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Abstract—We study the multiplicity of positive solutions for the second-order three-point bound-
ary value problem
u” + Ah(t) f(u) = 0, te(0,1),
w0) =0, oau(n) =u(l),
where 7 : 0 < 7 < 1, 0 < a < 1/. The methods employed are fixed-point index theorems and

Leray-Schauder degree and upper and lower solutions. (© 2000 Elsevier Science Ltd. All rights
reserved.
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1. INTRODUCTION

The study of multipoint boundary value problems for linear second-order ordinary differential
equations was initiated by II'in and Moiseev [1,2]. Motivated by the study of II'in and Moi-
seev [1,2], Gupta [3] studied certain three-point boundary value problems for nonlinear ordinary
differential equations. Since then, more general nonlinear multipoint boundary value problems
have been studied by several authors by using the Leray-Schauder Continuation Theorem, non-
linear alternative of Leray-Schauder, or coincidence degree theory. We refer the reader to [3-8§]
for some existence results of nonlinear multipoint boundary value problems. Very recently, the
author [9] considered the existence of positive solutions of the problem

v’ +a(t)f(u) =0, t€(0,1), (1.1)
u(0) =0, ou(n) = u(l1), (1.2)

where n € (0,1). By using fixed-point theorem in cone, we established the existence results for
positive solutions to (1.1),(1.2), assuming that 0 < an < 1 and

fe0([0,0),[0,00)), @€ C([0,1],[0,00)),

and f is either superlinear or sublinear.
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In this paper, we are concerned with the existence and multiplicities of positive solutions of
the problem

We make the following assumptions.

(A1) X is a positive parameter; n € (0,1) and 0 < an < 1.
(A2) h:[0,1) — [0,00) is continuous and does not vanish identically on any subset of positive
measure.
(As) f:[0,00) — (0,00) is continuous.
(A4)
foo := lim I(_ul =00

u—o0 U
Our main result is the following.

THEOREM 1.1. Assume (A;)-(A4). Then there exists a positive number A* such that
(1.3),(1.4) has at least two positive solutions for 0 < A < A*, at least one positive solution
for A = \*, and no positive solutions for A > A\*.

Note that we do not require any monotonicity on f. Similar results were proved for a variety
of two-point boundary value problems in [10].

The proof of Theorem 1.1 is based upon the method of upper and lower solutions and the
degree theory and the following fixed-point index results [11].

LEMMA 1.3. Let X be a Banach space, and let K be a cone in X. For r > 0, define K, = {z €
K ||z|| < r}. Assume T : K, — K is a compact map such that Tz # z for z € dK,.

(i) If |z|| < ||Tz| for x € OK,, then
i(T, Ky, K) = 0.
(ii) If ||zj| > |Tz| for z € OK,., then

i (T, K, K) = 1.

2. PRELIMINARY RESULTS
LEMMA 2.1. For y € C[0,1], the problem

v’ +y(t) =0, t€(0,1), (2.1)
u(0) = a, u(l) —au(n) =b
has a unique solution

ot
1-—-an

b—-a+aa
1 -

t 1
u(t) = t+a-—- /0 (t —s)y(s)ds ~ /On(n - s)y(s)ds + /0 (1—s)y(s)ds.

1 —an
PROOF. See [4].

The following two results were essentially established in [9]. In order that this paper be self
contained, we provide details here.
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LEMMA 2.2. Let 0 < a < 1/np,anda >0,b2> 0. Ify € C[0,1] and y > 0, then the unique
solution v of problem (2.1),(2.2) satisfies

u >0, te0,1].

Proor. We divide the proof into two steps.

STEP 1. We deal with the special case that a = b = 0.
In fact, from the fact that »”(z) = —y(x) < 0, we know that the graph of u(t) is concave down
n (0,1). So, if u(1) > 0, then the concavity of u and the boundary condition 4(0) = 0 imply
that
u >0, for t € [0, 1].

If u(l) < 0 and 0 < @ < 1, then

u(n) < 0,
(m) (23)
u(1) = au(n) > u(n).
This contradicts with the concavity of u.
Ifu(l) <0and 1 < a < 1/n, then
u(n) <0,
(2.4)

u(l) = au(n) > %uw).

This contradicts with the concavity of u again.
STEP 2. Consider the linear problem

The above problem has a solution

b—a+aa
Uo(t):—l——an—

It is easy to check that uo(t) > 0, for t € [0,1].

To sum up, the proof of Lemma 2.2 is completed.
REMARK. If an > 1, then the following counterexample shows that y > 0 does not imply that
(2.1),(2.2) has positive solutions.

Consider the linear three-point boundary value problem

-u"” =t, te€(0,1), (2.5)
1
u(0) =0, 8u <§> = u(l). (2.6)
It is easy to see that (2.5),(2.6) has a unique negative solution
__1ls
u(t) = 6t .

LEMMA 2.3. Let 0 < o < 1/n. Ify € C[0,1] and y > 0, then the unique solution u of the
problem

u” +y(t) =0,
u(0) = 0, u(l) —au(n) =0
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satisfies
inf u(t) > ~vlu|,
Jdnf u(t) > ]
where a(l )
. i/
=m , .
.

(In this paper, only the sup normal is used).
PROOF. We divide the proof into two steps.
STEP 1. We deal with the case 0 < a < 1. In this case, by Lemma 2, we know that

u(n) = u(1). (2.7)
Set
u(f) = [yl (2.8)
Ift<n <1, then
t) =u(l .
tg{l:’n]u( }=u(l) (2.9)
d (1) - u(n) 1 - (1/a)
u(l) — uln -~ (1/a
< —_—(0-1) = R Sl St
u(t) <u(l)+ - (0-1) u(l)[l =1 ]
1-an
=u(l .
( )a(l -n)
This together with (2.9) implies that
. a(l—-mn)
> —_ . .
tgllf,f’u"(t) 2T " om [|ul (2.10)
Ifn<t<1,then
i t) = u(l). 2.11
térffl,f’u"( ) =u(1) (2.11)
From the concavity of u, we know that
u(n) 7
iV A\ . 2.12
2 (212)

Combining (2.12) and boundary condition au(n) = u(1), we conclude that

(—n)z 20 5 @) = Jull.
This is
té’fif‘l]“(t) > anllull. (2.13)

STEP 2. We deal with the case 1 < a < 1/. In this case, we have
u(n) < u(l). (2.14)

Set
u(®) = |luf, (2.15)

then we can choose f such that
n<i<l. (2.16)
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(We note that if ¢ € [0, 1]\ [, 1], then the point (7, u(n)) is below the straight line determined by
(1,u(1)) and (¢, u (2)). This contradicts with the concavity of u.) From (2.14) and the concavity
of u, we know that

:orer[lri:ll]u(t) = u(n). (2.17)

Using the concavity of u and Lemma 2, we have that

uln) (@)

; 5 (2.18)
This implies
i t) > . .
tg;l}]u( ) = 7llull (2.19)

3. EXISTENCE AND NONEXISTENCE

In this section, we prove the following.

THEOREM 3.1. For A sufficiently small, (1.3),(1.4) has at least one positive solution, whereas for
A sufficiently large, (1.3),(1.4) has no positive solutions.

Let X = C[0,1] with the usual normal |lu|| = max¢,1) fu(t)]. Define T: X — X by

Tu(t) = ~/0 (t — s)Ah(s)f(u(s))ds

n
-2 [ - sphesae) ds (3.1
1
: _tan /0 (1 = 8)Ah(s) f(u(s)) ds.
Let K be the cone defined by
K= {u €X|u2>0, tg{lyi}{ll]u(t) > 'y||u]|} . (3.2)

Let C be the cone defined by
C={ueX|u>0}.
Then by Lemma 2.3, we know that T(C) C K. Clearly, T: X — X is completely continuous.
PROOF OF THEOREM 3.1. If ¢ > 0, then
t
= max - t —s)h(s)f(u(s))ds
o) = x| [ (¢~ mis)stuco)
_ at
1—-an
t
1-an

/ " (n— $)h(s) F(u(s)) ds (3.3)

1
/ (1- s)h(s)f(u(s))ds] > 0.
0
For any number 0 < 1, let §; = 71/6(r1) and set
K ={ueX||ull<m}
Then for A € (0,4;) and y € 8K,,, we have

Tu(t) < 6, [— /0 (t — s)h(s)F(u(s)) ds — / (0~ s)h(s) F(u(s)) ds

1—an

t 1
o [ - one st as)

<0:18(r1) =11,

(3.4)
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Thus, Lemma 1.3 implies

1(A K., K)=1 (3.5)
Since foo = 00, there is H > 0 such that f(u) > pu for u > H, where p is chosen so that
Autry / '
—_— 1—3s)h(s)ds > 1. 3.6
e NURRLOLE (36)

Let ro > H/~, and set
Krz = {u €eX l “u” < T2}‘

If y € 0K,,, then
min u(t) > 7|yl = H.

t€[17,1]
/ (n = s)h(s) f(u(s)) ds

Therefore,

Tu(n /\[ /(n—-s Yh(s) f(u(s)) dt—

L g / (1 - s)h(s )f(u(s))ds]

1
=,\[ — (n— 9)h(s)f(u(s)) ds + - /(l-s ())ds]
=A[ L [N st ds+ = /0 sh(s) (u(s)) ds
n 1
h it ds - = [ shis)s(u(s) ] 37)

1 an
,\[1 "a /h(sf(us))ds+

= /0 " sh(s) f(u(s)) ds

/ sh(s)u(s) ds

1
/ Moo ds - L [ sh(s)f(u(s))ds] by < 1)

0577

IV
r_—|l_| '—‘

1 — 8)h(s) f(u(s)) ds] :

Hence,
A
I7ul > $EL / (1 = s)h(s) sl
n

which implies
[ Tull > |lull,

for y € 8K,,. An application of Lemma 1.3 again shows that
i(A, K., K)=0. (3.8)

Since we can adjust 71,72 so that 71 < 79, it follows from the additivity of the fixed-point index
that

i (A, Kr \ Koy, K) = —1.

Thus, T has a fixed point in K, \ K, which is the desired positive solution of (1.3),(1.4).
To prove the nonexistence part, we note that (As) and (A4) imply the existence of a constant
¢o > 0 such that
Fflu) = cou, for u > 0.
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Let u € X be a positive solution of (1.3),(1.4). By Lemma 2.3, u € K. Now choose )\ large
enough so that

Acoy [ /nl(l — s)h(s)u(s) ds] > 1. (3.9)

1-an

By Lemma 3.2 and the similar method used to prove (3.7), we have that

) =2 |- [ e de - T2 [0 - o (utsn s

0 —an

n 1
+1 e /0 (1 — s)h(s)f(u(s)) ds]

A[" [uﬂwwwmﬂ

1-an

I\

AL:LULRI—QM@QMQM]

1
> xeor |72 [ 0= sy
> ul.

We have an obvious contradiction.

4. UPPER AND LOWER SOLUTIONS

In this section, we shall develop upper and lower solution methods for the boundary value
problem

u” () + Ah(t) f(u(t)) =0, t €(0,1), (4.1)
u(0) =0, ou(n) =u(l) =0.

DEFINITION 4.1. We say that the function T € C2[0,1] is an upper solution of problem (4.1),(4.2)
if

z"(t) + Ah(t) f(z(t)) <0, t € (0,1), (4.3)
z(0) > 0, z(1) — ax(n) > 0, (4.4)

and y € C?(0,1) is a lower solution of problem (4.1),(4.2) if

y"(t) + Mh(8)f(y(t))

> te(0,1), (4.5)
y(0) <

0,
0, y(1)-ay(n) <0.

We now establish several lemmas that will be used throughout.
Let z,y be upper and lower solutions for (4.1),(4.2) and satisfy z(¢) > y(¢) on [0, 1]. We define

f* by
flz(t), ult) 2z(),
fru®) =< fut), ) <u@)<z(), (4.7)
fy(®), ul(t) <z(b).
Consider the following problem:
u”(t) + Ah(t) f* (u(t)) =0, t€(0,1), (4.8)
u(0) =0, au(n) =u(l) =0. (4.9)
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LEMMA 4.2. If there is a solution u of (4.8),(4.9), then
y(t) < u(t) < z(t), fort € (0,1].

In other words, u is a solution of (4.1),(4.2).

PROOF. We first prove that u(t) < z(t), for all t € (0,1]. Suppose to the contrary that u(to) >
z(tg) for some to € (0,1].
Set
c=inf{t € [0,1] | u(t) > z(t)}, (4.10)

then from the fact that u(0) = 0 and z(0) > 0, we know that ¢ > 0 and
u(e) = z(c). (4.11)

There are three cases as follows.

CASE 1. There exists d € (c, 1], such that u(d) = z(d) and u(t) > z(t), for all x € (c,d).
In this case, we have

fult)) = (=), forte(cd),
u(e) = z(c), u(d) = z(d). (4.12)

Therefore,
(x —u)" < =Xh(t) [f(z(t) = f*(u(t))] =0,  fort € (cd),

(x —u)(c) = (z —u)(d) =0,
which, by the concavity of z — u, implies the contradiction (z — u)(t) > 0, for all t € (c, d).
CASE 2. c € (0,n) and u(t) > z(t), for all t € (c, 1].

In this case, we have
) = f(z(t), forte(cl],

(4.13)

u(c) = z(c) (414)
Therefore,
(x —u)’ < =Ah(t)[f(z(t)) — f*(u(t))] =0, for t € (¢, 1]. (4.15)
Using the boundary conditions u(1) = au(n) and z(1) > ax(n), we know that
(z —uw)(1) — a(z —u)(n) > 0. (4.16)

Combining (4.16) and (4.11) and using the same arguments used to prove Lemma 2.2, we can
get the desired contradiction z —u > 0, for all ¢ € [c, 1].

CASE 3. c€ [n,1) and u(t) > z(t), for all t € (¢, 1].

In this case, we have
fru@®) = f(z(t), forte(cl],

u(c) = z(c). (4.17)
Therefore,
(z —uw)” < =Ah(t) [f(z(t)) — fr(u(t)] =0, for t € (e, 1]. (4.18)
By the definition of ¢, we know that
u(t) < z(t), for all t € [0, ¢]. (4.19)

In particular, we have that
u(n) < x(n). (4.20)
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This, together with the boundary conditions u(1) = au(n) and z(1) > az(n), implies
u(l) < z(1). (4.21)

Combining this with (4.11) and (4.18) and using the concavity of z — u, we obtain the desired
contradiction (z — u)(t) > 0, for all t € (¢, 1].

By the same arguments, we see that y(t) < u(t), for z € [0,1]. Since y(t) < u < z(t) for
t € [0,1], it follows that f = f*, and so u is a solution of (4.1),(4.2).

LEMMA 4.3. Ifthere exist upper and lower solutions « and y of (4.1),(4.2) with y(t) < z(¢), for t €
[0,1], then there is a solution u to (4.1),(4.2) such that

y(t) < ult) < z(¢), for t € [0,1].

Proor. Consider problem (4.8),(4.9). By Lemma 2.1, we know that (4.8),(4.9) is equivalent to
the integral equation

u(t) = - /0 (t — )MR(s) " (y(s)) ds

-2 [ - as
1
1 _tan /0 (1 = 8)Ah(s)f*(y(s)) ds

Let

-2 [ aeas
t 1
= [ - amerwe)ds

Then T* : C[0,1] — C[0,1] is completely continuous. Since f* is bounded, T* is bounded. By
the Schauder fixed-point theorem, 7™ has a fixed point u, which is a solution of (4.8),(4.9). By
Lemma 4.2, u is also a solution of (4.1),(4.2).

5. MULTIPLICITY

In order to guarantee that all possible solutions of (1.3),(1.4) are nonnegative, we make the
convention that

f(u) = £(0), ifu<O. (5.1)
We first need the following priori estimate.
LEMMA 5.1. There is a constant by > 0 such that ||y|| < b, for all solutions u of (1.3),(1.4)
where X\ belongs to a compact subset I of (0, 00).

PROOF. Now suppose there is an unbounded sequence {u,} of solutions of (1.3),(1.4) which
corresponding A, belongs to a compact subset of (0,00). By Lemma 2.3, u, € K, which implies
that

min un(z) 2 7 [[unl| -
t€(n,1]

Since fo = 00, there is a ¢ > 0 such that

f(u) > pu,  forallu>gq,
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where [ is chosen so that

inf {\p} &y [1 —nan /nl(l — s)a(s) ds] > 1.

Choosing n large enough so that v||u,|| > ¢, then by the same arguments used to get (3.7), we
have that

un(1) = o [~ [ 1= 9a(6)fun(s) dt =~ T2 ("1 )a(s)un(e)) s

1-anJjy
~, [1 _ﬂan /,, 1(1 — 8)a(s)f (un(s)) ds]
2 A [1 e /n (1= Sae)un(o) ds]
2 Mfy [1 - / (1= s)a(e ds] el >

which is a contradiction.

Now let I' denote the set of A > 0 such that a positive solution of (1.3),(1.4) exists. Let
A* = supl". By Theorem 3.1, I" is nonempty and bounded, and thus, 0 < A\* < co. We claim
that A* € I'. To see this, let A\, — A*, where )\, € I':

M <A <o r < A1 < Ay < - < AN
Since the {A,} are bounded, Lemma 5.1 implies that the corresponding solutions {u,} are

bounded. By the compactness of the integral operator T, it easily follows that A\* € T.
Let u* be a solution of (1.3),(1.4) corresponding to A* and define

fu(t)+e), u(t)>u*(t)+e
Flu@®) =< fu@), —e <u(t) Sut(t) +¢,

f(=e), u(t) < —e.

Let , .
Tyt = A |- [ €= 9pe)fo)ds - 225 ["r- 9nis) o ds
t 1 .
+1 o /0 (1 — s)h(s)f(u(s)) ds] .

Consider

Q={ue X|-e<ut) <u*(t) +e}.
LEMMA 5.2. There is an € > 0, sufficiently small, such that if u € C[0, 1] satisfies Thu = u for
some 0 < X < A*, then u € .

PROOF. Since u > 0, to prove that u < u* + ¢, we first show that u* + ¢ is an upper solution of
(1.3),(1.4). Since u* > 0, there is a constant dy > 0 such that f(u*(t)) > do > 0, for all t € [0,1].
By uniform continuity, there is an ¢y > 0 such that

F @ @)+ = F (@) < do 2,
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for all ¢ € [0,1],0 < € < €o. Now

(W' () +6)" = ()"
= —X"h(t)f (u* (1))

= —MA(t)f (u*(t) +€) (5.2)
+ AR [f (u(t) +€) = f (u™(8))] + (A = A*) h{(t) f (v (2))
< =AR() f (u*(t) +¢€)
and
(u* +¢€)(0) >0, (u* +€)(1) 20. (5.3)

Clearly, if € > 0, then (5.3) becomes
(u* +¢€)(0) >0, (u*+¢€)(1) >0. (5.4)

Therefore, u* + € is an upper solution of (1.3),(1.4). It follows from Lemma 4.1 that u < u* +e.
PROOF OF THEOREM 1.1. Let A € (0,\*); we show that (1.3),(1.4) has at least two positive
solutions. Since u* is an upper solution and 0 is a lower solution, Lemma 4.3 implies the existence
of a solution uy of (1.3),(1.4) such that 0 < uy < u*. Thus, for 0 < A < A*, a positive solution
exists, whereas for A > A*, a positive solution does not exist. Moreover, uy € 2.
Choose I = [0, A* + 1]; then
0, X)NT#0
and

(\*,00) NI # 0.

We next establish the existence of a second positive solution to (1.3),(1.4) for A € (0,A*) N [.
Since T} is bounded for ) € I,

deg (I—T,\,B(u,\,R),0> =1, (5.5)

for R large enough, where B(uy, R) is the ball centered at uy with radius R in C[0,1]. If there
exists a u € O such that u = T(u), then f = f, and so u is a second positive solution. Now
suppose u # Th(u), for all u € 3Q. Then deg(I — T),,0) is well defined. Since Lemma 5.2
implies T has no fixed point in B(uy, R) \ 2, we have from the excision property of degree that

deg (I - 15,0,0) = 1. (5.6)
This, together with the fact that
Ty la =Tilg,
implies that
deg (I —T»,0,0)=1. (5.7)

On the other hand, by Lemma 5.1, all positive solutions of (1.3),(1.4) are bounded for A € I, and
thus,
deg (I — Ty, B(0, M),0) = constant, for eI, (5.8)

for M large enough, where B(0, M) is the ball centered at 0 with radius M in C{0, 1]. The late
degree must equal 0, since for all A > A*, no solutions exist. (We note that (A3) and (5.1) and
Lemma 2.2 imply that all solutions of (1.3),(1.4) are positive solutions!) Finally, by the excision
property

deg (I — T, B(0, M)\ Q,0) = -1, (5.9)

and so a second positive solution of (1.3),(1.4) exists for A € (0,A*) N 1T
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