Multiplicity of Positive Solutions for Second-Order Three-Point Boundary Value Problems

RUYUN MA
Department of Mathematics, Northwest Normal University
Lanzhou 730070, Gansu, P.R. China

(Received August 1999; revised and accepted January 2000)

Abstract—We study the multiplicity of positive solutions for the second-order three-point boundary value problem

\[u'' + \lambda h(t)f(u) = 0, \quad t \in (0, 1), \]

\[u(0) = 0, \quad \alpha u(\eta) = u(1), \]

where \(0 < \eta < 1, \) \(0 < \alpha < 1/\eta. \) The methods employed are fixed-point index theorems and Leray-Schauder degree and upper and lower solutions. \(\odot 2000 \) Elsevier Science Ltd. All rights reserved.

Keywords—Three-point BVP, Positive solution, Cone, Fixed-point index.

1. INTRODUCTION

The study of multipoint boundary value problems for linear second-order ordinary differential equations was initiated by Il'in and Moiseev [1,2]. Motivated by the study of Il'in and Moiseev [1,2], Gupta [3] studied certain three-point boundary value problems for nonlinear ordinary differential equations. Since then, more general nonlinear multipoint boundary value problems have been studied by several authors by using the Leray-Schauder Continuation Theorem, nonlinear alternative of Leray-Schauder, or coincidence degree theory. We refer the reader to [3-8] for some existence results of nonlinear multipoint boundary value problems. Very recently, the author [9] considered the existence of positive solutions of the problem

\[u'' + a(t)f(u) = 0, \quad t \in (0, 1), \]

\[u(0) = 0, \quad \alpha u(\eta) = u(1), \]

where \(\eta \in (0, 1). \) By using fixed-point theorem in cone, we established the existence results for positive solutions to (1.1),(1.2), assuming that \(0 < a\eta < 1 \) and

\[f \in C([0, \infty), [0, \infty)), \quad \alpha \in C([0, 1], [0, \infty)), \]

and \(f \) is either superlinear or sublinear.

Supported by the Natural Science Foundation of China (No. 19801028).

The author would like to thank the referees for their useful suggestions.

0898-1221/00/$ - see front matter \odot 2000 Elsevier Science Ltd. All rights reserved. Typeset by A4LaS-TEX

P11: S0898-1221(00)00153-X
In this paper, we are concerned with the existence and multiplicities of positive solutions of the problem

\[
\begin{align*}
 u'' + \lambda h(t)f(u) &= 0, & t \in (0, 1), \\
 u(0) &= 0, & \alpha u(\eta) = u(1).
\end{align*}
\]

We make the following assumptions.

(A1) \(\lambda \) is a positive parameter; \(\eta \in (0, 1) \) and \(0 < \alpha \eta < 1 \).

(A2) \(h : [0, 1] \to [0, \infty) \) is continuous and does not vanish identically on any subset of positive measure.

(A3) \(f : [0, \infty) \to (0, \infty) \) is continuous.

(A4) \(\lim_{u \to 0^+} f(u) = \infty \).

Our main result is the following.

Theorem 1.1. Assume (A1)-(A4). Then there exists a positive number \(\lambda^* \) such that (1.3),(1.4) has at least two positive solutions for \(0 < \lambda < \lambda^* \), at least one positive solution for \(\lambda = \lambda^* \), and no positive solutions for \(\lambda > \lambda^* \).

Note that we do not require any monotonicity on \(f \). Similar results were proved for a variety of two-point boundary value problems in [10].

The proof of Theorem 1.1 is based upon the method of upper and lower solutions and the degree theory and the following fixed-point index results [11].

Lemma 1.3. Let \(X \) be a Banach space, and let \(K \) be a cone in \(X \). For \(r > 0 \), define \(K_r = \{ x \in K \mid \|x\| < r \} \). Assume \(T : K_r \to K \) is a compact map such that \(Tx \neq x \) for \(x \in \partial K_r \).

(i) If \(\|x\| \leq \|Tx\| \) for \(x \in \partial K_r \), then

\[
i(T, K_r, K) = 0.
\]

(ii) If \(\|x\| \geq \|Tx\| \) for \(x \in \partial K_r \), then

\[
i(T, K_r, K) = 1.
\]

2. PRELIMINARY RESULTS

Lemma 2.1. For \(y \in C[0,1] \), the problem

\[
\begin{align*}
 u'' + y(t) &= 0, & t \in (0,1), \\
 u(0) &= a, & u(1) - \alpha u(\eta) = b
\end{align*}
\]

has a unique solution

\[
u(t) = \frac{b-a+\alpha a}{1-\alpha \eta} t + a - \int_0^t (t-s) y(s) \, ds - \frac{\alpha t}{1-\alpha \eta} \int_0^\eta (\eta-s) y(s) \, ds + \frac{t}{1-\alpha \eta} \int_0^1 (1-s) y(s) \, ds.
\]

Proof. See [4].

The following two results were essentially established in [9]. In order that this paper be self contained, we provide details here.
Lemma 2.2. Let $0 < \alpha < 1/\eta$, and $a \geq 0$, $b \geq 0$. If $y \in C[0,1]$ and $y \geq 0$, then the unique solution u of problem (2.1), (2.2) satisfies

$$u \geq 0, \quad t \in [0,1].$$

Proof. We divide the proof into two steps.

Step 1. We deal with the special case that $a = b = 0$.

In fact, from the fact that $u''(x) = -y(x) \leq 0$, we know that the graph of $u(t)$ is concave down on $(0,1)$. So, if $u(1) \geq 0$, then the concavity of u and the boundary condition $u(0) = 0$ imply that

$$u \geq 0, \quad t \in [0,1].$$

If $u(1) < 0$ and $0 < \alpha \leq 1$, then

$$u(\eta) < 0,$$

$$u(1) = \alpha u(\eta) \geq u(\eta).$$

This contradicts with the concavity of u.

If $u(1) < 0$ and $1 < \alpha < 1/\eta$, then

$$u(\eta) < 0,$$

$$1 = u(1) > \eta u(\eta).$$

This contradicts with the concavity of u again.

Step 2. Consider the linear problem

$$u'' = 0, \quad t \in (0,1),$$

$$u(0) = a, \quad u(1) - \alpha u(\eta) = b.$$

The above problem has a solution

$$u_0(t) = \frac{b - a + a\alpha}{1 - \alpha\eta} t + a.$$

It is easy to check that $u_0(t) \geq 0$, for $t \in [0,1]$.

To sum up, the proof of Lemma 2.2 is completed.

Remark. If $\alpha\eta > 1$, then the following counterexample shows that $y \geq 0$ does not imply that (2.1), (2.2) has positive solutions.

Consider the linear three-point boundary value problem

$$-u'' = t, \quad t \in (0,1),$$

$$u(0) = 0, \quad 8u\left(\frac{1}{2}\right) = u(1).$$

It is easy to see that (2.5), (2.6) has a unique negative solution

$$u(t) = -\frac{1}{6}t^3.$$

Lemma 2.3. Let $0 < \alpha < 1/\eta$. If $y \in C[0,1]$ and $y \geq 0$, then the unique solution u of the problem

$$u'' + y(t) = 0, \quad t \in (0,1),$$

$$u(0) = 0, \quad u(1) - \alpha u(\eta) = 0$$
satisfies
\[\inf_{t \in [\eta, 1]} u(t) \geq \gamma \|u\|, \]
where
\[\gamma = \min \left\{ \alpha \eta, \frac{\alpha (1 - \eta)}{1 - \alpha \eta}, \eta \right\}. \]

(In this paper, only the sup normal is used).

Proof. We divide the proof into two steps.

Step 1. We deal with the case $0 < \alpha < 1$. In this case, by Lemma 2, we know that

\[u(\eta) \geq u(1). \tag{2.7} \]

Set

\[u(\bar{t}) = \|u\|. \tag{2.8} \]

If $\bar{t} \leq \eta < 1$, then

\[\min_{t \in [\eta, 1]} u(t) = u(1) \tag{2.9} \]

and

\[
\begin{align*}
 u(\bar{t}) &\leq u(1) + \frac{u(1) - u(\eta)}{1 - \eta} (0 - 1) = u(1) \left[1 - \frac{1 - (1/\alpha)}{1 - \eta} \right] \\
&= u(1) \frac{1 - \alpha \eta}{\alpha (1 - \eta)}.
\end{align*}
\]

This together with (2.9) implies that

\[\min_{t \in [\eta, 1]} u(t) \geq \frac{\alpha (1 - \eta)}{1 - \alpha \eta} \|u\|. \tag{2.10} \]

If $\eta < \bar{t} < 1$, then

\[\min_{t \in [\eta, 1]} u(t) = u(1). \tag{2.11} \]

From the concavity of u, we know that

\[\frac{u(\eta)}{\eta} \geq \frac{u(\bar{t})}{\bar{t}}. \tag{2.12} \]

Combining (2.12) and boundary condition $\alpha u(\eta) = u(1)$, we conclude that

\[\frac{u(1)}{\alpha \eta} \geq \frac{u(\bar{t})}{\bar{t}} \geq u(\bar{t}) = \|u\|. \]

This is

\[\min_{t \in [\eta, 1]} u(t) \geq \alpha \eta \|u\|. \tag{2.13} \]

Step 2. We deal with the case $1 \leq \alpha < 1/\eta$. In this case, we have

\[u(\eta) \leq u(1). \tag{2.14} \]

Set

\[u(\bar{t}) = \|u\|. \tag{2.15} \]

then we can choose \bar{t} such that

\[\eta \leq \bar{t} \leq 1. \tag{2.16} \]
We note that if \(\tilde{t} \in [0, 1] \setminus \{\eta, 1\} \), then the point \((\eta, u(\eta))\) is below the straight line determined by \((1, u(1))\) and \((\tilde{t}, u(\tilde{t}))\). This contradicts with the concavity of \(u\). From (2.14) and the concavity of \(u\), we know that
\[
\min_{t \in [\eta, 1]} u(t) = u(\eta). \tag{2.17}
\]
Using the concavity of \(u\) and Lemma 2, we have that
\[
\frac{u(\eta)}{\eta} \geq \frac{u(\tilde{t})}{\tilde{t}}. \tag{2.18}
\]
This implies
\[
\min_{t \in [\eta, 1]} u(t) \geq \eta \|u\|. \tag{2.19}
\]

3. EXISTENCE AND NONEXISTENCE

In this section, we prove the following.

Theorem 3.1. For \(\lambda\) sufficiently small, (1.3), (1.4) has at least one positive solution, whereas for \(\lambda\) sufficiently large, (1.3), (1.4) has no positive solutions.

Let \(X = C[0, 1]\) with the usual normal \(\|u\| = \max_{t \in [0, 1]} |u(t)|\). Define \(T : X \to X\) by
\[
Tu(t) = -\int_0^t (t-s)\lambda h(s)f(u(s))\,ds - \frac{\alpha t}{1 - \alpha \eta} \int_0^\eta (\eta-s)\lambda h(s)f(u(s))\,ds + \frac{t}{1 - \alpha \eta} \int_0^1 (1-s)\lambda h(s)f(u(s))\,ds.
\]
Let \(K\) be the cone defined by
\[
K = \left\{ u \in X \mid u \geq 0, \min_{t \in [\eta, 1]} u(t) \geq \eta \|u\| \right\}. \tag{3.2}
\]
Let \(C\) be the cone defined by
\[
C = \{ u \in X \mid u \geq 0 \}.
\]
Then by Lemma 2.3, we know that \(T(C) \subset K\). Clearly, \(T : X \to X\) is completely continuous.

Proof of Theorem 3.1. If \(q > 0\), then
\[
\beta(q) = \max_{u \in K, \|u\| = q} \left[-\int_0^t (t-s)h(s)f(u(s))\,ds - \frac{\alpha t}{1 - \alpha \eta} \int_0^\eta (\eta-s)h(s)f(u(s))\,ds + \frac{t}{1 - \alpha \eta} \int_0^1 (1-s)h(s)f(u(s))\,ds \right] > 0. \tag{3.3}
\]
For any number \(0 < \delta_1 = r_1/\beta(r_1)\) and set
\[
K_{\delta_1} = \{ u \in X \mid \|u\| < r_1 \}.
\]
Then for \(\lambda \in (0, \delta_1)\) and \(y \in \partial K_{\delta_1}\), we have
\[
Tu(t) < \delta_1 \left[-\int_0^t (t-s)h(s)f(u(s))\,ds - \frac{\alpha t}{1 - \alpha \eta} \int_0^\eta (\eta-s)h(s)f(u(s))\,ds + \frac{t}{1 - \alpha \eta} \int_0^1 (1-s)h(s)f(u(s))\,ds \right] \leq \delta_1 \beta(r_1) = r_1. \tag{3.4}
\]
Thus, Lemma 1.3 implies

$$i(A, K_{r_1}, K) = 1.$$ \hfill (3.5)

Since $f_\infty = \infty$, there is $H > 0$ such that $f(u) \geq \mu u$ for $u \geq H$, where μ is chosen so that

$$\frac{\lambda \mu \gamma}{1 - \alpha \eta} \int_\eta^1 (1 - s)h(s) \, ds > 1.$$ \hfill (3.6)

Let $r_2 \geq H/\gamma$, and set

$$K_{r_2} = \{ u \in X \mid \|u\| < r_2 \}.$$

If $y \in \partial K_{r_2}$, then

$$\min_{t \in [\eta, 1]} u(t) \geq \gamma \|y\| \geq H.$$

Therefore,

$$Tu(\eta) = \lambda \left[- \int_0^\eta (\eta - s)h(s)f(u(s)) \, dt - \frac{\alpha \eta}{1 - \alpha \eta} \int_0^\eta (\eta - s)h(s)f(u(s)) \, ds \right]$$

$$+ \frac{\eta}{1 - \alpha \eta} \int_0^1 (1 - s)h(s)f(u(s)) \, ds$$

$$= \lambda \left[- \int_0^\eta (\eta - s)h(s)f(u(s)) \, ds + \frac{\eta}{1 - \alpha \eta} \int_0^1 (1 - s)h(s)f(u(s)) \, ds \right]$$

$$= \lambda \left[- \int_0^\eta \eta h(s)f(u(s)) \, ds + \frac{1}{1 - \alpha \eta} \int_0^\eta sh(s)f(u(s)) \, ds \right]$$

$$+ \frac{\eta}{1 - \alpha \eta} \int_0^1 h(s)f(u(s)) \, ds - \frac{\eta}{1 - \alpha \eta} \int_0^1 sh(s)f(u(s)) \, ds \right], \quad \text{(3.7)}$$

$$\geq \lambda \left[\frac{\eta}{1 - \alpha \eta} \int_0^1 h(s)f(u(s)) \, ds - \frac{\eta}{1 - \alpha \eta} \int_0^1 sh(s)f(u(s)) \, ds \right] \quad \text{(by } \eta < 1 \text{)}$$

$$= \lambda \left[\frac{\eta}{1 - \alpha \eta} \int_\eta^1 (1 - s)h(s)f(u(s)) \, ds \right].$$

Hence,

$$\|Tu\| \geq \frac{\lambda \mu \gamma}{1 - \alpha \eta} \int_\eta^1 (1 - s)h(s) \, ds \|u\|,$$

which implies

$$\|Tu\| > \|u\|,$$

for $y \in \partial K_{r_2}$. An application of Lemma 1.3 again shows that

$$i(A, K_{r_2}, K) = 0.$$ \hfill (3.8)

Since we can adjust r_1, r_2 so that $r_1 < r_2$, it follows from the additivity of the fixed-point index that

$$i(A, K_{r_2} \setminus \overline{K_{r_1}}, K) = -1.$$

Thus, T has a fixed point in $K_{r_2} \setminus \overline{K_{r_1}}$, which is the desired positive solution of (1.3),(1.4).

To prove the nonexistence part, we note that (A_3) and (A_4) imply the existence of a constant $c_0 > 0$ such that

$$f(u) \geq c_0 u, \quad \text{for } u \geq 0.$$
Let $u \in X$ be a positive solution of (1.3), (1.4). By Lemma 2.3, $u \in K$. Now choose λ large enough so that
\[\lambda c_0 \gamma \left[\frac{\eta}{1 - \alpha \eta} \int_0^1 (1 - s)h(s)u(s) \, ds \right] > 1. \] (3.9)

By Lemma 3.2 and the similar method used to prove (3.7), we have that
\[u(\eta) = \lambda \left[- \int_0^\eta (\eta - s)h(s)f(u(s)) \, dt - \frac{\alpha \eta}{1 - \alpha \eta} \int_0^\eta (\eta - s)h(s)f(u(s)) \, ds \right. \]
\[\left. + \frac{\eta}{1 - \alpha \eta} \int_0^1 (1 - s)h(s)f(u(s)) \, ds \right] \]
\[= \lambda \left[\frac{\eta}{1 - \alpha \eta} \int_0^1 (1 - s)h(s)f(u(s)) \, ds \right] \]
\[\geq \lambda \left[\frac{\eta}{1 - \alpha \eta} \int_0^1 (1 - s)h(s)c_0 u(s) \, ds \right] \]
\[\geq \lambda c_0 \gamma \left[\frac{\eta}{1 - \alpha \eta} \int_0^1 (1 - s)h(s) \, ds \right] \|u\| \]
\[> \|u\|. \]

We have an obvious contradiction.

4. UPPER AND LOWER SOLUTIONS

In this section, we shall develop upper and lower solution methods for the boundary value problem
\[u''(t) + \lambda h(t)f(u(t)) = 0, \quad t \in (0, 1), \quad u(0) = 0, \quad \alpha u(\eta) = u(1) = 0. \] (4.1)

DEFINITION 4.1. We say that the function $x \in C^2[0, 1]$ is an upper solution of problem (4.1), (4.2) if
\[x''(t) + \lambda h(t)f(x(t)) \leq 0, \quad t \in (0, 1), \quad x(0) \geq 0, \quad x(1) - \alpha x(\eta) \geq 0, \] (4.3)
and $y \in C^2[0, 1]$ is a lower solution of problem (4.1), (4.2) if
\[y''(t) + \lambda h(t)f(y(t)) \geq 0, \quad t \in (0, 1), \quad y(0) \leq 0, \quad y(1) - \alpha y(\eta) \leq 0. \] (4.5)

We now establish several lemmas that will be used throughout.

Let x, y be upper and lower solutions for (4.1), (4.2) and satisfy $x(t) \geq y(t)$ on $[0, 1]$. We define f^* by
\[f^*(u(t)) = \begin{cases} f(x(t)), & u(t) \geq x(t), \\ f(u(t)), & u(t) \leq x(t) \leq y(t), \\ f(y(t)), & u(t) \leq x(t). \end{cases} \] (4.7)

Consider the following problem:
\[u''(t) + \lambda h(t)f^*(u(t)) = 0, \quad t \in (0, 1), \quad u(0) = 0, \quad \alpha u(\eta) = u(1) = 0. \] (4.8)
LEMMA 4.2. If there is a solution u of (4.8),(4.9), then

$$y(t) \leq u(t) \leq x(t), \quad \text{for } t \in [0,1].$$

In other words, u is a solution of (4.1),(4.2).

PROOF. We first prove that $u(t) \leq x(t)$, for all $t \in (0,1]$. Suppose to the contrary that $u(t_0) > x(t_0)$ for some $t_0 \in (0,1]$.

Set

$$c = \inf\{t \in [0,1] \mid u(t) > x(t)\}, \quad (4.10)$$

then from the fact that $u(0) = 0$ and $x(0) \geq 0$, we know that $c > 0$ and

$$u(c) = x(c). \quad (4.11)$$

There are three cases as follows.

CASE 1. There exists $d \in (c,1]$, such that $u(d) = x(d)$ and $u(t) > x(t)$, for all $t \in (c,d)$.

In this case, we have

$$f^*(u(t)) = f(x(t)), \quad \text{for } t \in (c,d),$$

$$u(c) = x(c), \quad u(d) = x(d). \quad (4.12)$$

Therefore,

$$(x-u)'' \leq -\lambda h(t) [f(x(t)) - f^*(u(t))] = 0, \quad \text{for } t \in (c,d),$$

$$(x-u)(c) = (x-u)(d) = 0, \quad (4.13)$$

which, by the concavity of $x-u$, implies the contradiction $(x-u)(t) \geq 0$, for all $t \in (c,d)$.

CASE 2. $c \in (0,\eta)$ and $u(t) > x(t)$, for all $t \in (c,1]$.

In this case, we have

$$f^*(u(t)) = f(x(t)), \quad \text{for } t \in (c,1],$$

$$u(c) = x(c). \quad (4.14)$$

Therefore,

$$(x-u)'' \leq -\lambda h(t) [f(x(t)) - f^*(u(t))] = 0, \quad \text{for } t \in (c,1].$$

Using the boundary conditions $u(1) = \alpha u(\eta)$ and $x(1) \geq \alpha x(\eta)$, we know that

$$(x-u)(1) - \alpha(x-u)(\eta) \geq 0. \quad (4.15)$$

Combining (4.15) and (4.11) and using the same arguments used to prove Lemma 2.2, we can get the desired contradiction $x-u \geq 0$, for all $t \in [c,1]$.

CASE 3. $c \in [\eta,1)$ and $u(t) > x(t)$, for all $t \in (c,1]$.

In this case, we have

$$f^*(u(t)) = f(x(t)), \quad \text{for } t \in (c,1],$$

$$u(c) = x(c). \quad (4.17)$$

Therefore,

$$(x-u)'' \leq -\lambda h(t) [f(x(t)) - f^*(u(t))] = 0, \quad \text{for } t \in (c,1].$$

By the definition of c, we know that

$$u(t) \leq x(t), \quad \text{for all } t \in [0,c]. \quad (4.18)$$

In particular, we have that

$$u(\eta) \leq x(\eta). \quad (4.19)$$
This, together with the boundary conditions $u(1) = \alpha u(\eta)$ and $x(1) \geq \alpha x(\eta)$, implies

$$u(1) \leq x(1). \quad (4.21)$$

Combining this with (4.11) and (4.18) and using the concavity of $x - u$, we obtain the desired contradiction $(x - u)(t) \geq 0$, for all $t \in (c, 1]$.

By the same arguments, we see that $y(t) \leq u(t)$, for $x \in [0, 1]$. Since $y(t) \leq u \leq x(t)$ for $t \in [0, 1]$, it follows that $f = f^*$, and so u is a solution of (4.1),(4.2).

Lemma 4.3. If there exist upper and lower solutions x and y of (4.1),(4.2) with $y(t) \leq x(t)$, for $t \in [0, 1]$, then there is a solution u to (4.1),(4.2) such that

$$y(t) \leq u(t) \leq x(t), \quad \text{for } t \in [0, 1].$$

Proof. Consider problem (4.8),(4.9). By Lemma 2.1, we know that (4.8),(4.9) is equivalent to the integral equation

$$u(t) = -\int_0^t (t-s)\lambda h(s)f^*(y(s)) \, ds$$

$$- \frac{\alpha t}{1-\alpha\eta} \int_0^\eta (\eta-s)\lambda h(s)f^*(y(s)) \, ds$$

$$+ \frac{t}{1-\alpha\eta} \int_0^1 (1-s)\lambda h(s)f^*(y(s)) \, ds.$$

Let $T^*u(t) = -\int_0^t (t-s)\lambda h(s)f^*(y(s)) \, ds$

$$- \frac{\alpha t}{1-\alpha\eta} \int_0^\eta (\eta-s)\lambda h(s)f^*(y(s)) \, ds$$

$$+ \frac{t}{1-\alpha\eta} \int_0^1 (1-s)\lambda h(s)f^*(y(s)) \, ds.$$

Then $T^* : C[0,1] \to C[0,1]$ is completely continuous. Since f^* is bounded, T^* is bounded. By the Schauder fixed-point theorem, T^* has a fixed point u, which is a solution of (4.8),(4.9). By Lemma 4.2, u is also a solution of (4.1),(4.2).

5. MULTIPLICITY

In order to guarantee that all possible solutions of (1.3),(1.4) are nonnegative, we make the convention that

$$f(u) = f(0), \quad \text{if } u < 0. \quad (5.1)$$

We first need the following priori estimate.

Lemma 5.1. There is a constant $b_1 > 0$ such that $\|y\| \leq b_1$, for all solutions u of (1.3),(1.4) where λ belongs to a compact subset I of $(0, \infty)$.

Proof. Now suppose there is an unbounded sequence $\{u_n\}$ of solutions of (1.3),(1.4) which corresponding λ_n belongs to a compact subset of $(0, \infty)$. By Lemma 2.3, $u_n \in K$, which implies that

$$\min_{t \in [0,1]} u_n(t) \geq \gamma \|u_n\|.$$

Since $f_{\infty} = \infty$, there is a $q > 0$ such that

$$f(u) \geq \bar{\mu} u, \quad \text{for all } u \geq q.$$
where \(\bar{\mu} \) is chosen so that

\[
\inf \{ \lambda_n \} \bar{\mu} \gamma \left[-\frac{\eta}{1 - \alpha \eta} \int_{\eta}^{1} (1 - s) a(s) \, ds \right] > 1.
\]

Choosing \(n \) large enough so that \(\gamma \|u_n\| \geq q \), then by the same arguments used to get (3.7), we have that

\[
\|u_n\| > \|u_n\|,
\]

which is a contradiction.

Now let \(F \) denote the set of \(\lambda > 0 \) such that a positive solution of (1.3),(1.4) exists. Let \(\lambda^* = \sup F \). By Theorem 3.1, \(F \) is nonempty and bounded, and thus, \(0 < \lambda^* < \infty \). We claim that \(\lambda^* \in F \). To see this, let \(\lambda_n \to \lambda^* \), where \(\lambda_n \in \Gamma \):

\[
\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots < \lambda^*.
\]

Since the \(\{\lambda_n\} \) are bounded, Lemma 5.1 implies that the corresponding solutions \(\{u_n\} \) are bounded. By the compactness of the integral operator \(T \), it easily follows that \(\lambda^* \in F \).

Let \(u^* \) be a solution of (1.3),(1.4) corresponding to \(\lambda^* \) and define

\[
f(u(t)) = \begin{cases}
 f(u^*(t) + \epsilon), & u(t) \geq u^*(t) + \epsilon, \\
 f(u(t)), & -\epsilon \leq u(t) \leq u^*(t) + \epsilon, \\
 f(-\epsilon), & u(t) \leq -\epsilon.
\end{cases}
\]

Let

\[
\hat{T}_\lambda u(t) = \lambda \left[-\int_{0}^{t} (s - t) h(s) \tilde{f}(u(s)) \, ds - \frac{at}{1 - \alpha \eta} \int_{\eta}^{1} (1 - s) h(s) \tilde{f}(u(s)) \, ds \right] + \frac{t}{1 - \alpha \eta} \int_{0}^{t} (1 - s) h(s) \tilde{f}(u(s)) \, ds.
\]

Consider

\[
\Omega = \{ u \in X \mid -\epsilon \leq u(t) \leq u^*(t) + \epsilon \}.
\]

Lemma 5.2. There is an \(\epsilon > 0 \), sufficiently small, such that if \(u \in C[0,1] \) satisfies \(\hat{T}_\lambda u = u \) for some \(0 < \lambda < \lambda^* \), then \(u \in \Omega \).

Proof. Since \(u \geq 0 \), to prove that \(u \leq u^* + \epsilon \), we first show that \(u^* + \epsilon \) is an upper solution of (1.3),(1.4). Since \(u^* \geq 0 \), there is a constant \(d_0 > 0 \) such that \(f(u^*(t)) > d_0 > 0 \), for all \(t \in [0,1] \). By uniform continuity, there is an \(\epsilon_0 > 0 \) such that

\[
|f(u^*(t) + \epsilon) - f(u^*(t))| < d_0 \frac{(\lambda^* - \lambda)}{\lambda},
\]
for all $t \in [0,1], 0 \leq \epsilon \leq \epsilon_0$. Now

$$
(u^*(t) + \epsilon)' = (u^*(t))'' = -\lambda^* h(t)f(u^*(t)) \\
= -\lambda h'(t)f(u^*(t) + \epsilon) \\
+ \lambda h(t)[f(u^*(t) + \epsilon) - f(u^*(t))] + (\lambda - \lambda^*) h(t)f(u^*(t)) \\
< -\lambda h(t)f(u^*(t) + \epsilon)
$$

and

$$
(u^* + \epsilon)(0) \geq 0, \quad (u^* + \epsilon)(1) \geq 0.
$$

Clearly, if $\epsilon > 0$, then (5.3) becomes

$$
(u^* + \epsilon)(0) > 0, \quad (u^* + \epsilon)(1) > 0.
$$

Therefore, $u^* + \epsilon$ is an upper solution of (1.3),(1.4). It follows from Lemma 4.1 that $u \leq u^* + \epsilon$.

Proof of Theorem 1.1. Let $\lambda \in (0, \lambda^*)$; we show that (1.3),(1.4) has at least two positive solutions. Since u^* is an upper solution and 0 is a lower solution, Lemma 4.3 implies the existence of a solution u_λ of (1.3),(1.4) such that $0 \leq u_\lambda \leq u^*$. Thus, for $0 < \lambda < \lambda^*$, a positive solution exists, whereas for $\lambda > \lambda^*$, a positive solution does not exist. Moreover, $u_\lambda \in \Omega$.

Choose $I = [0, \lambda^* + 1]$; then

$$(0, \lambda^*) \cap I \neq \emptyset$$

and

$$(\lambda^*, \infty) \cap I \neq \emptyset.$$

We next establish the existence of a second positive solution to (1.3),(1.4) for $\lambda \in (0, \lambda^*) \cap I$.

Since T_λ is bounded for $\lambda \in I$,

$$\deg(I - T_\lambda, B(u^*_\lambda, R), 0) = 1,$$

for R large enough, where $B(u^*_\lambda, R)$ is the ball centered at u^*_λ with radius R in $C[0,1]$. If there exists a $u \in \partial \Omega$ such that $u = T_\lambda(u)$, then $f = \bar{f}$, and so u is a second positive solution. Now suppose $u \neq T_\lambda(u)$, for all $u \in \partial \Omega$. Then $\deg(I - T_\lambda, \Omega, 0)$ is well defined. Since Lemma 5.2 implies T_λ has no fixed point in $B(u^*_\lambda, R) \setminus \Omega$, we have from the excision property of degree that

$$\deg(I - T_\lambda, \Omega, 0) = 1.$$

This, together with the fact that

$$T_\lambda|\Omega = T_\lambda|\Omega,$$

implies that

$$\deg(I - T_\lambda, \Omega, 0) = 1.$$

On the other hand, by Lemma 5.1, all positive solutions of (1.3),(1.4) are bounded for $\lambda \in I$, and thus,

$$\deg(I - T_\lambda, B(0, M), 0) = \text{constant}, \quad \text{for } \lambda \in I,$$

for M large enough, where $B(0, M)$ is the ball centered at 0 with radius M in $C[0,1]$. The late degree must equal 0, since for all $\lambda > \lambda^*$, no solutions exist. (We note that (A_3) and (5.1) and Lemma 2.2 imply that all solutions of (1.3),(1.4) are positive solutions!) Finally, by the excision property

$$\deg(I - T_\lambda, B(0, M) \setminus \Omega, 0) = -1,$$

and so a second positive solution of (1.3),(1.4) exists for $\lambda \in (0, \lambda^*) \cap I$.
REFERENCES

