zih 
A(z + h) = n eA(c)dcA(z) fi eA(CJdC (along the contours indicated) 

* r+h 

so 

hence 

$ A(z) = [A(x), A(z)] = A(x) A(z) - A(z) A(z) 

for z # z,, . Finally, 
eo+2m 

I-I 
e{A-I/(C-z,)+Bk))dC = e{iA-,+O(r)td.3 

r=(z,+re‘e e ace +2~} ’ o-- 10 P 

and by Theorem 6 of [I] applied to the last product integral and JJy eiA-Ida = 
esn$A-1, we have lim,,, A(x) = e2niA-1. 

We remark that forox # z, and z’ # z,, , A(z) and A(z’) are similar. This 
follows from the calculations in the proof of Proposition 3.3. In particular, 
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if A(x) = 1 for some z # x,, , then A(x) = 1, and eBniA-l = I; this means that 
all solutions of dujdz = A(z) ( ) u z are single valued in D\{z,,), i.e., have at 
worst poles or essential singularities at a0 and not branch points. Note that 
e2nia-l = I is a necessary but not sufficient condition for single valuedness. 

We now prove an analog of Cauchy’s integral formula for product integrals. 

3.4. THEOREM (Cauchy Integral Formula). Consider the situation described 
at the beginning of Section 3. Suppose A(z) = &/(z - x0) + B(z), with B(x) 
anaZytic in D. Suppose further that a(&) - a(&,) does not contain positive 
integers. Then I$. A(mt and e2aiA-1 are similar. 

3.5. Remarks 

(1) In Volterra [3], the result of this theorem is apparently claimed 
without the hypothesis on a&,) - a(&,). This hypothesis is necessary 
as Example 3.2 shows. 

(2) Later we shall give various explicit formulas for the operator giving 
the similarity claimed in the theorem. The proof of the theorem gives the 
similarity in the form of a power series. 

(3) The result of the theorem in the finite-dimensional case and in a 
different guise can be found in [2]; the proof given there differs from the present 
one. 

Proof of Theorem 3.4. We assume without loss of generality that x,, = 0 
to simplify the calculation. Since A(z), A(x’), x, x’ # 0 are similar, it suffices 
to show A(z) similar to tGRiA-l for 1 z 1 sufficiently small. Recall that by a special 
case of Theorem 9 of [I], if T( z is analytic and invertible along a contour C ) 
in D with initial and terminal points x1 , z2 , and S(z) is continuous along C then 

(r)dz = T(.z,) F e{ T-‘(z)S(z)T(z)-T-‘(z)T’(z))dzT-l(X1)~ (3.4.1) 

Suppose that a single-valued analytic T(x) in a neighborhood of z = 0 can 
be found with: 

T-l(x) + T(z) - T-l(x) T’(z) = + + BW (3.4.2) 

Then by (3.4.1) with 5’(z) = A,/z, C = r we have 

eSniA-l = T(x) A(z) T-l(x) (3.4.3) 

which would prove the theorem. We thus attempt to solve (3.4.2) which is 
equivalent to the system: 

T’(z) = [A-,/z, T(z)] - T(z) B(z), 

T(z) invertible near 0. 
(3.4.4) 
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We look for T(x) in the form: 

T(z) = I + t T,p” satisfying (3.4.4). (3.4.5) 
TZ=l 

The invertibility near 0 is automatic for T(z) of this form, so we substitute 
(3.4.5) in the first equation of (3.4.4) yielding the formal relation: 

f nT,,xn-l = f [A-, , T&F1 + (I + f T,+?) (i. B,z”). (3.4.6) 
Tl=l n=1 n=1 

Identifying equal powers of z yields: 

(n - ad A,) T,P--l = (B,,T,-, + *a. + B&P-~ (n > 1) (3.4.7) 

and under the hypotheses on a(A-,), this is recursively solved by: 

T, = (n - ad A,)-l(B,T,-, + *** + B,-,). (3.4.8) 

Now (n - ad A-,)-r = O(n-r) as n + co, and for 1 x 1 sufficiently small, 
11 B,zn )I = O(1) since Cz=,, B,pn is convergent. Hence (3.4.8) yields: 

n-1 

11 T,,z” I/ = O(t+) . c 11 Tjd 11 (3.4.9) 
j=O 

for I x I sufficiently small and where To = I. From (3.4.9) we obtain inductively: 

II TN II = O(1) as 92 -+ co (for I z I small). (3.4.10) 

This proves that (3.4.5) converges in some neighborhood of 0 and finishes 
the proof of the theorem. 

3.6. Remarks 

(1) The proof of the theorem shows that the result of the theorem is 
true in the case that B(z) has a zero of order s at 0 and a(&) - a(&) contains 
no integer >s. (The T, could still be determined from (3.4.7).) This condition 
on +4-r) - c&4-,) will hold, for example, if II A-, 11 < (S + 1)/2 since then 
11 ad A-, II < s + 1 and (n - ad A-,)-l exists for n > s + 1. Hence the result 
of the theorem is always true if 11 A-, II < 4 ; recall, however, that Example 3.2 
showed that the result of the theorem fails to hold in a case where II A-, II = 4 . 

(2) If we are in the finite-dimensional case S = P, the characteristic 
polynomial of A(z) is independent of z and thus equals the characteristic 
polynomial of ea *$A-1 regardless of the nature of a&). Hence the eigenvalues 
of A(z) and of es niA-l are the same, and if these are all distinct then the result 
of the theorem holds. (Because two n x n matrices with the same n distinct 
eigenvalues are similar.) 
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(3) As remarked at the beginning of Section 3, if A(z) is a commutative 
family the result of the theorem is always true with “similar” replaced by 
“equal.” 

(4) If X = @” and the condition on a(&) does not hold, then it is 
possible to show that there is an invertible analytic function T(z) in @\{~a) 
such that if a(z) = T-i(x) A(z) T(x) - T-‘(z) T’(z), then a(z) has a pole of 
order one at za and d-r does satisfy the spectrum condition of the theorem. 
(See Theorem 4.2 and the preceding lemma in [2].) Hence in this case 
J-Jr eAtodt is similar to ezni’- 1. This result is of some theoretical interest and is 
useful, for example, in determining the form of solutions of second order 
ordinary differential equations with regular singular points in the neighborhood 
of the singularity. However, it seems very difficult to give an explicit formula 
for A”_, , since the construction of T(z) involves the transformations which 
put various successively determined matrices in Jordan normal form. 

If the hypotheses of Theorem 3.4 hold, then the operator T(z) giving the 
similarity between A(x) and ezniA- 1 is expressed as a power series. In some 
cases a more explicit integral formula for the similarity can be given. We con- 
sider the case .zO = 0, assume 1 E D, and consider A(1) for definiteness (see 
Fig. 3.7). 

FIGURE 3.7. 

3.8. THEOREM. With notation as in Theorem 3.4, assume that either: 

(1) A-, is skew adjoint, or 

(2) B(x) has a zero of order k at 0 and 

II A-, /I < *. 

Then n(l) = 11: e(~CA-W(s)SA-l)ds . e2niA-1 . ni e(s-A-1B(s)8A-l)ds where theproduct 

integrals are convergent improper integrals, the path of integration being the line 
segment from 0 to 1. 
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Proof. From Fig. 3.7 we have: 

A(1) = P(1, Y)-lA(Y) P(1, Y) (3.81) 

where P(l, r) = ny &- 1 / s+E(s))ds, the integration being along the line segment 
from 1 to Y, on the x axis. By Theorem 8 of [I] we have: 

pcl, r) = fi &,S)/dS fi ,m;eu” ~VB(s)(n;e~-l’” %s 
1 1 

= f-1 i e (s-A-le(s)&l)ds where &I = eA-,logs. , (3.8.2) 

logs = 
s 

’ l/x dx is the natural logarithm. 
1 

From (3.8.1), (3.8.2) we have: 

(1(l) = fi es-hm"-ws~ e2?ri.4-1 . fi eS-~-lBMs"-lds 

r 

+ P(l, r)-‘(A(r) - fWA-l) i(l, r) (3.8.3) 

( since r*d-l and eaniA-1 commute). Since lim,JA(r) - e2niA-1) = 0 by Proposi- 

tion 3.3, in order to prove the formula claimed for A(l) it suffices to have: 

(a) I] P(l, r)l] and Ij(P(1, r))-l ]I bounded as Y -+ 0, 
(b) lim,, I$ eswA-lB(a)sA-lds and lim,,, ni es-AmVJ(~)~A-M~ exist. 

If A-, is skew adjoint, i.e., AZ1 = ---A-, , then I] s*A-~ 112 = jl #f&A-l ]j = 
]I fiA-yfA-l I/ = 1 so 11 S&~--I /I is bounded and 11 ~-~-lB(s)sA-l /I is integrable over 
[0, l] so (a) and (b) are true by Theorem 1 of [l]. If B(z) has a zero of order k 
at 0 and II A-, ]I < (k + 1)/2 then by Theorem 6 of [l] we have easily 
4) - ezniA4 = O(++l) as r --+ 0, and by Theorem 5 of [I] we have 

/I ~(1, r>ll, ll(p(1, r))-l 11 < ,-liA-,ll,(I:s-a"A-l"IIB(s)Ilds) < const r-“A-l” 

as r -+ 0 since J: s- 211A-ill I] B(s)11 ds is convergent. Thus the second summand 
in (3.8.3) tends to 0 as r --+ 0. Furthermore, 

I/ s-A-lB(s)sA-l 11 < s-2”A-1” 11 B(s)11 < const sy, Y > -1, 

so ni e* -A- UUs)s”-Ids and If es -A-lB(s)sA-lds exist by Theorem 1 of [l]. This 
finishes the proof of the theorem. 
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