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Abstract

Reasoning about privacy in electronic environments populated with privacy-concerned
agents that exchange personal data requires control of ownership and proving the
right of possession of a piece of data. The privacy policy expressed by an individ-
ual for his personal data can be enforced by a context-aware mobile agent, called
alter-ego, accompanying the personal data disclosed.

We discuss the first steps towards a formal framework for expressing policies
on information disclosure and their integration in the behavior specification of the
alter-egos, that enables characterization of an environment manipulating personal
data from the privacy perspective.

1 Introduction

In systems that manipulate personal data, the transfer of data between in-
dividuals is based on control of ownership and jurisdiction. An environment
may have several active components, each executing a program, but it can
be considered as a special agent running its own program and having its own
security policy (including obligations and restrictions regarding the programs
run by the principals that act in that environment). Privacy policies defined
by an individual to restrict access of unauthorized agents to his personal pro-
file must be enforced by mobile agents termed alter-egos, which control the
exchange of private information with other, possibly untrusted, agents, and
check whether the security policy of a particular environment is compatible
with the privacy policies of the agents working in that environment.

In this agent-oriented framework, policies and commitment are expressed
mainly using deontic operators (cf. [9,5]), and agents need to assess the privacy
compliance of the security policy of that environment with respect to the

1 Email: serbanr@cs.vu.nl
2 Email: vdriet@cs.vu.nl

c©2001 Published by Elsevier Science B. V.

140

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Serban and van de Riet

privacy policies expressed by its potential users, to verify whether an agent
would be able to work in that environment without violating the security
constraints and without facing the risk of a privacy violation.

The context: mobile agents in Cyberspace. In our previous work
([14]), we have proposed the architecture of a privacy assistant, a context-
aware program that helps an individual to control his personal data and keeps
him informed with respect to his privacy status. It monitors online transac-
tions, ensures identity and trust management, investigates privacy violations
and suggests corrective measures.

To protect personal information, the privacy assistant creates and coordi-
nates several alter-egos, termed fireballs, encapsulating personal information
together with their policies for specific applications, with the goal of enforc-
ing control by the owner of the data. The fireball (denoted FB) is a privacy
guardian agent, a filtering mechanism that ensures content protection for per-
sonal data transferred during an electronic transaction. The FBs are primitive
context-aware mobile agents that function in special environments in which
commitments for informedness and for performing privacy compliance checks
hold. These environments ([14]) mediate interaction between agents, keep the
fireballs informed with respect to their structure and the roles played by other
participants, and are trusted not to tamper with the agents and to ensure that
the exchanges of data are correctly formatted, thus preventing unauthorized
use of personal information encapsulated in agents. Based on knowledge com-
municated by credible sources, the FB is able to derive some risk parameters
of the environment and notifies its owner if privacy exceptions are detected.
It also takes preventive and corrective measures for protecting sensitive data:
using pseudonyms, changing the privacy policy or making the embedded data
unusable (erasing, altering, or scrambling the data). Changes in the knowl-
edge of one FB result in updates sent to known fixed locations of other FBs
of the same individual or to the privacy assistant.

When entering a MMAP (Mobile Multi-Agent Platform) the FB is ac-
knowledged of the program that must be run in that environment (including
its security constraints), and a set of commited actions from the other partic-
ipants, specific for the roles involved in the protocol. Its ability to assess the
privacy-compliance of that protocol depends on the accuracy of the informa-
tion about the other participants, on the perceived commitments to enforce
the MMAP security policy, and on the trust in the other participants.

The FB then negotiates and commits to an interface offered to that MMAP.
The committed interface can be changed if privacy threats are detected, in
agreement with MMAP’s security policy.

Our paper is structured as follows: section 2 discusses the enforcement of
privacy and the form of privacy rules; section 3 proposes a formal framework
for modeling and reasoning about privacy assistants, whose use is illustrated
with an example in section 4.
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2 Expressing privacy policies

Privacy is the right of individuals or groups to establish and control the
accessibility of their information, properties or actions, that would allow others
to learn about them or to contact them. It entails the right to secrecy and to
non-interference from outsiders with the domains of ownership and jurisdiction
of one individual (e.g., protection from unwanted e-mail).

An individual specifies a set of sensitive information (structure of his pro-
file, roles played, knowledge acquired, preferences), and controlling privacy
basically amounts to limiting the visibility of other agents to a particular
piece of data, expressed by the representative of an individual (an alter-ego)
who has jurisdiction over that piece of data in a given evaluation context.
The objectives of protection for an alter-ego may be: the connection between
an attribute and a value, a tuple of attribute-value pairs, or an aggregate (de-
limited by [ ]) - a combination of attribute names, attribute values, attribute-
value pairs and tuples, that can describe a stream of data collected by eaves-
dropping a line or a user profile. Protection of personal information is done at
the object level - protection of the value of a personal attribute (a secret), or
at the meta-knowledge level - protection of the existence of a strategy, mem-
bership, policy or belief (a secrecy, according to definitions in [6,2]).

Enforcing privacy principles. Commitment of the principals collecting
or exchanging personal data has been acknowledged ([8,10]) as essential for
enforcing privacy. Wilhelm ([21,20]) argues that a system that ensures privacy
protection must guarantee notification and control of the principal about
the flow and usage of data related to him.

The EU Directive on Data Protection and the work for an Open Profiling
Standard suggest three privacy protection principles: 1. purpose-binding
and informed consent: any request for personal data must state clearly the
intended use of that data, and the data can be used solely for that purpose
and only after the owner of that data has accepted this use; 2. need-to-
know and control by source: any requester of personal data must prove
that the requested data is needed for a meaningful processing and the data
can be controlled by its source (owner); 3. appropriate value exchange:
no personal data should be requested without offering something valuable
(service, money, information) in exchange.

An individual has to decide whether he wants to disclose some data at all
or, once his personal data is disclosed, an alter-ego accompanies it, filters the
notifications that must be sent to the individual, and enforces the control
by source and the purpose binding principles. When issuing a request
for a piece of personal data, an agent must present an authenticable iden-
tity, an acceptable motivation and a meaningful purpose for the future use
of that data; the personal data transferred must be accompanied by proofs
of ownership (a certificate) released by the source of the personal data, that
can lead to its originator. These well-formedness checks allow the detection
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of illegal disclosures. To enforce them, we need a Public Key Infrastructure
(PKI) and a special delegation, purpose-binded delegation of ownership, i.e. a
non-disclosure agreement between two agents A and B that exchange personal
information: A agrees to disclose fact ϕ to B if B specifies the intended use for
the requested information, and B commits to not disclose it to third parties
for other purposes than the one specified.

Three checks are performed by the recipient of a request for personal data:
1. whether the requester has presented a valid public key; 2. whether the
request contains a valid signature of the requester on the purpose binding
specification; 3. whether the purpose specified is acceptable for the data
owner (can be motivated by the role played by the requester). These checks
may represent a threat to the privacy of the requester of the personal data, who
is not always willing to disclose his purpose, because it is private. Ideally, the
proofs of privacy-compliant requests can be done without revealing explicitly
the purposes of one’s actions, but only their compliance with the purpose
declared to an authorized owner of personal data.

To enforce purpose-binding without threatening privacy, a request sent by
A to B must be structured as follows: {motivation+purpose, {TS, h(purpose), ?data?}

k−
A
}kB

where TS is a timestamp produced when assembling the message; purpose
describes the intended processing (action(s) to be performed) on the requested
data; motivation describes the context in which this request occurs and why
it is necessary for the disclosure to take place; {M}kB denotes message M
encrypted with key kB, and {M}k−A denotes message M signed using key k−A .
The answer must contain {{TS1, h(purpose), data, {TS, h(purpose), ?data?}

k−
A
, proof}

k−
B
}kA

where proof reveals legal ownership - a chain of certificates leading to an
owner of data certified by a trusted party. In this way, B cannot repudiate its
request, A cannot repudiate its disclosure, and B can prove to any independent
verifier that he posesses legal data (since its purpose specified for request is
present in the certificate released), without the verifier being required to learn
the explicit purpose or the data exchanged.

Example: A purpose specification for the online bookshop B to use the
credit card number of client C for paying two copies of book b1 and one copy
of book b2 is: purpose = {< 2 > useB([data = CCNC ; target = b1])∧ < 1 > useB([data =

CCNC ; target = b2])}.

Expressing security policies. A modal operator ’right-to-know’ has
been proposed (cf. [1,5]) to express the confidentiality requirement in security
policies: KAϕ → RAϕ, is read ”if A knows ϕ then A should have the per-
mission to know ϕ”. System S is secure w.r.t. a subject A iff for all times
τ and all formulae ϕ expressing facts exchanged in the system, the formula
Kτ

A(ϕ) → Rτ
A(ϕ) is valid.

In our approach, this operator would denote the permission to learn a propo-
sition about personal data for a given purpose, with the informed consent of
a legal owner of that data, such as in the sentence ’Agent A is legally enti-
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tled(permitted) to learn(know) and use data D for purpose P, because it was
authorized by X’.

A security policy is a set of rules specifying what actions the agents
are permitted, obliged or prohibited to do, on which objects, aimed at pro-
tecting the principals in their interactions with the system and at achieving
separation of duties between the various system components. Security rules
can be expressed as suggested in [16,15,4]: ’(When regulation R applies
and is enforced) If condition C is satisfied, then agent A is obliged,
permitted or prohibited to do action α’.

A part of the security policy deals with disclosures - the disclosure policy;
it prescribes completely the intended disclosures of data which was provided
by third parties to the system components.
A privacy policy is a special type of security policy, in which the rules specify
allowed and forbidden inferences that regard personal data.

The statements in a security policy (cf. [7]): 1. restrict the operations al-
lowed for principals to execute on the objects (access control rules); 2. restrict
what principals can infer about objects by observing the system behavior (in-
formation flow rules); 3. restrict principals from denying others the use of
a resource (availability rules). A special class of availability rules consists of
aggregation-prevention rules, of the form: ’Either information i1 or informa-
tion i2 can be learnt by agent A, but A must not learn both of them’.
These types of rules can be expressed uniformly with the notion of visibility
rule.

A visibility rule is the most frequent type of privacy rules, expressed as
an access control rule using deontic operators (permitted, forbidden, obliged),
and includes:

• the type of restriction (permission, interdiction or obligation);

• the piece of information whose visibility is restricted;

• the issuer of the visibility restriction, i.e. an entity who has permanent or
temporary jurisdiction of the piece of information envisaged by the rule;

• the context of restriction (properties of the environment that must hold)
and the allowed types of access (the actions allowed and the purpose of
those actions);

• the target of restriction (a category of entities, specified by name or by
properties).

The general form of a visibility rule is:
DeMod

Time/Ctx
Issuer ([Info = I;Actor = A;Context = C;Action = α])

where DeMod can be Perm, Forbid or Obl, interpreted as ’Issuer permits,
forbids or considers obligatory, respectively, the action(s) denoted by α per-
formed by actor A, in context C, upon the object I’. Issuer, α, A, C, I may
be expressed as logical formulae. The traditional deontic operators, P, F, O,
correspond in our model to the statements PermittedA(α), ForbiddenA(α),
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ObligedA(α), i.e. ’A is permitted, forbidden, or obliged to α’. The connection
between the deontic modalities and the traditional deontic operators is:
DeModIssuer([Info = I;Actor = A;Context = C;Action = α]) → DeOpA(α) , where DeOp is one
of Permitted, Forbidden or Obliged corresponding to the DeMod used.

The distinction between security and privacy rules expressed as visibility
constraints is the role played by the issuer of the rule, the type of the data
which is protected and the jurisdiction of the issuer over the data: the issuer
of a privacy rule is the individual who possesses it or a principal acting on
his behalf, while the issuer of a security rule is an authority. Also, security
policies contain quite often access control rules, while disclosure policies and
security policies contain more availability and information flow rules.

Privacy rules are statements issued by an individual, by an alter-ego
delegated by him, or by an entity which is able to enforce them. They express
restrictions of the visibility or access to the data, properties or actions of an
individual or group. They may refer to conditions from the environment in
which the data is used or depend on the history of interactions or on the sat-
isfaction of certain external events. The principals who issue privacy policies
must have an authenticated identity and proof of ownership of the data to
which the rule is linked.

A privacy policy is a set of visibility rules, expressed as a declaration of
permission or interdiction:
DeclX→�(PermX([Inf1;Actor1;Act1;Ctx1], . . . , [Infn;Actorn;Actn;Ctxn]))

Examples of visibility rules.

1. ’Principal A1 gives permission to A2 to access A1’s record (name and
address) in any context, for reading or transfering it to a third party’:

PermA1 ([Info = [nameA1 ; addressA1 ];Actor = {A2};Context = ∗;Action = {read, transfer}]).
2. A1 forbids any operation with his credit card number, performed by a

company, if no order has been placed by A1: ForbidA1 ([Info = CCNA1 ;Actor = {X :

¬HasX(type = company)};Context = ¬DidA1 (OrderA1→X(∗))};Action = {∗}]).
3. ’All users subscribed to the current location system will be tracked, and

their position available to all subscribers, but archieved data older than one
week is removed’. This rule, combining availability of location and reciprocity,
may be part of the disclosure policy offered by a location tracking service.

The goal of enforcing the privacy policy of principal Pi is to prevent that
the set of local knowledge hold by any of the other principals Pj, j �= i at any
point in time conflicts with the privacy policy of Pi.

Certain types of privacy rules are enforceable without difficulty, while oth-
ers depend on an awareness mechanism, and others cannot be enforced without
additional commitments of the participants or control measures. The failure
to meet a privacy rule is defined as a privacy exception, which may be of
two types: privacy conflict (exception caused by an attempt to gain access
to protected data) or privacy violation (exception caused by the use of data
obtained illegally). Ignoring privacy conflicts can lead to privacy violations.

145



Serban and van de Riet

3 A formal approach

Our formal framework for modelling mobile multiagent systems, regulations
and alter-egos’ properties builds upon a multi-agent system model (such as
the framework for executing discrete temporal logics presented by Wooldridge
([22])). It includes an execution model for alter-egos, a meta-language for
modeling agent protocols, properties and actions, and some inference rules
for the special predicates that substitute the epistemic operators from modal
logics. In this paper, we focus on the execution model of the alter-egos, and
only briefly describe the language for modelling agents interactions and the
inference rules.

Meta-language for modeling agent properties and actions

For modeling and reasoning about agent systems we use a logical language
FBML (FireBall Modelling Language), essentially a many-sorted first order
language with special predicates corresponding to traditional epistemic and
deontic operators (as presented by Cuppens et al, Syverson et al [11,4,3])),
but also capturing the notion of time and action. Its semantics is defined in
terms of a possible-worlds models. We distinguish between agents (forming
a set Ag), actions (forming a set Ac), data items (forming a set Data), and
formulae (making up the set pow(Form(FBML)).

Syntax. The set of formulae in FBML (denoted Form(FBML)) is gen-
erated from a combination of predicates, variables, constants and operators.
The predicates represent the names of events, actions or agent properties. The
variables denote agents and data items, as uppercase letters (A, B, C, . . .),
or generic variables (?X?, Any, Unknown). The constants represent agents
(me, all, a1, a2, . . . , an) and data items (attribute-value pairs, or aggregates).
* and λ are special generic variables, corresponding to ’Anything’ and ’None’.

The set of well-formed formulae (WFF) in FBML is defined by the usual
construction rules of the propositional logic and by the following rule: if ϕ ∈
WFF (FBML) is a well-formed formula in FBML language, τ ∈ N is a time
point, Ctx ∈ pow(Form(FBML))∪{*, λ} describes specific conditions for the
context in which the formulae are evaluated, and A ∈ Ag is an agent, then
∃A : ϕ,∀A : ϕ ∈ WFF (FBML) and DeModτ/Ctx

ActorExpr(D), P red
τ/Ctx
ActorExpr(ϕ) ∈

WFF (FBML), where Pred is a predicate denoting actions, relations, or
domain-specific properties; ActorExpr is an expression denoting the agents
involved in an action or the agent whose property is expressed; DeMod is a
deontic modality, and D ∈ Data is the expression of a data item - an aggre-
gate consisting of a sequence of attribute-value pairs or values, separated by
’;’ and delimited by ’[ ]’.

Examples of WFFs in FBML:
1. ’A believes B authorizes A to store B’s public key’: BA(AuthorizesB→A(HasA([kB ])))

2. ’A declares to all agents that he forbids access to his data as specified by
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aggregate Acc1’. DeclA→all(PermA(Acc1)) . Note that privacy policies can also be
expressed as WFFs in FBML.

An alter-ego execution model

Each principal maintains a private execution context, containing its policy,
beliefs, observations and history of interactions. We assume that agents ma-
nipulate only their private context and cannot influence others’ beliefs other
than by performing communicative actions, which observed by other agents
may trigger their reactions.
Each agent (including the environment, modeled explicitly) executes a pro-
gram (or workflow) and is able to perform the following operations:
Communicative acts such as SendA→B(Msg) and RcvB←A(Msg), or pred-
icates capturing more semantics than Send, such as AskA→B(α) (’Ag. A asks
ag. B to perform action α’). An event (such as a communication) triggers in-
ferences and knowledge updates. Predicates SaidA(Msg) andReceivedB(Msg)
reflect the knowledge updates of the agents as consequence of the communica-
tive acts. Another coomunicative act, used to publish views about the state
of the world, is DeclX→Y (Formula), read as ’Ag. X declares to ag. Y that
Formula holds’.
Encryption of message M with key k is denoted {M}k. k

− is the private key
corresponding to the public key k, and {M}k− is a signed message.
Delegation is the process of agent A giving to agent B the authority to act on
A’s behalf with respect to fulfilling some partial goal. DelegatesA→B(α,Ctx,D)
is read: ’A delegates B to execute α in the context Ctx, on behalf of A, and
to use data item D’.
Authorization. AuthorizeA→B(α) corresponds to the action of A consenting
to B to α. AuthorizedB(α) means that B has been given consent for α.
Manipulating data. Agents are able to aggregate data and to split a piece of
data into components: Aggr/SplitA(D, [D1, . . . , Dn]), where D1, . . . , Dn, D ∈
Data are data items, and D is made of D1, . . . , Dn. The agent can also per-
form more intricate internal operations (such as evaluation of formulae, de-
riving consequences, observing/recording events), that change its initial set of
beliefs.

By performing an action, an agent causes an event. Agents perceive events
as the activation of some triggers (sensors) for those events. We use the Event-
Condition-Action (E-C-A) paradigm to specify the behavior of an alter-ego,
using three data structures, as suggested in [12]: meta-knowledge about
agents, such as: agents A and B share certain information; ag. A trusts ag.
B; ag. A was created by ag. B; ag. A belongs to the administrative do-
main D; historical information about past interactions: ag. A asked ag.
B data D at time t1; ag. A has performed action α at time t2; a stimulus-
response table that contains the program to be performed by the agent to
achieve its objective, and that specifies the reaction to external events (such as
requests from other agents). The stimulus-response table is specified declar-
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atively as a knowledge program ([17]), with alternative execution branches,
termed triggers, guarding events in different local states of the agent, of the
form: 〈R〉 Evt : S(PreC) : α : PostC, read as ’When regulation R is
enforced, if event Evt occurs when agent is in state S, if condition PreC is
satisfied, then action α must be performed (which makes PostC hold)’.

Starting from some initial state (containing a non-empty set of initial be-
liefs), and using its meta-knowledge, history and the stimulus-response table
describing its behavior, an agent selects an action to perform and moves into
its next state, on the basis of the messages it has received, the events it has
observed and the action(s) it has performed.

We assume a discrete time parameter associated with each formula. All
alter-egos of the same individual have the same clock, which allows them to
refer to past events uniformly. A partial ordering of events is possible using
temporal predicates: Before/After(α1, α2), where α1, α2 are events.

The execution of an agent with identifier i is characterized by a trace, cap-
turing its knowledge and actions performed, represented as a tuple:
〈i,MKi, Obji, P rogi, Constri, SRTi, Histi〉 , where MKi ∈ pow(Form(FBML)) cap-
tures the initial knowledge of the agent and its subsequent updates; Obji
includes the goal (objective) of the agent; Progi ∈ pow(Form(FBML)) is
the agent program (capturing the agent’s strategy to achieve its objective);
Constri captures the constraints on the agent behavior (such as regulations,
preferences and the privacy policy PP , obligations, etc); SRTi defines the
reactive behavior of the agent to external events and passing from one state
to another; Histi is the history of local states.

The privacy policy PP of agent A is a sequence of declarations of the form:
DeclA→all(PermA([Info1;Actor1;Ctx1;Action1]; . . .))
DeclA→all(ForbidA([Infoi;Actori;Ctxi;Actioni]; . . .))

DeclA→all(OblA([Infoj ;Actorj ;Ctxj ;Actionj ]; . . .))

The history of agent i is a set of local states Histi = {lsti}, t = 0, n, where
n is the current time point in agent’s execution.

Each local state of agent i at time t is defined by a tuple of the form:
lsti = 〈state id,OESti , ASti , USti 〉; OES

t
i is the set of events observed by ag. i at time

t, ASt
i is the set of actions taken by i in response to the events, and US t

i is the
set of updates of the local knowledge at time t (changes to constraints, initial
knowledge, stimulus-response table, etc).

An agent platform with n agents is represented by an n+1 set of tuples of
the form {Ai}, i = 0, n, where A0 = Env is a special agent representing the
environment. As its agents execute, a system traces out an execution history.
The set of all possible execution traces is denoted Σ.

Describing properties of objects is done using the notation HasτX(P ),
meaning ’At time τ , entity X has/ possesses P’. P is a property of the form
’attribute = value’, or a formula describing a goal or a policy.

Our language allows reasoning about the following types of properties:

Provability. The ”need-to-know” principle requires that personal data is
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only disclosed to agents authorized to access it in a certain protocol execution
framework. Agents must be able to prove that they should be authorized to
perform certain actions. We write ProveA(φ, γ,B) for “Agent A is able to
prove proposition φ in the context γ to the audience B”.

Essentially, provability derives from the possession of a valid piece of evi-
dence. In computer security protocols, it is connected with verifying signatures
and proofs; a certificate is usually regarded as a proof of identity, consisting
of a signed message which says that some user U is associated with a piece
of data D, usually his public key k, confirmed by an authority CA trusted by
the potential verifier of the signature.

Jurisdiction is important in establishing the validity of a proof. JX(ϕ,Ctx)
is to be read as ’X has jurisdiction over ϕ in context Ctx. Statements made
by entities are fully trusted when their jurisdiction is recognized: BY (SaidX(ϕ))∧
BY (JX(ϕ)) → BY (ϕ) .
A TTP with jurisdiction over a MMAP is defined as a party whose all decla-
rations are common knowledge: DeclTTP→MMAP (ϕ) → CK∀A:A∈MMAP (ϕ).

Evidence. We use the “count as” operator =⇒S (introduced by Jones &
Sergot ([18], and used to express evidence rules in [19]) to express consequence
in a given framework; ”A =⇒S B” reads ”fact A counts, in the context where
policy S applies, as fact B”. We can express interpretation of formulae and
conversions between data and formulae:
’If C1 shows to C2 a message M signed by C3, this is interpreted by C2 as
evidence from C1 that C3 has issued M’: SentC1→C2 ({M}

k−
C3

) =⇒C2 ProveC1 (SaidC3 (M)).

Ownership is understood by us as a special relation between a principal
and a piece of data, as in [13]: a unique initial owner is defined for any object;
the list of actual owners of the object changes during various transactions
in which the object is involved; a subject who starts an application owns all
the initial objects defined within the application unless they have predefined
owners; a subject who creates a new object owns that object.

We make distinction between having full jurisdiction over a piece of data
(having authorship), having control and partial jurisdiction over it (having
ownership), having direct access to a piece of data (seeing), and compre-
hending a piece of knowledge (understanding). We denote these notions with
Authors, Owns, Sees and Understands.

To illustrate the distinction, imagine an encrypted message m = {{{M}
k−

O
}kD

}kF

originated at entity O, destined to entity D, sent to a temporary recipient F,
who must forward it to D, but the message is also intercepted by an intruder I.
Initially, AuthO(M), OwnsO(M), SeesO(M) and supposedly UnderstandsO(M) , and upon
receiving the message m, SeesF (m), UnderstandsF (m1 = {{M}

k−
O
}kD

) (assuming that F

is able to recognize and decrypt any message encrypted with its public key).
Also, it holds that SeesI(m), SeesI(m1). After D receives m1 from F
UnderstandsD(M), SeesD(m1), OwnsD(m1), but not UnderstandsI(M)nor UnderstandsI({M}

k−
O

).

To detail this distinction:
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AuthX(D): X is the originator of D; X has created or assembled data D, has
full jurisdiction and all access rights to it.
OwnsX(D): X controls and legally owns D; X could have received full or dele-
gated access to D from a legal owner of D or from D’s author (D’s author must
have been informed and must have expressed consent for that delegation). X
cannot remove existing restrictions on D, but only add new restrictions, cor-
responding to his own privacy preferences.
SeesX(D): X controls data item D or is able to perceive D, but has not been
legally delegated by a legitimate owner of it (or was delegated by an entity
without jurisdiction over D). Example: a router can see all packets traversing
it (their headers), but does not understand or own their content.
UnderstandsX(D): X is able to access the meaning (the structure and the
semantics) of D. This is useful for deciding whether a party who was in the
possession of a message stating a norm is responsible for violating that norm
or not, since the norm could be expressed in another language, using unknown
terms, or encrypted with an unavailable key.

Note that the rights given by authorship of a data item in privacy or
copyright protection scenarios are different from the authorship rights in some
e-commerce protocols. The author of a piece of personal data maintains full
jurisdiction over that data, no matter who owns it, and can even decide who
may own it, while in some e-commerce protocols, the author of a sold electronic
good loses the right to re-sell it, to destroy it, or to decide who may own it.

Violation. The security policy contains rules dealing with situations of
violation. V iolatesCtx

A (Policy) reads ’In context Ctx, A violates Policy’.

A privacy violation is regarded as a belief inconsistency of the owner of
a piece of information: the agent believes that a party has information of or
about it that, according to its privacy policy and the history of its interactions,
should not be the case. Violation is expressed as:
DeclX→all(V iolationY ([Formula;Policy/Context; Info;Cred))

standing for ’X declares that Y violates Formula, according to the terms
expressed by Context or Policy’. The claimed target of violation is Info,
and the claimant specifies his credentials Cred (e.g., the quality in which he
makes the claim). Context describes the circumstances in which the violation
is possible, the entities affected by this violation, etc.

A privacy violation by X w.r.t. data contained in D occurs when
UnderstandsX(D) ∧ SeesX(D) ∧ ¬OwnsX(D) ∧ ¬AuthX(D) (if X is forbidden access to D,
ForbiddenX(D)). A privacy violation investigation involves proving that the
privacy has been violated and establishing the responsibility.

Semantics

Agents in our model communicate by exchanging formatted envelopes of
the form Msg = 〈Type, Sender,Receiver,Data,Context〉 , where Type is a label indicating
the category of data transferred (whether the message is a request, reply,
notification, whether it is encrypted and how, and what knowledge is required
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to handle its content); Sender,Receiver ∈ Ag are the originator agent and
the destination of the envelope, Data ∈ pow(Data) × pow(Form(FBML))
contains facts and data items transmitted, Context ∈ pow(Form(FBML))
is a set of formulae from the language FBML describing the circumstances in
which Data is to be evaluated. The set of all messages that can be exchanged
is denoted Mess.

A model for our language FBML is a structure:
M = 〈σ,Ag,Ac,Data,Mess,Events,Epst,Acts, Comms, Poss〉 , where σ ∈ Σ is a trace out
of the possible set of execution traces Σ; Ag is a set of agents; Ac is the
set of allowed actions; Data is the set of personal data items; Mess is the
set of messages that can be exchanged in the system; Events returns the
set of (external) events occurred in a trace at a certain time; Epst : Σ ×Ag ×N →
pow(Form(FBML))is a function returning the set of knowledge and beliefs hold by
an agent in a particular trace; Acts : Σ×Ag×N → Acreturns the actions performed
by the agents (knowledge updates and data manipulations); Comms : Σ × Ag ×
Ag ×Data× N → pow(Mess)returns the set of messages exchanged by the agents of
the system; Poss : Σ × Ag × Data × N → pow(Form(FBML))returns the set of keys and
personal data items possessed by agents in a trace.

Model M = 〈σ,Ag,Ac,Data,Mess,Events,Epst,Acts, Comms,Poss〉 represents the exe-
cution of a multi-agent system MMAP = {〈i,MKi, Obji, P rogi, Constri, SRTi, Histi〉, i =

0, n} iff: ∀t ∈ N,∀i ∈ Ag : Epst(σ, i, t) = MKt
i ∪ Constrti ∪ Objti ∧ Acts(σ, i, t) = AS(lsti) ∧

Comms(σ, i, t) =
⋃
u=0,t{M ∈ OES(lsti) | M ∈ Mess}.

Inference Rules
We use two special predicates as substitutes for traditional epistemic oper-
ators: CK (common knowledge) describes norms and knowledge of policies
and B (belief) is the standard epistemic operator for expressing formulae as-
sumed to hold in the current context. If ϕ is a formula, A an agent, and G
a group of agents then BA(ϕ) is read ’A believes that ϕ holds in the current
context’, and CKG(ϕ) means ’Fact ϕ is common knowledge in the group G’.
The security policy of an agent platform is, for example, considered by us
common knowledge for all its agents, and trusted third parties are considered
disseminators of such knowledge.

We use the following inference rules:
P. All instances of propositional calculus tautologies.
Modus Ponens: From ϕ and ϕ→ ψ any agent infers ψ.
Necessitation: From 
 ϕ infer 
 B:(ϕ), where ϕ is a theorem.
K-axiom applies for both B and CK operators.
Persistence of common knowledge. CKτ

A(ϕ) → CKτ ′
A (ϕ) where τ, τ ′ ∈ N are

time points such that τ ≤ τ ′.
To exemplify a few of the axioms used in our logical framework:
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1. BA(JB(ϕ)) ∧BA(SaidB(ϕ)) → BA(ϕ)

2. SeesA(ϕ) ∧ UnderstandsA(ϕ) → BA(ϕ)

3. BA(HasB(X)) → AggrA([B,X])

4. HasA({M}
k−1

B
) ∧ ProveA(AuthB(kB)) →

ProveA(SaidB(M))

5. AuthA(D) → OwnA(D)

6. OwnA(D) → HasA(D)

7. HasA(D) → SeesA(D)

8. SaidA(M) → SeesA(M)

9. HasA(M) ∧HasA(f) → HasA(f(M))

10. RcvA←X({M}
k−1

B
) ∧ BA(AuthB(kB)) →

BA(SaidB(M))

11. RcvA←X(M) → HasA(M)

12. RcvA←X([D1, . . . , Dn]) →
RcvA←X(D1) ∧ . . . ∧RcvA←X(Dn)

13. BA(SaidB(ϕ)) ∧ UnderstandsA(ϕ) ∧
TrustA(B) → BA(ϕ)

14. HasA({D}kA
) ∧HasA(k−1

A ) → SeesA(D)

15. SeesA(h(D)) ∧ HasA(h) ∧ HasA(D) →
UnderstandsA(h(D))

Privacy-compliance
Privacy-compliance is a safety property of an agent platform, which depends
on several parameters: the privacy requirements of the actors, the class of
traces (representing possible executions of a protocol) analyzed, the trust re-
lations between actors, the reliability of the communication medium, etc. To
enforce it, we propose purpose-binded delegation of ownership, which relies
on privacy-compliant possession.

Definition 3.1 Privacy-compliant possession is defined as the possession
of data together with a “compatible” purpose (an operation allowed for the
given data), signed by the owner of that data.

Definition 3.2 Given a logical framework LFBML for analysing epistemically
the actors in combination with their programs and a particular trace of events,
we term the protocol composed of those programs (privacy-)compliant with
respect to the class of traces and the classes of actors analyzed, if no inference
can be made in this logic that reveals a contradiction between the state of
affairs and the stated privacy policy of a participant.

A protocol (i.e., the interactions dictated by the program of a multi-agent
platform) is privacy-compliant iff what is communicated to the agents in its
possible execution traces does not conflict with the privacy policies of the
agents whose personal data is exchanged in the protocol. We state two neces-
sary conditions under which a protocol can be privacy-compliant.

Definition 3.3 A protocol is privacy-compliant only if during its execution:
1. ∀A ∈ Ag, δ ∈ Data such that HasA(δ) → AuthA(δ) ∨OwnsA(δ)

2. ∀A,B ∈ Ag s.t. AuthA(δ) ∧OwnsB(δ) → BA(OwnsB(δ))

Expressing privacy requirements for privacy guardians

In a privacy-enforcing system S, one would like to express rules for enforc-
ing privacy-compliance at particular moments in time such as:
SendX→Y (D) =⇒S ObligedY (V alid(OwnsX(D)))

The security and privacy rules defining violations of privacy can be defined
using formulae in FBML. A rule for preventing profile building by aggregating
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employees’ addresses with salary records may be represented as:
HasX([nameA, incomeA]) ∧ SeesX(addrC1 ) =⇒A V iolatesX(privacyA)

Possession of an aggregate composed of name and address of an agent X
may be defined as a privacy violation: HasY ([nameX , addrX ]) =⇒X V iolatesY (privacyX)

The privacy preferences of the individual, expressed as visibility rules, can
be transformed into triggers in the stimulus-response table. For example,
implementing purpose-binding checks can be expressed as:
RcvA←B(msg) : Hasmsg(purpose = P ) : Check(V alid(P ))

To reflect that the notifications sent by alter-ego B are credible to A:
SendB→A(ϕ) : BA(JB(ϕ)) : BA(ϕ) .

4 Example: An information flow scenario

We study the rightful ownership problem in the context of enforcing the
purpose-binding principle in a multi-agent environment. We want to ensure
that, during all stages of an electronic protocol executed on an agent platform
the alter-egos are able to establish the legality of a possession or of a claim
of ownership. If this simple privacy rule can be enforced, without all agents
being assumed honest, the protocol using certificates of authorship for data
items and purpose-binded transfer of ownership is privacy-compliant w.r.t. the
privacy rule above, i.e. it guarantees that a piece of personal data cannot be
used by an agent unauthorized to learn it, at the price of imposing additional
controls (namely, for purpose-binding)

The information flow in figure 1 depicts a privacy violation scenario: infor-
mation obtained by B from C (that is certified by a trusted third party CA)
gets to flow from B to A without C being notified. In case this information
contains personal details of C, this results in a violation of C’s privacy, since
C has not authorized and is not aware of the presence of his personal details
at A’s site. Example: a bookshop B selling user profiles (including credit
card details) of its clients (C included) to company A without notifying their
clients.

1a. Issue certificate AuthCert
C

CA
B

2.Request(CCNC) {m1, Req1Comm}kC

3.Reply Req1Reply = {{TS3, h(p1), CCNC , Req1Comm,AuthCert}
k
−
C

}kB

A

4. Request(CCNC) {m2, Req2Comm}kB

5. Reply Req2Reply = {{TS5, h(p2), CCNC , Req2Comm,Req1Reply}
k
−
B

}kA

Req1Comm = {TS2, h(p1), ?CCNC?}
k
−
B

p1 =< 1 > useB([data = CCNC ; target = b1])
m1 = [motivation = Req1Cap; purpose = p1]

Req2Comm = {TS4, h(p2), ?CCNC?}
k
−
A

p2 =< 1 > useA([data = CCNC ; target = b1])
m2 = [motivation = {TS4, h(p2), kA}

k
−
A

; purpose = p2]

1b. Issue capability Req1Cap

AuthCert = {TS1, h(CCNC), kC}
k
−
CA

Req1Cap = {TS2, h(p1), kB}
k
−
CA

Legal actions before protocol execution

Legal actions during protocol execution

Fig. 1. Information flow scenario using cryptographic primitives and pur-
pose-binding allowing detection of dishonest parties.

Before starting the analysis of the scenario in figure 1, we make a few
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remarks. The analysis is based on some assumptions about the PKI:
1. PKI ensures confidentiality: a message encrypted with the public key of
B can only be read by B: HasB({m}kB

) ∧ AuthB(kB) =⇒PKI SeesB(m);HasA({m}kB
) ∧

¬AuthA(kB) ∧ ¬HasA(m) =⇒PKI ¬SeesA(m)

2. A message signed with the private key of an entity A denotes (in PKI)
possession and visibility of that message content by the signer A: {m}

k−
A

⇒PKI

HasA(m) ∧ SeesA(m) .

The scenario in figure 1 has 4 actors: agents A, B, and C, and the trusted
third party CA. A and B are two bookshops; C is a client that orders a book
at B. Steps 2 and 3 in this figure are part of a protocol for payment of books
ordered, in which client C gives bookshop B his credit card number to pay for
his order.

Before this protocol is started, the following operations take place (steps
1a and 1b in the dotted rectangle):
1. In step 1a, client C obtains a proof of authorship from CA, associating his
credit card number (CCNC) with his public key. CA issues the authorship
certificate for CCNC only if CCNC is not already in his database of previously
certified items. Being certified by CA, who is a TTP with jurisdiction of the
agent platform in which C acts, CCNC is a personal data item for which C
can claim authorship.
2. In step 1b, in the phase of establishing the roles of the agents involved
in the protocol, the TTP that guarantees the well development of electronic
transactions, CA in our scenario, delivers capabilities to agents. These capa-
bilities are certificates specifying the actions the alter-egos are authorized to
perform on the personal data presented by the participants to the protocol,
of the form {TS, h(p), k}k−CA

, where TS is a timestamp, h(p) is a standard

one-way function applied to the authorized action (purpose), k represents the
public key of the agent authorized to perform the operation, and k−CA is the
private key of CA. An alter-ego carries several such capabilities, which must
be presented as motivation for his requests, whenever it asks for personal
data. Function h hides the specified intended purpose for which ownership is
transferred, to avoid privacy infringement during purpose-binding checks. A
verifier can check purpose-binding only for purposes he knows of.

Posession of valid capabilities provides non-repudiable evidence that the
requester is entitled to ask data, according to a protocol guaranteed by a TTP.
Possession of valid proofs of ownership guarantees the right to possess data
for a restricted purpose. Any request for personal data must be signed by the
requester, to ensure non-repudiation: the queried agent is later able to prove
that the request for disclosure came from an agent authorized to ask for it.

We analyze the situation depicted in figure 1 using our language for rea-
soning about privacy. In this scenario, B is dishonest and leaks to A the
legally obtained credit card number of C, breaking the purpose-binding prin-
ciple (commitment to use CCNC solely for the payment for a book ordered).
(p1,m1) and (p2,m2) in figure 1 represent the purpose-motivation pairs speci-
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fying the right of B and C, respectively, to use CCNC for payment of a book
ordered by C. Note that m1 contains a valid capability for purpose p1, since
it has been issued by a TTP, while m2 does not contain a valid authorization,
since it is signed by A, and not by a TTP.

Upon receiving the authorship certificate AuthCert = {TS1, h(CCNC), kC}
k−

CA
in

step 1a, C is able to prove (based on the definition of jurisdiction) to any
agent X that trusts CA that he is a legal author of CCNC : HasC(AuthCert) →
ProveC(AuthC(CCNC), :,∀X : TrustX(CA)).

Actually, any agent Y who understands PKI and purpose-binded delegation
of ownership (PPDO) and possesses this certificate is able to prove to anyone
who trusts CA that C is legal owner of a piece of data that can generate
h(CCNC):
HasY (AuthCert) ∧ UnderstandsY ([PKI, PPDO]) → ProveY (AuthC(CCNC), :,∀X : TrustX(CA)).

The pairs of steps 2, 3, and 4, 5 in figure 1 correspond to purpose-binding
delegations of ownership for the data item CCNC . Steps 2 and 3 are legal
operations, part of a protocol for an online payment, while steps 4 and 5
represent actions performed outside of the legal framework of any protocol.

After performing step 2, C is able to prove that the request was authorized
as part of a protocol guaranteed by CA. If C trusts CA, C trusts B to be
a legitimate requester. After a lookup in his privacy policy, in which no
rule ForbidC([Info = CCNC ;Actor = B; . . .])is detected, C performs step 3, issuing a
purpose-binded delegation of ownership to B.

After decrypting the message received in step 3,
SeesB(Req1Reply)∧BB(AuthC(kC)) =⇒B BB(SaidC(M)); M = [TS3, h(p1), CCNC , Req1Comm,AuthCert]

UnderstandsB(M) → SeesB(CCNC) ∧ BB(AuthorizeC→B([CCNC , h(p1)])) . That is, B un-
derstands that he has received CCNC and that C authorizes an aggregate
[p1, CCNC ] (which describes the right of B to pay a book b1 using CCNC), and
this authorization comes as a reply to a non-repudiable request (Req1Comm)
of B. The second part of M contains the authorship certificate of C over CCNC .
Since B is able to prove that he was authorized by C to use CCNC for purpose
p1, and can prove that C is the legal author of CCNC , B is now able to prove
that he is a legal owner of CCNC (with respect to p1):
ProveB(AuthorizeC→B([CCNC , h(p1)]) ∧AuthC(CCNC), :,∀X :

TrustX(CA)) ⇒PKI,PPDO ProveB(OwnsB(CCNC))

In step 4, A asks from B CCNC to pay for the same book C ordered to B.
A has been issued no capability by CA to support his request, but he self-signs
his request.

If B were honest, he would discard A’s request, because he doesn’t have the
right to disclose further CCNC to unauthorized parties. But B is dishonest,
and delegates ownership of CCNC to A, in step 5, authorizing A to use CCNC

for purpose p2, different than the one for which he has been authorized to, by
C. B forges a ’legal’ delegation himself, behaving as he is entitled to delegate
ownership of CCNC to A. Therefore, B commits abuse (misappropriation of
CCNC), violating C’s privacy (breaking the commitment to purpose-binding).
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C cannot detect this misappropriation by B, unless an alter-ego of C accom-
panies the message and notifies him of this privacy exception.

Anyway, A cannot use the missapropriated CCNC , because when he is to
pay at the bank using CCNC , he has to present the purpose for which he is
paying (h(p2)) (in order to show its privacy-compliant possession of data), and
the chain of ownership certificates presented cannot lead back to a certified
author of CCNC . Even if B had replayed the message received in step 3 from
C, A would have got an unusable authorization (which authorizes B, but not
C, to use CCNC for one payment).

A privacy exception is triggered by the bank, as the request from A to use
CCNC is not privacy-compliant. Upon an investigation, the parties across
the certification chain are challenged to reveal their proofs of ownership. B
cannot prove he is entitled to delegate ownership of CCNC for h(p2), therefore
he can be accused of misappropriation. A is also responsible for not notifying
a disclosure that is not privacy-compliant to a law-enforcement agency.

If A were an authorized bookshop to which B is authorized to disclose
CCNC (in case that book b1 is no longer in B’s stock, but it is in A’s stock,
when disclosing CCNC the purposes accepted in step 3 would have been
{h(p1), h(p2)} instead of h(p1), meaning that C explicitly authorizes other
bookshops to take over the order and deliver the book. In that case, the bank
could certify that A is a legitimate user of CCNC .

The scenario presented, which relies on PKI, and in which purpose-binded
delegation of ownership and privacy-compliant possession are mandatory, al-
lows detection of dishonest parties (that commit privacy violations), and as-
signment of blame, under the assumption that some principals are corrupt, but
authorities (such as the bank) and the honest principals commit to performing
privacy-compliance checks.

Implementing it using alter-egos would guarantee enforcement of purpose-
binding checks and notification of the individual and would allow more subtle
constraints between the different certificates issued by an individual (such as,
that either bookshop B or bookshop A can use CCNC to pay for book b1, but
if one of them has used it once, the other can no longer use it).

5 Concluding remarks

The participants to Cyberspace protocols need informedness about the other
participants, and must assume additional commitments to purpose-binding
checks in order to reduce the risk of privacy violations. We discuss a possible
representation of privacy rules and some primitives for modeling the agents
that enforce these rules, that would enable reasoning about delegation, own-
ership, and the ability to provide supporting evidence.

A protocol which transfers or manipulates personal data can be analyzed
and characterized from the privacy-perspective, as compliance with the pri-
vacy principles (such as purpose-binding), as illustrated in section 4. This
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would enable the design of a privacy assessment mechanism, in which agents
check the compatibilities of privacy policies expressed by individuals with the
privacy practices and security restrictions expressed by the service-providers,
or even negotiate a compromise solution, such that individual’s privacy inter-
ests can be protected without violating relevant security requirements of the
environment.
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