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1. Introduction

Consider a convex superlinear Lagrangian L : T M → R on a d-dimensional compact manifold M .
For t � 0 define the (backward) Lax–Oleinik semigroup Lt : C(M,R) → C(M,R) by

Lt u(x) = inf

{
u
(
γ (0)

) +
t∫

0

L(γ , γ̇ ): γ : [0, t] → M is piecewise C1, γ (t) = x

}
.
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The function S : M × R
+ → R given by S(x, t) = Lt u(x) is a viscosity solution of the Hamilton–Jacobi

initial value problem

St + H(x, Sx) = 0, S(x,0) = u(x). (1)

It was shown in [1,2] that there is a unique number c = c(L) such that Lt + ct has a fixed point
for any t > 0. Any fixed point u is a backward viscosity solution of

H
(
x, Du(x)

) = c. (2)

Moreover for any u ∈ C(M,R) the uniform limit

ũ = lim
t→∞ Lt u + ct

exists. One can also define the forward Lax–Oleinik semigroup L∗
t by

L∗
t u(x) = sup

{
u
(
γ (t)

) −
t∫

0

L(γ , γ̇ ): γ : [0, t] → M is piecewise C1, γ (0) = x

}
.

Again L∗
t −ct has a fixed point for any t > 0 and any such fixed point u is a forward viscosity solution

of (2). The semigroup L∗
t gives the solution to a Hamilton–Jacobi final value problem.

Our goal in this paper is to establish a relation of the hyperbolicity of the Aubry set to the expo-
nential rate of convergence of the semigroup Lt + ct .

Theorem 1. Assume that the Aubry set consists in a finite number of hyperbolic periodic orbits or critical points
of the Euler–Lagrange flow. Then, there is μ > 0 such that for any u ∈ C(M,R) there is K > 0 such that

‖Lt u + ct − ū‖0 � K e−μt ∀t � 0. (3)

Theorem 2. Let L : T M → R be given by L(x, v) = 1
2 v2 − V (x) with

max
x

V (x) = c, V −1(c) = {x1, . . . , xm}.

Suppose that there is μ > 0 such that for any u ∈ C(M,R) there is K > 0 such that (3) holds. Then (xi,0),
i = 1, . . . ,m, is a hyperbolic critical point of the Euler–Lagrange flow.

Remark 1. For Theorem 2, we only need that (3) holds for the function u ≡ 0.

2. Aubry set and static classes

We recall the definition of the Peierls Barrier [3] and Mañé’s action potential [4]. Define the action
of a piecewise C1 curve γ : [0, T ] → M as

A(γ ) =
T∫

0

L
(
γ (s), γ̇ (s)

)
ds.

Given a constant k ∈ R and x1, x2 ∈ M let

hk
T (x1, x2) = inf

{
A(γ ) + kT

∣∣ γ : [0, T ] → M joins x1 and x2
}
,
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and

hk(x1, x2) = lim inf
T →∞ hk

T (x1, x2),

Φk(x1, x2) = inf
T

hk
T (x1, x2).

Since time T is not bounded, there is only one possible value of k that will make the function hk

different from being identically −∞ or ∞, this is again c = c(L). We define ΦT = hc
T and the Peierls

Barrier h = hc . Mañé’s action potential Φk is identically −∞ for k < c(L) and finite for k � c(L). We
will also define Φ = Φc . In [3], it is shown that ΦT actually converges uniformly to h.

Given a fixed y ∈ M , the function x 	→ −h(x, y) is a forward viscosity solution of (2), whereas
x 	→ h(y, x) is a backward viscosity solution.

We now define as in [3] the Aubry set A ⊂ M:

A = {
x ∈ M, h(x, x) = 0

}
(in Ref. [3] it was called the Peierls set.)

In close relation to Mather’s graph theorem [5], it is shown in [6], that the set A can be lifted,
in a unique way, to a set Ã ⊂ T M that is an invariant set of minimizing orbits of the Euler–Lagrange
flow. This set projects homeomorphically to A through the usual projection from T M to M . We also
call the set Ã “Aubry set.”

The “static classes” form a partition of A, defined by the equivalence relation on A: x ∼ y if and
only if

h(x, y) + h(y, x) = 0.

If the Aubry set Ã is made up of a finite union of periodic orbits or critical points of the Euler–
Lagrange flow, each static class is a periodic orbit or a critical point.

3. Proof of Theorem 1

Adding a constant to L we may take c(L) = 0. We assume that the Aubry set consists in a finite
number of hyperbolic periodic orbits or critical points Γi : ϕt(xi, vi) = (γ i(t),γ

′
i(t)), t ∈ R, 1 � i � m.

In the case of a periodic orbit we denote by Ti its minimal period and in the case of a critical point
we put Ti = 1.

Let λi, j, j = 1, . . . ,d∗ , be the positive Lyapunov exponents of γi where d∗ = d if γi is a critical
point and d∗ = d − 1 if γi is a periodic orbit. Set λ = mini, j λi j , TS = T1 + · · · + Tm , T = mini∈[1,m] Ti .

Fix V i a tubular neighborhood of Γi in T M , where the flow is orbit equivalent to its linearization.
According to a result of Belitskii [7] there is 0 < α < 1 such that the linearizing map Fi : Bi → V i is
α-Hölder. We define

V =
m⋃

i=1

V i .

In [8] it was proved that for any backward viscosity solution v of (2)

v(x) = min
i∈[1,m]

v(xi) + h(xi, x). (4)

Closely related to this fact we have the following
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Proposition 1. For u ∈ C(M,R) let ū := limt→∞ Lt u. Then

ū(x) = min
z∈M

u(z) + h(z, x) (5)

= min
{

u(z) + h(z, xi) + h(xi, x): i ∈ [1,m], z ∈ M
}
. (6)

Proof. For any x ∈ M and t > 0 there is yt(x) such that

Lt u(x) = u
(

yt(x)
) + Φt

(
yt(x), x

)
� u(z) + Φt(z, x) ∀z.

Choose tn → ∞ such that (ytn (x)) converges to some Y (x), then (Φtn (ytn (x), x)) converges to
h(Y (x), x) and so

ū(x) = u
(
Y (x)

) + h
(
Y (x), x

) = min
z∈M

u(z) + h(z, x).

In particular, for x = xi there is yi ∈ M such that

ū(xi) = u(yi) + h(yi, xi) = min
z∈M

u(z) + h(z, xi),

and then

ū(x) = min
i∈[1,m] ū(xi) + h(xi, x)

= min
{

u(z) + h(z, xi) + h(xi, x): i ∈ [1,m], z ∈ M
}
. �

Letting u ∈ C(M,R), to prove Theorem 1 we have to establish two inequalities. We first prove that
there is K > 0 such that

Lt u − ū � K exp

(
−λT

2T
t

)
. (7)

Given x ∈ M , for every piecewise C1 curve γ : [0, t] → M with γ (0) = x

Lt u(x) � u
(
γ (0)

) +
t∫

0

L(γ , γ̇ ).

For some j ∈ [1,m] we have that

ū(x) = ū(y j) + h(y j, x),

and to prove inequality (7) we will construct curves joining yi and x with action approximating
h(yi, x).

For x ∈ M let i ∈ [1,m] such that

ū(x) = ū(xi) + h(xi, x).
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Since z 	→ h(xi, z) is a backward viscosity solution of (2), there is a semistatic curve βx : ]−∞,0] → M
with βx(0) = x such that

0∫
t

L
(
βx, β

′
x

) = h(xi, x) − h
(
xi, βx(t)

)
, t < 0.

We may assume that Γi is the α-limit of {(βx, β
′
x)}. In fact, let Γ j be the α-limit of {(βx, β

′
x)}, then

we have

h(xi, x) = h(xi, x j) + h(x j, x).

Since ū(x j) � ū(xi) + h(xi, x j) we have that

ū(x) � ū(x j) + h(x j, x) � ū(xi) + h(xi, x) = ū(x)

and then ū(x) = u(y j) + h(y j, x j) + h(x j, x).
Since y 	→ −h(y, x j) is a forward viscosity solution of (2), there is a semistatic curve ω j : [0,∞[ →

M such that ω j(0) = y j and

t∫
0

L
(
ω j,ω

′
j

) = h(y j, x j) − h
(
ω j(t), x j

)
, t > 0.

Let Γk be the ω-limit of {(ω j,ω
′
j)}, then we have

h(y j, x j) = h(y j, xk) + h(xk, x j),

d
((

ω j(t),ω
′
j(t)

)
,ϕt+d1 (xk, vk)

)
� C1e−λt, t > τ(V ),

d
((

βx(t), β
′
x(t)

)
,ϕt−d(x j, v j)

)
� C1eλt, t < −τ (V ),

with 0 < d1 < Tk , 0 < d < T j .
According to Theorem 3-11.1 in [9] there are i1 = k, . . . , il = j and semistatic curves βr : R → M ,

r = 2, . . . , l, such that Γir−1 and Γir are the α and ω limits of {(βr(t), β ′
r(t)): t ∈ R} respectively. Since

all orbits Γi are hyperbolic and the semistatic curves βr are in fact heteroclinic connections we may
assume that

d
((

βr(t), β
′
r(t)

)
,ϕt(xir−1 , vir−1 )

)
� C1eλt, t < −τ (V ),

d
((

βr(t), β
′
r(t)

)
,ϕt+dr (xir , vir )

)
� C1e−λt, t > τ(V ),

with 0 < dr < Tir . We have

t∫
s

L
(
βr, β

′
r

) = h(xir−1 , xir ) − h
(
xir− , βr(s)

) − h
(
βr(t), xir

)
.

We now define a curve whose action approximates h(y j, x) that is made of pieces of the hetero-
clinic connections βr and some transition curves cr exponentially close to Γir . (See Fig. 1.)
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Fig. 1.

Let β1 = ω j , βl+1 = βx(t + d). For 1 < r � l + 1 let

dr = d1 + · · · + dr−1, Tr = Ti1 + · · · + Tir−1 ,

ar(n) =
⎧⎨
⎩

nTk − d1, r = 1,

(2n + 1)Tr + nTir − dr+1, 1 < r � l,

(2n + 1)Tl+1 − dl+1 − d, r = l + 1.

Note that al+1(n) � (2n + 1)T.
There is τ̄ (V ) > 0 such that for any x ∈ M , t � τ̄ (V )− 2 maxi T i , we have βr(t) ∈ V , r = 0, . . . , l + 1.
Consider the curve αn : [0,al+1(n)] → M , defined by

αn(s) =
⎧⎨
⎩

β1(s), s ∈ [0,a1(n)],
βr(s − (2n + 1)Tr + dr), s ∈ [ar−1(n) + Tir−1 ,ar(n)], r > 1,

cr(s), s ∈ [ar(n),ar(n) + Tir ],

where cr : [ar(n),ar(n) + Tir ] → M is defined using tubular coordinates

ψr : Ur → S
1 × R

d−1, ψr(z) = (
exp

(
iη1(z)

)
, η2(z)

)
around γir by the expression

(η1, η2) ◦ cr(s) =
(

1 − s − ar(n)

Tir

)
(η1, η2) ◦ βr

(
s − (2n + 1)Tr + dr

)

+
(

s − ar(n)

Tir

)
(η1, η2) ◦ βr+1

(
s − (2n + 1)Tr+1 + dr+1

)
,

al+1(n)∫
0

L
(
αn,α′

n

) =
a1(n)∫
0

L
(
β1, β

′
1

) +
l∑

r=2

nTir −dr∫
−nTi

L
(
βr, β

′
r

)

r−1
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+
l∑

r=1

ar(n)+Tir∫
ar (n)

L
(
cr, c′

r

) +
−d∫

−nT j

L
(
βl+1, β

′
l+1

)

= h(y j, xk) − h
(
a1(n), xk

) +
l∑

r=1

h(xir , xir+1 )

−
l∑

r=2

h
(
xir−1 , βr(−nTir−1 )

) + h
(
βr(nTir − dr), xir

)

+
l∑

r=1

ar(n)+Tir∫
ar (n)

L
(
cr, c′

r

) + h(x j, x) − h
(
x j, βl+1(−nT j)

)
.

Since
∫ T j

0 L(γ j,γ
′
j) = 0 and

d
(
cr(s),γ ir

(
s − (2n + 1)Tr + dr+1

)) + ∣∣c′(s) − γ ′
ir

(
s − (2n + 1)Tr + dr+1

)∣∣ � C2e−λnTir ,

we have

Lal+1(n)u(x) − ū(x) �
l∑

r=1

ar (n)+Tir∫
ar (n)

L
(
cr, c′

r

)

−
l∑

r=2

h
(
xir−1 , βr(−nTir−1 )

) + h
(
βr(nTir − dr), xir

)
− h

(
a1(n), xk

) − h
(
x j, βl+1(−nT j)

)
� C3e−λnT � K exp

(
−λT

2T
al+1(n)

)
.

Now we establish the other inequality.
For x ∈ M , t > 0 let γt : [−t,0] → M be a curve such that γt(0) = x and

Lt u(x) = u
(
γt(−t)

) +
0∫

−t

L
(
γt , γ

′
t

) = u
(
γt(−t)

) + Φt
(
γt(−t), x

)
.

For any s ∈ [−t,0], i ∈ [1,m] we have

ū(x) � u
(
γt(−t)

) + h
(
γt(−t), xi

) + h(xi, x) (8)

� u
(
γt(−t)

) + Φ
(
γt(−t), γt(s)

) + h
(
γt(s), xi

)
+ h

(
xi, γt(s)

) + Φ
(
γt(s), x

)
(9)

� u
(
γt(−t)

) +
0∫

−t

L
(
γt , γ

′
t

) + h
(
γt(s), xi

) + h
(
xi, γt(s)

)
(10)

= Lt u(x) + h
(
γt(s), xi

) + h
(
xi, γt(s)

)
. (11)



R. Iturriaga, H. Sánchez-Morgado / J. Differential Equations 246 (2009) 1744–1753 1751
Inequality (8) follows from (6), inequality (9) is twice triangle inequality, inequality (10) follows from
the definition of Φ .

The idea of the proof is to choose s for each t sufficiently large such that the last two terms in
(11) are O (e−μt). Since h is Lipschitz and h(xi, xi) = 0, this reduces to choose s such that d(γt(s), xi)

is O (e−μt). In fact we will show that they are exponentially close in the tangent bundle. The main
idea is that if an orbit remains a long time say of order T in the neighborhood of a hyperbolic saddle,
then there is some point that is at distance of order e−μT of the saddle. This is trivial for a linear
system and the general case follows from the α-Hölder linearization.

We need the following lemma.

Lemma 1. Let W = ⋃m
i=1 W i be a neighborhood of the Aubry set in T M. Then, there exist T , C > 0 such that

if γ : [−t,0] → M, t > T , is a minimizer, then the time that (γ (τ ), γ ′(τ )) remains outside W is less than C .

Proof. Suppose that L has the special property that is greater or equal to zero, and that is equal to
zero only in the Aubry set. In this case the Lagrangian is bounded from below by δ outside the neigh-
borhood W . Since the action of the minimizers is bounded independently of t , the lemma follows
easily.

To prove the general case we use a theorem of Fathi and Siconolfi [10] that claims the existence
of f , a C1 strict critical subsolution of the Hamilton–Jacobi equation, which means that the Lagrangian
L −df has the property described above. Moreover, according to a result of P. Bernard [11] in the case
when the Aubry set is a collection of hyperbolic periodic orbits, the function f may be chosen C∞ .

The curves γ realizing the minimum in the Lax transformation for the function u and the La-
grangian L are the same curves realizing the minimum for the Lagrangian L − df and the function
u + f . So we obtain the lemma. �

Recall that V i are neighborhoods of the orbits of the Aubry set in T M where we can linearize the
flow and V = ⋃

i V i . Since the velocity of any minimizer is bounded by the same constant, and the
time it can remain outside V is bounded, the number of times it can go from one V i to other V j is
bounded by say N , we conclude that for t > T ∗ , any minimizer γ : [−t,0] → M stays in at least one
V i a time interval larger than t

N .
As we explained, we then have the following proposition.

Proposition 2. There are positive constants C , T and μ such that for any γ : [−t,0] → M, t � T , minimizing
curve, there is τγ ∈ [−t,0] such that

d
((

γ (τγ ), γ ′(τγ )
)
, (xi, vi)

)
� C exp(−μt)

for some i ∈ [1,m].

This finishes the proof of Theorem 1.

4. Proof of Theorem 2

Lemma 2. Let L : T M → R be given by L(x, v) = 1
2 v2 − V (x) with

max
x

V (x) = 0, V −1(0) = {x1, . . . , xm}.

Suppose that there is μ > 0 such that for u ≡ 0 there is K > 0 such that

‖Lt u − ū‖0 � K e−μt ∀t � 0. (12)

Then (xi,0), i = 1, . . . ,m, is a hyperbolic critical point of the Euler–Lagrange flow.
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Proof. For any x j the function h j(x) = h(x j, x) is a viscosity solution of the Hamilton–Jacobi equation

1

2

∣∣Dφ(x)
∣∣2 + V (x) = 0.

Suppose (xi,0) is not hyperbolic, which means that xi is a degenerate maximum of V . Let
0,−λ2

1, . . . ,−λ2
k , λi > 0, be the eigenvalues of Hess V (xi). By the splitting lemma [12], there are local

coordinates (y, z) around xi such that xi corresponds to the origin and

−2V (y, z) = ψ(y) + λ2
1z2

1 + · · · + λ2
k z2

k , (13)

Dψ(0) = 0, Hess ψ(0) = 0. (14)

Thus, there is C > 0 such that

∣∣Dz

√−2V (y, z)
∣∣ � C, (15)

lim
(y,z)→0

D y

√−2V (y, z) = 0. (16)

The linearization of the Euler–Lagrange flow at (xi,0) has eigenvalues 0,±λ1, . . . ,±λk . Denote by
W u, W s, W c the unstable, stable, and center manifolds at (xi,0) respectively.

Claim 1. There exists a calibrated curve γ : ]−∞,0] → M with α-limit xi such that (γ (t), γ̇ (t)) is not in W u.

Indeed, let 2δ be smaller than the minimum of h(xi, x j) for all j �= i. Let U be the open set of
points p such that h(xi, p) < δ. For any point p in U take a minimizing curve starting in xi at time
−T and ending in p at time 0. The limit curve, as T tends to infinite exists because the velocities
are bounded, and it is in fact a minimizer γ : ]−∞,0] → M with α-limit xi and γ (0) = p. Some of
these curves lie on the unstable manifold, but since there are some zero eigenvalues this manifold
has positive codimension. This proves the claim.

Let γ : ]−∞,0] → M be as in the claim, then there is a trajectory ϕt(w) of the Euler–Lagrange
flow on W c such that

d
(
ϕt(w),

(
γ (t), γ̇ (t)

)) = O
(
eμt), t → −∞.

Since (γ (t), γ̇ (t)) is not in W u then, writing γ (t) = (γy(t), γz(t)) in local coordinates, we have

lim
t→−∞

γ̇z(t)

|γ̇ (t)| = 0.

For the function u ≡ 0 we have

lim
t→∞ Lt u(x) = min

j
h j(x),

and there is a neighborhood W i of xi such that for x ∈ W i

lim
t→∞ Lt u(x) = hi(x).

Since
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hi
(
γ (0)

) − hi
(
γ (−t)

) =
0∫

−t

1

2
γ̇ 2 − V (γ ) = −

0∫
−t

2V (γ ) � Lt u
(
γ (0)

)
,

d

ds
hi

(
γ (s)

) = −2V
(
γ (s)

) = γ̇ (s)2,
d

ds
log hi

(
γ (s)

) = −2V (γ (s))

hi(γ (s))
.

By L’Hopital rule and (15), (16)

lim
s→−∞

log hi(γ (s))

s
= lim

s→−∞
d

ds
log hi

(
γ (s)

)
= lim

s→−∞
−2D V (γ (s))γ̇ (s)

−2V (γ (s))

= −2 lim
s→−∞

D y V (γ (s))γ̇y(s) + Dz V (γ (s))γ̇z(s)√−2V (γ (s))|γ̇ (s)|
= 0. (17)

Assumption (12) gives

C exp(−μt) � hi
(
γ (0)

) − Lt u
(
γ (0)

)
� hi

(
γ (−t)

)
so that

− log C + μt � − log hi
(
γ (−t)

)
,

μ � lim inf
t→∞ − log hi(γ (−t))

t
, (18)

contradicting (17). �
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