An Intemational Joumal
computers \&
mathematics
with applications

Multiplicity of Positive Solutions for Second-Order Three-Point Boundary Value Problems

Ruyun Ma
Department of Mathematics, Northwest Normal University
Lanzhou 730070, Gansu, P.R. China

(Received August 1999; revised and accepted January 2000)

Abstract

We study the multiplicity of positive solutions for the second-order three-point boundary value problem $$
\begin{aligned} u^{\prime \prime}+\lambda h(t) f(u) & =0, & t \in(0,1), \\ u(0) & =0, & \alpha u(\eta)=u(1), \end{aligned}
$$ where $\eta: 0<\eta<1,0<\alpha<1 / \eta$. The methods employed are fixed-point index theorems and Leray-Schauder degree and upper and lower solutions. (C) 2000 Elsevier Science Ltd. All rights reserved.

Keywords—Three-point BVP, Positive solution, Cone, Fixed-point index.

1. INTRODUCTION

The study of multipoint boundary value problems for linear second-order ordinary differential equations was initiated by Il'in and Moiseev [1,2]. Motivated by the study of Il'in and Moiseev $[1,2]$, Gupta [3] studied certain three-point boundary value problems for nonlinear ordinary differential equations. Since then, more general nonlinear multipoint boundary value problems have been studied by several authors by using the Leray-Schauder Continuation Theorem, nonlinear alternative of Leray-Schauder, or coincidence degree theory. We refer the reader to [3-8] for some existence results of nonlinear multipoint boundary value problems. Very recently, the author [9] considered the existence of positive solutions of the problem

$$
\begin{array}{rlrl}
u^{\prime \prime}+a(t) f(u) & =0, & t \in(0,1), \\
u(0) & =0, & \alpha u(\eta) & =u(1) \tag{1.2}
\end{array}
$$

where $\eta \in(0,1)$. By using fixed-point theorem in cone, we established the existence results for positive solutions to (1.1),(1.2), assuming that $0<\alpha \eta<1$ and

$$
f \in C([0, \infty),[0, \infty)), \quad a \in C([0,1],[0, \infty))
$$

and f is either superlinear or sublinear.

[^0]In this paper, we are concerned with the existence and multiplicities of positive solutions of the problem

$$
\begin{array}{rlrl}
u^{\prime \prime}+\lambda h(t) f(u) & =0, & t \in(0,1) \\
u(0) & =0, & \alpha u(\eta) & =u(1) \tag{1.4}
\end{array}
$$

We make the following assumptions.
$\left(\mathrm{A}_{1}\right) \lambda$ is a positive parameter; $\eta \in(0,1)$ and $0<\alpha \eta<1$.
$\left(\mathrm{A}_{2}\right) h:[0,1] \rightarrow[0, \infty)$ is continuous and does not vanish identically on any subset of positive measure.
$\left(A_{3}\right) f:[0, \infty) \rightarrow(0, \infty)$ is continuous.
(A_{4})

$$
f_{\infty}:=\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty
$$

Our main result is the following.
Theorem 1.1. Assume $\left(A_{1}\right)-\left(A_{4}\right)$. Then there exists a positive number λ^{*} such that (1.3),(1.4) has at least two positive solutions for $0<\lambda<\lambda^{*}$, at least one positive solution for $\lambda=\lambda^{*}$, and no positive solutions for $\lambda>\lambda^{*}$.

Note that we do not require any monotonicity on f. Similar results were proved for a variety of two-point boundary value problems in [10].

The proof of Theorem 1.1 is based upon the method of upper and lower solutions and the degree theory and the following fixed-point index results [11].

Lemma 1.3. Let X be a Banach space, and let K be a cone in X. For $r>0$, define $K_{r}=\{x \in$ $K \mid\|x\|<r\}$. Assume $T: \overline{K_{r}} \rightarrow K$ is a compact map such that $T x \neq x$ for $x \in \partial K_{r}$.
(i) If $\|x\| \leq\|T x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=0
$$

(ii) If $\|x\| \geq\|T x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=1
$$

2. PRELIMINARY RESULTS

Lemma 2.1. For $y \in C[0,1]$, the problem

$$
\begin{array}{rlrl}
u^{\prime \prime}+y(t) & =0, & t \in(0,1), \\
u(0) & =a, & u(1)-\alpha u(\eta) & =b \tag{2.2}
\end{array}
$$

has a unique solution
$u(t)=\frac{b-a+a \alpha}{1-\alpha \eta} t+a-\int_{0}^{t}(t-s) y(s) d s-\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) y(s) d s+\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) y(s) d s$.
Proof. See [4].
The following two results were essentially established in [9]. In order that this paper be self contained, we provide details here.

Lemma 2.2. Let $0<\alpha<1 / \eta$, and $a \geq 0, b \geq 0$. If $y \in C[0,1]$ and $y \geq 0$, then the unique solution u of problem (2.1),(2.2) satisfies

$$
u \geq 0, \quad t \in[0,1]
$$

Proof. We divide the proof into two steps.
Step 1. We deal with the special case that $a=b=0$.
In fact, from the fact that $u^{\prime \prime}(x)=-y(x) \leq 0$, we know that the graph of $u(t)$ is concave down on $(0,1)$. So, if $u(1) \geq 0$, then the concavity of u and the boundary condition $u(0)=0$ imply that

$$
u \geq 0, \quad \text { for } t \in[0,1]
$$

If $u(1)<0$ and $0<\alpha \leq 1$, then

$$
\begin{align*}
u(\eta) & <0 \\
u(1)=\alpha u(\eta) & \geq u(\eta) \tag{2.3}
\end{align*}
$$

This contradicts with the concavity of u.
If $u(1)<0$ and $1<\alpha<1 / \eta$, then

$$
\begin{align*}
u(\eta) & <0 \\
u(1)=\alpha u(\eta) & >\frac{1}{\eta} u(\eta) \tag{2.4}
\end{align*}
$$

This contradicts with the concavity of u again.
STEP 2. Consider the linear problem

$$
\begin{array}{rlrl}
u^{\prime \prime} & =0, & t \in(0,1) \\
u(0) & =a, & u(1)-\alpha u(\eta) & =b
\end{array}
$$

The above problem has a solution

$$
u_{0}(t)=\frac{b-a+a \alpha}{1-\alpha \eta} t+a
$$

It is easy to check that $u_{0}(t) \geq 0$, for $t \in[0,1]$.
To sum up, the proof of Lemma 2.2 is completed.
REMARK. If $\alpha \eta>1$, then the following counterexample shows that $y \geq 0$ does not imply that (2.1),(2.2) has positive solutions.

Consider the linear three-point boundary value problem

$$
\begin{array}{rr}
-u^{\prime \prime}=t, & t \in(0,1) \\
u(0)=0, & 8 u\left(\frac{1}{2}\right)=u(1) \tag{2.6}
\end{array}
$$

It is easy to see that (2.5),(2.6) has a unique negative solution

$$
u(t)=-\frac{1}{6} t^{3}
$$

Lemma 2.3. Let $0<\alpha<1 / \eta$. If $y \in C[0,1]$ and $y \geq 0$, then the unique solution u of the problem

$$
\begin{array}{rlrl}
u^{\prime \prime}+y(t) & =0, & t \in(0,1), \\
u(0) & =0, & u(1)-\alpha u(\eta) & =0
\end{array}
$$

satisfies

$$
\inf _{t \in[\eta, 1]} u(t) \geq \gamma\|u\|
$$

where

$$
\gamma=\min \left\{\alpha \eta, \frac{\alpha(1-\eta)}{1-\alpha \eta}, \eta\right\}
$$

(In this paper, only the sup normal is used).
Proof. We divide the proof into two steps.
Step 1. We deal with the case $0<\alpha<1$. In this case, by Lemma 2, we know that

$$
\begin{equation*}
u(\eta) \geq u(1) \tag{2.7}
\end{equation*}
$$

Set

$$
\begin{equation*}
u(\bar{t})=\|u\| . \tag{2.8}
\end{equation*}
$$

If $\bar{t} \leq \eta<1$, then

$$
\begin{equation*}
\min _{t \in[\eta, 1]} u(t)=u(1) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{aligned}
u(\bar{t}) \leq u(1)+\frac{u(1)-u(\eta)}{1-\eta}(0-1) & =u(1)\left[1-\frac{1-(1 / \alpha)}{1-\eta}\right] \\
& =u(1) \frac{1-\alpha \eta}{\alpha(1-\eta)}
\end{aligned}
$$

This together with (2.9) implies that

$$
\begin{equation*}
\min _{t \in[\eta, 1]} u(t) \geq \frac{\alpha(1-\eta)}{1-\alpha \eta}\|u\| . \tag{2.10}
\end{equation*}
$$

If $\eta<\bar{t}<1$, then

$$
\begin{equation*}
\min _{t \in[\eta, 1]} u(t)=u(1) \tag{2.11}
\end{equation*}
$$

From the concavity of u, we know that

$$
\begin{equation*}
\frac{u(\eta)}{\eta} \geq \frac{u(\bar{t})}{\bar{t}} \tag{2.12}
\end{equation*}
$$

Combining (2.12) and boundary condition $\alpha u(\eta)=u(1)$, we conclude that

$$
\frac{u(1)}{\alpha \eta} \geq \frac{u(\bar{t})}{\bar{t}} \geq u(\bar{t})=\|u\|
$$

This is

$$
\begin{equation*}
\min _{t \in[\eta, 1]} u(t) \geq \alpha \eta\|u\| . \tag{2.13}
\end{equation*}
$$

STEP 2. We deal with the case $1 \leq \alpha<1 / \eta$. In this case, we have

$$
\begin{equation*}
u(\eta) \leq u(1) \tag{2.14}
\end{equation*}
$$

Set

$$
\begin{equation*}
u(\bar{t})=\|u\| \tag{2.15}
\end{equation*}
$$

then we can choose \bar{t} such that

$$
\begin{equation*}
\eta \leq \bar{t} \leq 1 \tag{2.16}
\end{equation*}
$$

(We note that if $\bar{t} \in[0,1] \backslash[\eta, 1]$, then the point $(\eta, u(\eta))$ is below the straight line determined by ($1, u(1)$) and $(\vec{t}, u(t))$. This contradicts with the concavity of u.) From (2.14) and the concavity of u, we know that

$$
\begin{equation*}
\min _{t \in[\eta, 1]} u(t)=u(\eta) . \tag{2.17}
\end{equation*}
$$

Using the concavity of u and Lemma 2 , we have that

$$
\begin{equation*}
\frac{u(\eta)}{\eta} \geq \frac{u(\bar{t})}{\bar{t}} \tag{2.18}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\min _{t \in[\eta, 1]} u(t) \geq \eta\|u\| . \tag{2.19}
\end{equation*}
$$

3. EXISTENCE AND NONEXISTENCE

In this section, we prove the following.
Theorem 3.1. For λ sufficiently small, (1.3),(1.4) has at least one positive solution, whereas for λ sufficiently large, (1.3),(1.4) has no positive solutions.

Let $X=C[0,1]$ with the usual normal $\|u\|=\max _{t \in[0,1]}|u(t)|$. Define $T: X \rightarrow X$ by

$$
\begin{align*}
T u(t)= & -\int_{0}^{t}(t-s) \lambda h(s) f(u(s)) d s \\
& -\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) \lambda h(s) f(u(s)) d s \tag{3.1}\\
& +\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) \lambda h(s) f(u(s)) d s
\end{align*}
$$

Let K be the cone defined by

$$
\begin{equation*}
K=\left\{u \in X \mid u \geq 0, \min _{t \in[\eta, 1]} u(t) \geq \gamma\|u\|\right\} . \tag{3.2}
\end{equation*}
$$

Let C be the cone defined by

$$
C=\{u \in X \mid u \geq 0\}
$$

Then by Lemma 2.3, we know that $T(C) \subset K$. Clearly, $T: X \rightarrow X$ is completely continuous. Proof of Theorem 3.1. If $q>0$, then

$$
\begin{align*}
\beta(q)= & \max _{u \in K,\|u\|=q}\left[-\int_{0}^{t}(t-s) h(s) f(u(s)) d s\right. \\
& -\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) h(s) f(u(s)) d s \tag{3.3}\\
& \left.+\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) h(s) f(u(s)) d s\right]>0 .
\end{align*}
$$

For any number $0<r_{1}$, let $\delta_{1}=r_{1} / \beta\left(r_{1}\right)$ and set

$$
K_{r_{1}}=\left\{u \in X \mid\|u\|<r_{1}\right\} .
$$

Then for $\lambda \in\left(0, \delta_{1}\right)$ and $y \in \partial K_{r_{1}}$, we have

$$
\begin{align*}
T u(t)< & \delta_{1}\left[-\int_{0}^{t}(t-s) h(s) f(u(s)) d s-\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) h(s) f(u(s)) d s\right. \\
& \left.+\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) h(s) f(u(s)) d s\right] \tag{3.4}\\
\leq & \delta_{1} \beta\left(r_{1}\right)=r_{1} .
\end{align*}
$$

Thus, Lemma 1.3 implies

$$
\begin{equation*}
i\left(A, K_{r_{1}}, K\right)=1 \tag{3.5}
\end{equation*}
$$

Since $f_{\infty}=\infty$, there is $H>0$ such that $f(u) \geq \mu u$ for $u \geq H$, where μ is chosen so that

$$
\begin{equation*}
\frac{\lambda \mu \eta \gamma}{1-\alpha \eta} \int_{\eta}^{1}(1-s) h(s) d s>1 \tag{3.6}
\end{equation*}
$$

Let $r_{2} \geq H / \gamma$, and set

$$
K_{r_{2}}=\left\{u \in X \mid\|u\|<r_{2}\right\}
$$

If $y \in \partial K_{r_{2}}$, then

$$
\min _{t \in[\eta, 1]} u(t) \geq \gamma\|y\| \geq H
$$

Therefore,

$$
\begin{align*}
T u(\eta)= & \lambda\left[-\int_{0}^{\eta}(\eta-s) h(s) f(u(s)) d t-\frac{\alpha \eta}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) h(s) f(u(s)) d s\right. \\
& \left.+\frac{\eta}{1-\alpha \eta} \int_{0}^{1}(1-s) h(s) f(u(s)) d s\right] \\
= & \lambda\left[-\frac{1}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) h(s) f(u(s)) d s+\frac{\eta}{1-\alpha \eta} \int_{0}^{1}(1-s) h(s) f(u(s)) d s\right] \\
= & \lambda\left[-\frac{1}{1-\alpha \eta} \int_{0}^{\eta} \eta h(s) f(u(s)) d s+\frac{1}{1-\alpha \eta} \int_{0}^{\eta} \operatorname{sh}(s) f(u(s)) d s\right. \\
& \left.+\frac{\eta}{1-\alpha \eta} \int_{0}^{1} h(s) f(u(s)) d s-\frac{\eta}{1-\alpha \eta} \int_{0}^{1} s h(s) f(u(s)) d s\right] \tag{3.7}\\
= & \lambda\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1} h(s) f(u(s)) d s+\frac{1}{1-\alpha \eta} \int_{0}^{\eta} s h(s) f(u(s)) d s\right. \\
& \left.-\frac{\eta}{1-\alpha \eta} \int_{0}^{1} s h(s) f(u(s)) d s\right] \\
\geq & \left.\lambda\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1} h(s) f(u(s)) d s-\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1} s h(s) f(u(s)) d s\right] \quad \text { (by } \eta<1\right) \\
= & \lambda\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) h(s) f(u(s)) d s\right] .
\end{align*}
$$

Hence,

$$
\|T u\| \geq \frac{\lambda \mu \eta \gamma}{1-\alpha \eta} \int_{\eta}^{1}(1-s) h(s) d s\|u\|
$$

which implies

$$
\|T u\|>\|u\|
$$

for $y \in \partial K_{r_{2}}$. An application of Lemma 1.3 again shows that

$$
\begin{equation*}
i\left(A, K_{r_{2}}, K\right)=0 \tag{3.8}
\end{equation*}
$$

Since we can adjust r_{1}, r_{2} so that $r_{1}<r_{2}$, it follows from the additivity of the fixed-point index that

$$
i\left(A, K_{r_{2}} \backslash \overline{K_{r_{1}}}, K\right)=-1
$$

Thus, T has a fixed point in $K_{r_{2}} \backslash \overline{K_{r_{1}}}$ which is the desired positive solution of (1.3),(1.4).
To prove the nonexistence part, we note that $\left(\mathrm{A}_{3}\right)$ and $\left(\mathrm{A}_{4}\right)$ imply the existence of a constant $c_{0}>0$ such that

$$
f(u) \geq c_{0} u, \quad \text { for } u \geq 0
$$

Let $u \in X$ be a positive solution of (1.3),(1.4). By Lemma 2.3, $u \in K$. Now choose λ large enough so that

$$
\begin{equation*}
\lambda c_{0} \gamma\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) h(s) u(s) d s\right]>1 . \tag{3.9}
\end{equation*}
$$

By Lemma 3.2 and the similar method used to prove (3.7), we have that

$$
\begin{aligned}
u(\eta)= & \lambda\left[-\int_{0}^{\eta}(\eta-s) h(s) f(u(s)) d t-\frac{\alpha \eta}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) h(s) f(u(s)) d s\right. \\
& \left.+\frac{\eta}{1-\alpha \eta} \int_{0}^{1}(1-s) h(s) f(u(s)) d s\right] \\
= & \lambda\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) h(s) f(u(s)) d s\right] \\
\geq & \lambda\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) h(s) c_{0} u(s) d s\right] \\
\geq & \lambda c_{0} \gamma\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) h(s) d s\right]\|u\| \\
> & \|u\| .
\end{aligned}
$$

We have an obvious contradiction.

4. UPPER AND LOWER SOLUTIONS

In this section, we shall develop upper and lower solution methods for the boundary value problem

$$
\begin{array}{rlrl}
u^{\prime \prime}(t)+\lambda h(t) f(u(t)) & =0, & t \in(0,1) \\
u(0) & =0, & \alpha u(\eta) & =u(1)=0 . \tag{4.2}
\end{array}
$$

Definition 4.1. We say that the function $x \in C^{2}[0,1]$ is an upper solution of problem (4.1),(4.2) if

$$
\begin{array}{rlrl}
x^{\prime \prime}(t)+\lambda h(t) f(x(t)) & \leq 0, & t \in(0,1), \\
x(0) & \geq 0, & x(1)-\alpha x(\eta) & \geq 0, \tag{4.4}
\end{array}
$$

and $y \in C^{2}[0,1]$ is a lower solution of problem (4.1),(4.2) if

$$
\begin{align*}
y^{\prime \prime}(t)+\lambda h(t) f(y(t)) & \geq 0, \tag{4.5}\\
y(0) \leq 0, & y(1)-\alpha y(\eta) \leq 0 . \tag{4.6}
\end{align*}
$$

We now establish several lemmas that will be used throughout.
Let x, y be upper and lower solutions for (4.1),(4.2) and satisfy $x(t) \geq y(t)$ on $[0,1]$. We define f^{*} by

$$
f^{*}(u(t))= \begin{cases}f(x(t)), & u(t) \geq x(t) \tag{4.7}\\ f(u(t)), & y(t) \leq u(t) \leq x(t) \\ f(y(t)), & u(t) \leq x(t)\end{cases}
$$

Consider the following problem:

$$
\begin{array}{rlrl}
u^{\prime \prime}(t)+\lambda h(t) f^{*}(u(t)) & =0, & t \in(0,1) \\
u(0) & =0, & \alpha u(\eta) & =u(1)=0 . \tag{4.9}
\end{array}
$$

Lemma 4.2. If there is a solution u of (4.8),(4.9), then

$$
y(t) \leq u(t) \leq x(t), \quad \text { for } t \in[0,1]
$$

In other words, u is a solution of (4.1),(4.2).
Proof. We first prove that $u(t) \leq x(t)$, for all $t \in(0,1]$. Suppose to the contrary that $u\left(t_{0}\right)>$ $x\left(t_{0}\right)$ for some $t_{0} \in(0,1]$.

Set

$$
\begin{equation*}
c=\inf \{t \in[0,1] \mid u(t)>x(t)\} \tag{4.10}
\end{equation*}
$$

then from the fact that $u(0)=0$ and $x(0) \geq 0$, we know that $c>0$ and

$$
\begin{equation*}
u(c)=x(c) \tag{4.11}
\end{equation*}
$$

There are three cases as follows.
Case 1. There exists $d \in(c, 1]$, such that $u(d)=x(d)$ and $u(t)>x(t)$, for all $x \in(c, d)$.
In this case, we have

$$
\begin{align*}
f^{*}(u(t)) & =f(x(t)), & & \text { for } t \in(c, d) \\
u(c) & =x(c), & & u(d)=x(d) . \tag{4.12}
\end{align*}
$$

Therefore,

$$
\begin{align*}
(x-u)^{\prime \prime} \leq-\lambda h(t)\left[f(x(t))-f^{*}(u(t))\right] & =0, \quad \text { for } t \in(c, d) \tag{4.13}\\
(x-u)(c)=(x-u)(d) & =0
\end{align*}
$$

which, by the concavity of $x-u$, implies the contradiction $(x-u)(t) \geq 0$, for all $t \in(c, d)$.
CASE 2. $c \in(0, \eta)$ and $u(t)>x(t)$, for all $t \in(c, 1]$.
In this case, we have

$$
\begin{align*}
f^{*}(u(t)) & =f(x(t)), \quad \text { for } t \in(c, 1] \tag{4.14}\\
u(c) & =x(c)
\end{align*}
$$

Therefore,

$$
\begin{equation*}
(x-u)^{\prime \prime} \leq-\lambda h(t)\left[f(x(t))-f^{*}(u(t))\right]=0, \quad \text { for } t \in(c, 1] \tag{4.15}
\end{equation*}
$$

Using the boundary conditions $u(1)=\alpha u(\eta)$ and $x(1) \geq \alpha x(\eta)$, we know that

$$
\begin{equation*}
(x-u)(1)-\alpha(x-u)(\eta) \geq 0 \tag{4.16}
\end{equation*}
$$

Combining (4.16) and (4.11) and using the same arguments used to prove Lemma 2.2, we can get the desired contradiction $x-u \geq 0$, for all $t \in[c, 1]$.
Case 3. $c \in[\eta, 1)$ and $u(t)>x(t)$, for all $t \in(c, 1]$.
In this case, we have

$$
\begin{align*}
f^{*}(u(t)) & =f(x(t)), \quad \text { for } t \in(c, 1] \tag{4.17}\\
u(c) & =x(c)
\end{align*}
$$

Therefore,

$$
\begin{equation*}
(x-u)^{\prime \prime} \leq-\lambda h(t)\left[f(x(t))-f^{*}(u(t))\right]=0, \quad \text { for } t \in(c, 1] \tag{4.18}
\end{equation*}
$$

By the definition of c, we know that

$$
\begin{equation*}
u(t) \leq x(t), \quad \text { for all } t \in[0, c] \tag{4.19}
\end{equation*}
$$

In particular, we have that

$$
\begin{equation*}
u(\eta) \leq x(\eta) \tag{4.20}
\end{equation*}
$$

This, together with the boundary conditions $u(1)=\alpha u(\eta)$ and $x(1) \geq \alpha x(\eta)$, implies

$$
\begin{equation*}
u(1) \leq x(1) \tag{4.21}
\end{equation*}
$$

Combining this with (4.11) and (4.18) and using the concavity of $x-u$, we obtain the desired contradiction $(x-u)(t) \geq 0$, for all $t \in(c, 1]$.

By the same arguments, we see that $y(t) \leq u(t)$, for $x \in[0,1]$. Since $y(t) \leq u \leq x(t)$ for $t \in[0,1]$, it follows that $f=f^{*}$, and so u is a solution of (4.1),(4.2).
Lemma 4.3. If there exist upper and lower solutions x and y of (4.1),(4.2) with $y(t) \leq x(t)$, for $t \in$ $[0,1]$, then there is a solution u to (4.1),(4.2) such that

$$
y(t) \leq u(t) \leq x(t), \quad \text { for } t \in[0,1] .
$$

Proof. Consider problem (4.8),(4.9). By Lemma 2.1, we know that (4.8),(4.9) is equivalent to the integral equation

$$
\begin{aligned}
u(t)= & -\int_{0}^{t}(t-s) \lambda h(s) f^{*}(y(s)) d s \\
& -\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) \lambda h(s) f^{*}(y(s)) d s \\
& +\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) \lambda h(s) f^{*}(y(s)) d s .
\end{aligned}
$$

Let

$$
\begin{aligned}
T^{*} u(t)= & -\int_{0}^{t}(t-s) \lambda h(s) f^{*}(y(s)) d s \\
& -\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) \lambda h(s) f^{*}(y(s)) d s \\
& +\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) \lambda h(s) f^{*}(y(s)) d s
\end{aligned}
$$

Then $T^{*}: C[0,1] \rightarrow C[0,1]$ is completely continuous. Since f^{*} is bounded, T^{*} is bounded. By the Schauder fixed-point theorem, T^{*} has a fixed point u, which is a solution of (4.8),(4.9). By Lemma 4.2, u is also a solution of (4.1),(4.2).

5. MULTIPLICITY

In order to guarantee that all possible solutions of (1.3),(1.4) are nonnegative, we make the convention that

$$
\begin{equation*}
f(u)=f(0), \quad \text { if } u<0 \tag{5.1}
\end{equation*}
$$

We first need the following priori estimate.
Lemma 5.1. There is a constant $b_{I}>0$ such that $\|y\| \leq b_{I}$, for all solutions u of (1.3),(1.4) where λ belongs to a compact subset I of $(0, \infty)$.
Proof. Now suppose there is an unbounded sequence $\left\{u_{n}\right\}$ of solutions of (1.3),(1.4) which corresponding λ_{n} belongs to a compact subset of $(0, \infty)$. By Lemma $2.3, u_{n} \in K$, which implies that

$$
\min _{t \in[, 1]} u_{n}(x) \geq \gamma\left\|u_{n}\right\| .
$$

Since $f_{\infty}=\infty$, there is a $q>0$ such that

$$
f(u) \geq \bar{\mu} u, \quad \text { for all } u \geq q,
$$

where $\bar{\mu}$ is chosen so that

$$
\inf \left\{\lambda_{n}\right\} \bar{\mu} \gamma\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) d s\right]>1 .
$$

Choosing n large enough so that $\gamma\left\|u_{n}\right\| \geq q$, then by the same arguments used to get (3.7), we have that

$$
\begin{aligned}
u_{n}(\eta)= & \lambda_{n}\left[-\int_{0}^{\eta}(\eta-s) a(s) f\left(u_{n}(s)\right) d t-\frac{\alpha \eta}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) a(s) f\left(u_{n}(s)\right) d s\right. \\
& \left.+\frac{\eta}{1-\alpha \eta} \int_{0}^{1}(1-s) a(s) f\left(u_{n}(s)\right) d s\right] \\
= & \lambda_{n}\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) f\left(u_{n}(s)\right) d s\right] \\
\geq & \lambda_{n}\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) \bar{\mu} u_{n}(s) d s\right] \\
\geq & \lambda_{n} \bar{\mu} \gamma\left[\frac{\eta}{1-\alpha \eta} \int_{\eta}^{1}(1-s) a(s) d s\right]\left\|u_{n}\right\|>\left\|u_{n}\right\|
\end{aligned}
$$

which is a contradiction.
Now let Γ denote the set of $\lambda>0$ such that a positive solution of (1.3),(1.4) exists. Let $\lambda^{*}=\sup \Gamma$. By Theorem 3.1, Γ is nonempty and bounded, and thus, $0<\lambda^{*}<\infty$. We claim that $\lambda^{*} \in \Gamma$. To see this, let $\lambda_{n} \rightarrow \lambda^{*}$, where $\lambda_{n} \in \Gamma$:

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n-1}<\lambda_{n}<\cdots<\lambda^{*} .
$$

Since the $\left\{\lambda_{n}\right\}$ are bounded, Lemma 5.1 implies that the corresponding solutions $\left\{u_{n}\right\}$ are bounded. By the compactness of the integral operator T, it easily follows that $\lambda^{*} \in \Gamma$.
Let u^{*} be a solution of (1.3),(1.4) corresponding to λ^{*} and define

$$
\tilde{f}(u(t))= \begin{cases}f\left(u^{*}(t)+\epsilon\right), & u(t) \geq u^{*}(t)+\epsilon \\ f(u(t)), & -\epsilon \leq u(t) \leq u^{*}(t)+\epsilon \\ f(-\epsilon), & u(t) \leq-\epsilon\end{cases}
$$

Let

$$
\begin{aligned}
\tilde{T}_{\lambda} u(t)= & \lambda\left[-\int_{0}^{t}(t-s) h(s) \tilde{f}(u(s)) d s-\frac{\alpha t}{1-\alpha \eta} \int_{0}^{\eta}(\eta-s) h(s) \tilde{f}(u(s)) d s\right. \\
& \left.+\frac{t}{1-\alpha \eta} \int_{0}^{1}(1-s) h(s) \tilde{f}(u(s)) d s\right] .
\end{aligned}
$$

Consider

$$
\Omega=\left\{u \in X \mid-\epsilon \leq u(t) \leq u^{*}(t)+\epsilon\right\} .
$$

Lemma 5.2. There is an $\epsilon>0$, sufficiently small, such that if $u \in C[0,1]$ satisfies $\tilde{T}_{\lambda} u=u$ for some $0<\lambda<\lambda^{*}$, then $u \in \bar{\Omega}$.
Proof. Since $u \geq 0$, to prove that $u \leq u^{*}+\epsilon$, we first show that $u^{*}+\epsilon$ is an upper solution of (1.3),(1.4). Since $u^{*} \geq 0$, there is a constant $d_{0}>0$ such that $f\left(u^{*}(t)\right)>d_{0}>0$, for all $t \in[0,1]$. By uniform continuity, there is an $\epsilon_{0}>0$ such that

$$
\left|f\left(u^{*}(t)+\epsilon\right)-f\left(u^{*}(t)\right)\right|<d_{0} \frac{\left(\lambda^{*}-\lambda\right)}{\lambda}
$$

for all $t \in[0,1], 0 \leq \epsilon \leq \epsilon_{0}$. Now

$$
\begin{align*}
\left(u^{*}(t)+\epsilon\right)^{\prime \prime}= & \left(u^{*}(t)\right)^{\prime \prime} \\
= & -\lambda^{*} h(t) f\left(u^{*}(t)\right) \\
= & -\lambda h(t) f\left(u^{*}(t)+\epsilon\right) \tag{5.2}\\
& +\lambda h(t)\left[f\left(u^{*}(t)+\epsilon\right)-f\left(u^{*}(t)\right)\right]+\left(\lambda-\lambda^{*}\right) h(t) f\left(u^{*}(t)\right) \\
< & -\lambda h(t) f\left(u^{*}(t)+\epsilon\right)
\end{align*}
$$

and

$$
\begin{equation*}
\left(u^{*}+\epsilon\right)(0) \geq 0, \quad\left(u^{*}+\epsilon\right)(1) \geq 0 \tag{5.3}
\end{equation*}
$$

Clearly, if $\epsilon>0$, then (5.3) becomes

$$
\begin{equation*}
\left(u^{*}+\epsilon\right)(0)>0, \quad\left(u^{*}+\epsilon\right)(1)>0 \tag{5.4}
\end{equation*}
$$

Therefore, $u^{*}+\epsilon$ is an upper solution of (1.3),(1.4). It follows from Lemma 4.1 that $u \leq u^{*}+\epsilon$. Proof of Theorem 1.1. Let $\lambda \in\left(0, \lambda^{*}\right)$; we show that (1.3),(1.4) has at least two positive solutions. Since u^{*} is an upper solution and 0 is a lower solution, Lemma 4.3 implies the existence of a solution u_{λ} of $(1.3),(1.4)$ such that $0 \leq u_{\lambda} \leq u^{*}$. Thus, for $0<\lambda<\lambda^{*}$, a positive solution exists, whereas for $\lambda>\lambda^{*}$, a positive solution does not exist. Moreover, $u_{\lambda} \in \Omega$.

Choose $I=\left[0, \lambda^{*}+1\right]$; then

$$
\left(0, \lambda^{*}\right) \cap I \neq \emptyset
$$

and

$$
\left(\lambda^{*}, \infty\right) \cap I \neq \emptyset
$$

We next establish the existence of a second positive solution to (1.3),(1.4) for $\lambda \in\left(0, \lambda^{*}\right) \cap I$.
Since \tilde{T}_{λ} is bounded for $\lambda \in I$,

$$
\begin{equation*}
\operatorname{deg}\left(I-\tilde{T}_{\lambda}, B\left(u_{\lambda}, R\right), 0\right)=1 \tag{5.5}
\end{equation*}
$$

for R large enough, where $B\left(u_{\lambda}, R\right)$ is the ball centered at u_{λ} with radius R in $C[0,1]$. If there exists a $u \in \partial \Omega$ such that $u=\tilde{T}_{\lambda}(u)$, then $f=\tilde{f}$, and so u is a second positive solution. Now suppose $u \neq \tilde{T}_{\lambda}(u)$, for all $u \in \partial \Omega$. Then $\operatorname{deg}\left(I-\tilde{T}_{\lambda}, \Omega, 0\right)$ is well defined. Since Lemma 5.2 implies \tilde{T}_{λ} has no fixed point in $B\left(u_{\lambda}, R\right) \backslash \Omega$, we have from the excision property of degree that

$$
\begin{equation*}
\operatorname{deg}\left(I-\tilde{T}_{\lambda}, \Omega, 0\right)=1 \tag{5.6}
\end{equation*}
$$

This, together with the fact that

$$
\left.\tilde{T}_{\lambda}\right|_{\Omega}=\left.T_{\lambda}\right|_{\Omega}
$$

implies that

$$
\begin{equation*}
\operatorname{deg}\left(I-T_{\lambda}, \Omega, 0\right)=1 \tag{5.7}
\end{equation*}
$$

On the other hand, by Lemma 5.1, all positive solutions of (1.3),(1.4) are bounded for $\lambda \in I$, and thus,

$$
\begin{equation*}
\operatorname{deg}\left(I-T_{\lambda}, B(0, M), 0\right)=\text { constant }, \quad \text { for } \lambda \in I \tag{5.8}
\end{equation*}
$$

for M large enough, where $B(0, M)$ is the ball centered at 0 with radius M in $C[0,1]$. The late degree must equal 0 , since for all $\lambda>\lambda^{*}$, no solutions exist. (We note that (A_{3}) and (5.1) and Lemma 2.2 imply that all solutions of (1.3),(1.4) are positive solutions!) Finally, by the excision property

$$
\begin{equation*}
\operatorname{deg}\left(I-T_{\lambda}, B(0, M) \backslash \Omega, 0\right)=-1 \tag{5.9}
\end{equation*}
$$

and so a second positive solution of (1.3),(1.4) exists for $\lambda \in\left(0, \lambda^{*}\right) \cap I$.

REFERENCES

1. V.A. Il'in and E.I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations 23, 803-810 (1987).
2. V.A. Il'in and E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations 23 (8), 979-987 (1987).
3. C.P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168, 540-551 (1992).
4. C.P. Gupta, A sharper condition for solvability of a three-point boundary value problem, J. Math. Anal. Appl. 205, 586-597 (1997).
5. W. Feng and J.R.L. Webb, Solvability of a three-point nonlinear boundary value problems at resonance, Nonlinear Analysis TMA 30 (6), 3227-3238 (1997).
6. S.A. Marano, A remark on a second order three-point boundary value problem, J. Math. Anal. Appl. 183, 518-522 (1994).
7. R. Ma, Existence theorems for a second order three-point boundary value problem, J. Math. Anal. Appl. 212, 430-442 (1997).
8. R. Ma, Existence theorems for a second order m-point boundary value problem, J. Math. Anal. Appl. 211, 545-555 (1997).
9. R. Ma, Positive solutions of a nonlinear three-point boundary value problem, Electron. J. Diff. Eqns. 1999 (34), 1-8 (1999).
10. D.R. Dunninger and H. Wang, Multiplicity of positive solutions for a nonlinear differential equation with nonlinear boundary conditions (preprint).
11. D. Guo and V. Lakshmikanthan, Nonlinear Problems in Abstract Cone, Academic Press, Orlando, FL, (1988).

[^0]: Supported by the Natural Science Foundation of China (No. 19801028).
 The author would like to thank the referees for their useful suggestions.

