All-derivable points of operator algebras

Jun Zhu

Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China

Received 3 January 2006; accepted 17 May 2007
Available online 22 June 2007
Submitted by C.-K. Li

Abstract

Let \(A \) be an operator subalgebra in \(B(H) \), where \(H \) is a Hilbert space. We say that an element \(Z \in A \) is an all-derivable point of \(A \) for the norm-topology (strongly operator topology, etc.) if, every norm-topology (strongly operator topology, etc.) continuous derivable linear mapping \(\phi \) at \(Z \) (i.e. \(\phi(ST) = \phi(S)T + S\phi(T) \) for any \(S, T \in A \) with \(ST = Z \)) is a derivation. In this paper, we show that every invertible operator in the nest algebra \(\text{alg} \mathcal{N} \) is an all-derivable point of the nest algebra for the strongly operator topology. We also prove that every nonzero element of the algebra of all \(2 \times 2 \) upper triangular matrixes is an all-derivable point of the algebra.

\(\text{AMS classification:} \ 47L35; \ 47B47 \)

Keywords: All-derivable point; Nest algebra; Upper triangular matrixes

1. Introduction and preliminaries

Let \(\mathcal{A} \) be an operator subalgebra in \(B(H) \), and let \(L(\mathcal{A}) \) denote the set of all linear mappings on \(\mathcal{A} \). We say that \(\phi \in L(\mathcal{A}) \) is a derivable mapping at \(Z \) (generalized derivable mapping at \(Z \)) if \(\phi(ST) = \phi(S)T + S\phi(T) \) (\(\phi(ST) = \phi(S)T + S\phi(T) - S\phi(I)T \)) for any \(S, T \in \mathcal{A} \) with \(ST = Z \). We say that an operator \(Z \in \mathcal{A} \) is an all-derivable point of \(\mathcal{A} \) for the norm-topology (strongly operator topology, etc.) if, every norm-topology (strongly operator topology, etc.) continuous derivable mapping \(\phi \) at \(Z \) is a derivation.

This work is supported by the National Natural Science Foundation of China and the Science Foundation of Hangzhou Dianzi University.

E-mail address: zhu_gjun@yahoo.com.cn

0024-3795/$ - see front matter \(\copyright \) 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2007.05.049
In recent years there has been considerable interest in studying which linear mapping on operator algebras are derivations. We describe some of the results related to ours. Jin et al. [7] showed that every derivable mapping ϕ at 0 with $\phi(I) = 0$ on nest algebras is an inner derivation. Zhu and Xiong in [15,17] proved that every norm-continuous generalized derivable mapping at 0 on finite CSL algebras is a generalized derivation, and every strongly operator topology continuous derivable mapping at unit operator I in nest algebras is a derivation (i.e. the unit operator is an all-derivable point of the nest algebra $\text{alg} \mathcal{N}$ for the strongly operator topology). Šemrl [10] presented the notion of 2-local derivation and showed that every 2-local derivation on $B(H)$ is a derivation (no linearity is assumed), where $\dim H = \infty$. For other results, see [1–4,8–18].

It is the aim of this paper to prove the following two statements:

In Section 2, we show that every invertible operator in a nest algebra is an all-derivable point of the algebra for the strongly operator topology.

In Section 3, we show that $A \in \mathcal{A}$ is an all-derivable point if and only if $A \neq 0$, where \mathcal{A} is the algebra of all 2×2 upper triangular matrixes.

The following notations will be used in this paper:

The symbols $B(H)$ and $F(H)$ stand for the set of all bounded linear operators on H and the set of all finite rank operators on H, respectively. We use the symbols I to denote the unit operator on H. If we denotes by \mathcal{N} a complete nest on H, then the nest algebra $\text{alg} \mathcal{N}$ is the set of all operators which leave every member of \mathcal{N} invariant. The algebra $\text{alg} \mathcal{N}$ is a Banach algebra.

2. All-derivable points on nest algebras

Lemma 2.1. Let \mathcal{A} be an operator algebra with an invertible all-derivable point Z, and let $A, B \in \mathcal{A}$ with $A + B = Z$. If ϕ is a derivable mapping at A and B on the algebra \mathcal{A}, then ϕ is a derivation.

Proof. Since Z is an all-derivable point of \mathcal{A}, we only need to prove that ϕ is a derivable mapping at Z on \mathcal{A}. In fact, for arbitrary $S, T \in \mathcal{A}$ with $ST = Z$, then $STZ^{-1}A = A$ and $STZ^{-1}B = B$. Thus we have

$$\phi(A) = \phi(S) TZ^{-1}A + S\phi(TZ^{-1}A),$$

and

$$\phi(B) = \phi(S) TZ^{-1}B + S\phi(TZ^{-1}B).$$

Combining the two above equations, we get that

$$\phi(Z) = \phi(A + B) = \phi(S) TZ^{-1}(A + B) + S\phi(TZ^{-1}(A + B)) = \phi(S)T + S\phi(T),$$

i.e. ϕ is a derivable mapping at Z. This completes the proof. □

Lemma 2.2. Let \mathcal{A} be an operator algebra. If there exists an invertible operator $Z \in \mathcal{A}$ such that ϕ is a derivable mapping at Z, then $\phi(I) = 0$.

Proof. Since $IZ = Z$, $\phi(Z) = \phi(I)Z + I\phi(Z)$. Thus we have $\phi(I)Z = 0$. Notice that Z is invertible. Hence $\phi(I) = 0$. This completes the proof. □

Theorem 2.3. Let \mathcal{N} be a complete nest. Then every invertible operator Z in $\text{alg} \mathcal{N}$ is an all-derivable point of the algebra for the strongly operator topology.
Proof. For arbitrary idempotent operator $p \in \text{alg } \mathcal{N}$, i.e. $p^2 = p$, we have $I - p + p^2 = I$. Furthermore $Z = (I - p + p^2)Z = (I - \alpha p)(I - \beta p)Z$, where $\alpha, \beta \in \mathbb{C}$ and $\alpha + \beta = 1$ and $\alpha \beta = 1$. It follows that

$$\varphi(Z) = \varphi(I - \alpha p)(I - \beta p)Z + (I - \alpha p)\varphi((I - \beta p)Z)$$

$$= -\alpha \varphi(p)Z + \alpha \beta \varphi(p)pZ + \varphi(Z) - \beta \varphi(pZ) - \alpha p \varphi(Z) + \alpha \beta p \varphi(pZ).$$

Furthermore we have

$$-\alpha \varphi(p)Z + \varphi(p)pZ - \beta \varphi(pZ) - \alpha p \varphi(Z) + \alpha \beta p \varphi(pZ) = 0. \quad (1)$$

On the other hand, $Z = (I - p + p^2)Z = (I - \beta p)(I - \alpha p)Z$, so we have

$$\varphi(Z) = \varphi(I - \beta p)(I - \alpha p)Z + (I - \beta p)\varphi((I - \alpha p)Z)$$

$$= -\beta \varphi(p)Z + \alpha \beta \varphi(p)pZ + \varphi(Z) - \alpha \varphi(pZ) - \beta p \varphi(Z) + \alpha \beta p \varphi(pZ).$$

Furthermore we have

$$-\beta \varphi(p)Z + \varphi(p)pZ - \alpha \varphi(pZ) - \beta p \varphi(Z) + \alpha \beta p \varphi(pZ) = 0. \quad (2)$$

Combining Eqs. (1) and (2), we get that

$$\varphi(pZ) = \varphi(I - \alpha p)(I - \beta p)Z + \varphi((I - \beta p)(I - \alpha p)Z)$$

$$= -\alpha \varphi(p)Z + \alpha \beta \varphi(p)pZ + \varphi(Z) - \beta \varphi(pZ) - \alpha p \varphi(Z) + \alpha \beta p \varphi(pZ).$$

Notice that every rank one operator in $\text{alg } \mathcal{N}$ may be denoted as a linear combination of at most four idempotents in $\text{alg } \mathcal{N}$ (see [6]), and every finite rank operator in $\text{alg } \mathcal{N}$ may be represented as a sum of rank one operators in $\text{alg } \mathcal{N}$ (see [5]). Hence we have

$$\varphi(FZ) = \varphi(F)Z + F \varphi(Z), \quad \forall F \in F(H) \cap \text{alg } \mathcal{N}.$$

Since φ is a strongly operator topology continuous mapping and $\text{alg } \mathcal{N} \cap F(H)^{\text{SOT}} = \text{alg } \mathcal{N}$ (see [5]), we get that

$$\varphi(TZ) = \varphi(T)Z + T \varphi(Z), \quad \forall T \in \text{alg } \mathcal{N}. \quad (3)$$

For arbitrary $S, T \in \text{alg } \mathcal{N}$ with $ST = I$, then $STZ = Z$. Notice that φ is a derivable mapping at Z. It follows from Eq. (3) that

$$\varphi(Z) = \varphi(S)TZ + S \varphi(TZ) = \varphi(S)TZ + S \varphi(T)Z + T \varphi(Z))$$

$$= \varphi(S)TZ + S \varphi(T)Z + \varphi(Z).$$

Thus $0 = \varphi(S)TZ + S \varphi(T)Z$. Furthermore $0 = \varphi(S)T + S \varphi(T)$. By Lemma 2.2, we know that $\varphi(I) = 0$. Hence $\varphi(I) = \varphi(S)T + S \varphi(T)$, i.e. φ is a derivable mapping at I. It follows from Theorem 1.1 in [17] that φ is a derivation. This completes the proof. \(\square\)

3. Two examples

In this section, we always write \mathcal{A} for the algebra of all 2×2 upper triangular matrices, and

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Lemma 3.1. Let \mathcal{A} be the algebra of all 2×2 upper triangular matrices, and let $\varphi : \mathcal{A} \to \mathcal{A}$ be a linear mapping as defined the following:

$$\begin{align*}
\varphi(E_{11}) &= a_{11}E_{11} + a_{12}E_{12} + a_{22}E_{22}, \\
\varphi(E_{12}) &= b_{11}E_{11} + b_{12}E_{12} + b_{22}E_{22}, \\
\varphi(E_{22}) &= c_{11}E_{11} + c_{12}E_{12} + c_{22}E_{22}.
\end{align*}$$
Then the following statements are equivalent.

1. φ is a derivable mapping at E_{11}.
2. φ is a derivable mapping at E_{22}.
3. $a_{11} = b_{11} = c_{11} = a_{22} = b_{22} = c_{22} = 0$ and $a_{12} + c_{12} = 0$.
4. φ is a derivation.

Proof. (3) \Rightarrow (4). Suppose that $a_{11} = b_{11} = c_{11} = a_{22} = b_{22} = c_{22} = 0$ and $a_{12} + c_{12} = 0$. For arbitrary $S = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$ and $T = \begin{bmatrix} u & v \\ 0 & w \end{bmatrix}$ in \mathcal{A}, then $ST = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \begin{bmatrix} u & v \\ 0 & w \end{bmatrix} = \begin{bmatrix} xu & xv + yw \\ 0 & zw \end{bmatrix}$.

Using straightforward matrix computations, we have

$$
\varphi(ST) = \varphi \begin{bmatrix} xu & xv + yw \\ 0 & zw \end{bmatrix} = \begin{bmatrix} a_{12} xu & a_{12} xy + b_{12} xv + b_{12} yw + c_{12} zw \\ 0 & 0 \end{bmatrix}
$$

Thus we have

$$
\varphi(ST) = \varphi(ST) = \varphi(S)T + S\varphi(T).
$$

Hence φ is a derivation.

(4) \Rightarrow (1) and (2) are obvious.

(1) \Rightarrow (3). Suppose that φ is a derivable mapping at E_{11}. For arbitrary $S = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$ and $T = \begin{bmatrix} u & v \\ 0 & w \end{bmatrix}$ in \mathcal{A} with $ST = E_{11}$, then $SU = 1, XV + YW = 0$ and $ZW = 0$. Thus we have

$$
a_{11}E_{11} + a_{12}E_{12} + a_{22}E_{22}
= \varphi(E_{11}) = \varphi(ST) = \varphi(ST) = \varphi(S)T + S\varphi(T)
= (a_{11}xU + b_{11}yU + c_{11}zU + a_{11}xU + b_{11}xV + c_{11}xW)E_{11}
+ (a_{11}xV + b_{11}yV + c_{11}zV + a_{12}xU + b_{12}xV + c_{12}xW)
+ a_{12}xW + b_{12}yW + c_{12}zW + a_{22}yU + b_{22}yV + c_{22}yW)E_{12}
+ (a_{22}xW + b_{22}yW + c_{22}zW + a_{22}zU + b_{22}zV + c_{22}zW)E_{22}.
$$

Taking $X = U = 1$ and $Y = Z = V = W = 0$ in the above equation, then $a_{11} = 0$. Using the same methods as the above, we may prove that $b_{11} = c_{11} = a_{22} = b_{22} = c_{22} = 0$ and $a_{12} + c_{12} = 0$. By imitating the proof of (1) \Rightarrow (3), we may prove that (2) implies (3). □

Using the same methods as the proof of Lemma 3.1, we may prove the following the lemma.

Lemma 3.2. Let \mathcal{A} be the algebra of all 2×2 upper triangular matrices, and let $\varphi : \mathcal{A} \rightarrow \mathcal{A}$ be a linear mapping as defined the following:

$$
\left\{ \begin{array}{l}
\varphi(E_{11}) = a_{11}E_{11} + a_{12}E_{12} + a_{22}E_{22}, \\
\varphi(E_{12}) = b_{11}E_{11} + b_{12}E_{12} + b_{22}E_{22}, \\
\varphi(E_{22}) = c_{11}E_{11} + c_{12}E_{12} + c_{22}E_{22}.
\end{array} \right.
$$

If $\lambda \in \mathcal{C}$, then the following statements hold.

1. If φ is a derivable mapping at $A = \lambda E_{11} + E_{12}$, then φ is a derivation.
2. If φ is a derivable mapping at $A = \lambda E_{22} + E_{12}$, then φ is a derivation.
3. φ be a derivable mapping at 0 if and only if $b_{11} = c_{11} = a_{22} = b_{22} = 0, a_{12} + c_{12} = 0$ and $a_{11} = c_{22}$. In particular, 0 is not an all-derivable point of \mathcal{A}.

By Theorem 2.3 and Lemmas 3.1 and 3.2, we may obtain the following two examples.

Example 3.3. Let \mathcal{A} be the algebra of all 2×2 upper triangular matrices, and let $A \in \mathcal{A}$. Then A is a all-derivation point of \mathcal{A} if and only if $A \neq 0$.

It is a nature problem whether every nonzero point in an operator algebra is all-derivable. We show that the question has negative answer.

Example 3.4. Let \mathcal{B} be the algebra of all 2×2 upper triangular matrices and $\mathcal{A} = \{ \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} : A, B \in \mathcal{B} \}$. Then there exists $0 \neq Z \in \mathcal{A}$ and Z is not all-derivable of \mathcal{A}. We show that $Z = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \in \mathcal{A}$ is not an all-derivable point of \mathcal{A}. In fact, we only need to find a derivable mapping φ at Z from \mathcal{A} into itself and φ is not a derivation. By Example 3.3, we may find a linear mapping $\varphi : \mathcal{A} \to \mathcal{A}$ as the following:

$$
\varphi \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right) = \begin{bmatrix} \varphi_1(A) & 0 \\ 0 & \varphi_2(B) \end{bmatrix},
$$

where φ_1 is a nonzero derivation from \mathcal{B} into itself, and φ_2 is a derivable mapping at 0 from \mathcal{B} into itself, but φ_2 is not a derivation. It is easy to verify that φ is a derivable mapping at G on \mathcal{A}, but it is not a derivation. Hence G is not an all-derivable point of \mathcal{A}.

References