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A b s t r a c t - - W e  study the multiplicity of positive solutions for the second-order three-point bound- 
ary value problem 

u" + Ah(t)f(u) = O, t E (0, 1), 

u(O) = O, au(n) = u(1), 

where r/ : 0 < ~ <: 1, 0 < a < 1/r b The methods employed are fixed-point index theorems and 
Leray-Schauder degree and upper and lower solutions. (~) 2000 Elsevier Science Ltd. All rights 
reserved. 
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1. I N T R O D U C T I O N  

The s tudy of multipoint boundary value problems for linear second-order ordinary differential 

equations was initiated by II'in and Moiseev [1,2]. Motivated by the s tudy of II ' in and Moi- 
seev [1,2], Gup ta  [3] studied certain three-point boundary value problems for nonlinear ordinary 

differential equations. Since then, more general nonlinear multipoint boundary value problems 

have been studied by several authors by using the Leray-Schauder Continuation Theorem, non- 
linear alternative of Leray-Schauder, or coincidence degree theory. We refer the reader to [3-8] 
for some existence results of nonlinear multipoint boundary value problems. Very recently, the 
author [9] considered the existence of positive solutions of the problem 

u" + a ( t ) f ( u )  = 0, t • (0, 1), (1.1) 

u(0)  = 0, = u(1) ,  (1.2) 

where 77 • (0, 1). By using fixed-point theorem in cone, we established the existence results for 
positive solutions to (1.1),(1.2), assuming that  0 < aT? < 1 and 

f • C([0, co), [0, c~)), a • C([0, 1], [0, c~)), 

and f is either superlinear or sublinear. 
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In this paper, we are concerned with the existence and multiplicities of positive solutions of 
the problem 

u" + Ah(t)f(u) = 0, t • (0, 1), (1.3) 

u(O) = O, au(7?) = u(1). (1.4) 

We make the following assumptions. 

(A1) A is a positive parameter; 77 E (0, 1) and 0 < aT < 1. 
(A2) h : [0, 1] --~ [0, oc) is continuous and does not vanish identically on any subset of positive 

measure. 
(h3) f : [ 0 ,  oo) --~ (0, oc) is continuous. 
(A4) 

foo := lim f ( u___)) = oo. 
~t ----* O0  U 

Our main result is the following. 

THEOREM 1.1. Assume (A1)-(A4). Then there exists a positive number A* such that 
(1.3),(1.4) has at /east two positive solutions for 0 < A < A*, at /east one positive solution 
for A = A*, and no positive solutions for A > A*. 

Note that  we do not require any monotonicity on f .  Similar results were proved for a variety 
of two-point boundary value problems in [10]. 

The proof of Theorem 1.1 is based upon the method of upper and lower solutions and the 
degree theory and the following fixed-point index results [11]. 

LEMMA 1.3. Let X be a Banach space, and let K be a cone in X .  For r > O, define K~ = {x • 
K I Ilxll < r}. Assume T : Kr ~ K is a compact map such that Tx  # x for x • OK~. 

(i) I f  llxll <_ llTxll for x • aK~, then 

i (T,  Kr, K)  = 0 .  

(ii) I f  llxll >_ llTxll for x • OKr, then 

i (T,  K r , K )  = 1. 

LEMMA 2. i. 

2. P R E L I M I N A R Y  R E S U L T S  

For y • C[0, 1], the problem 

u" + y(t) = O, t • (0, 1), (2.1) 

u(0) = a, u(1) - au(rl) = b (2.2) 

has a unique solution 

u ( t ) = b - a + a a t +  L t at L~  t ~ol 1-- arl a - (t - s)y(s) ds 1 - a---'---~ (rl - s)y(s) ds + 1 - a--'--~ (1 - s)y(s) ds. 

PROOF. See [4]. 

The following two results were essentially established in [9]. In order that  this paper be self 
contained, we provide details here. 
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LEMMA 2.2. Let 0 < a < 1/~, and a >_ O, b >_ O. If  y 6 C[0, 1] and y >_ O, then the unique 
solution u of problem (2.1), (2.2) satisfies 

u > 0 ,  t e [0,1]. 

PROOF. We divide the proof into two steps. 

STEP l. We deal with the special case that  a = b = 0. 
In fact, from the fact that  u"(x) = - y ( x )  <_ O, we know that  the graph of u(t) is concave down 

on (0,1). So, if u(1) _> 0, then the concavity of u and the boundary condition u(0) = 0 imply 
that  

u _> 0, for t E [0, 1]. 

If u(1) < 0 and 0 < a _< 1, then 

u(~) < 0, 

u(1) = au(~) >_ u(~). 

This contradicts with the concavity of u. 
If u(1) < 0 and 1 < a < 1/7/, then 

u(~) < o, 
1 ~(i) = ~u(~) > ~u(~).  

This contradicts with the concavity of u again. 

STEP 2. Consider the linear problem 

(2.3) 

(2.4) 

u" = O, t 6 (0, 1), 

u(0) = a, u(1) - au(~) = b. 

The above problem has a solution 

uo(t) b -  a + aa t + - -  a .  

1 - a?l 

It is easy to check that  uo(t) >_ O, for t 6 [0, 1]. 
To sum up, the proof of Lemma 2.2 is completed. 

REMARK. If a~/ > 1, then the following counterexample shows that  y _> 0 does not imply that  
(2.1),(2.2) has positive solutions. 

Consider the linear three-point boundary value problem 

- u "  = t, t 6 (0, 1), 

It is easy to see that  (2.5),(2.6) has a unique negative solution 

u(t) = 1 3 - ~ t .  

LEMMA 2.3. 
problem 

(2.5) 

(2.6) 

Let 0 < a < 1/?1. If  y 6 C[0,1] and y >_ O, then the unique solution u of the 

u" -F y(t) = O, t 6 (0, 1), 

u(O) = O, u(1)  - om(r/) : 0 
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satisfies 
inf u(t) ~ ~llull, 

tE[r/,1] 

where 

"y=min  a7, ~ - - ; ~ , 7  • 

(In this paper, only the sup normal is used). 

PROOF. We divide the proof into two steps. 

STEP 1. We deal with the case 0 < a < 1. In this case, by Lemma 2, we know that 

u(7 ) > u(1). 

Set 

If E_< 7 < 1, then 

and 

u (t3 = llull. 

min u(t) = u(1) 
t~[,,l] 

u(t-)<u(1)_ +u(1)-u(7)l_7 ( 0 - 1 )  = u(1) [1 1-i_7(i/a)] 

1 - a7  
= u(1)a(  1 - 7 ) "  

This together with (2.9) implies that  

a(1  - 7) 
min u(t) > - - I 1 ~ 1 1 .  

re[n,1] - 1 - a 7  

If 7 < t <  1, then 

From the concavity of u, we know that 

min u(t) = u(1). 
re[,,1] 

u(jA) > u (t-) 
7 - t 

Combining (2.12) and boundary condition au(7  ) = u(1), we conclude that 

u(1) > u (t-') > u (t--) = Ilu{I 
a7 - t 

This is 

min u(t) > a7llu H. 
te[~,l] - 

STEP 2. We deal with the case 1 < a < 1/7. In this case, we have 

u(7) _< u(1). 

Set 

then we can choose t such that 

(2.7) 

(2.8) 

(2.9) 

(2.1o) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

7 < { < 1. (2.16) 
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(We note t ha t  if E • [0, 1] \ [~, 1], then the point (~, u(~)) is below the straight line determined by 
(1, u(1)) and (t, u (t-)). This contradicts with the concavity of u.) From (2.14) and the concavity 
of u, we know tha t  

min u(t) = u(~/). (2.17) 
te[r/,l] 

Using the concavity of u and Lemma 2, we have tha t  

u(?/) > u (t-) (2.18) 
7/ - E 

This implies 

min u(t) >_ ~llull. (2.19) 
te[~,l] 

3 .  E X I S T E N C E  A N D  N O N E X I S T E N C E  

In this section, we prove the following. 

THEOREM 3.1. For A sufficiently small, (1.3),(1.4) has at  least one positive solution, whereas for 
A sufficiently large, (1.3),(1.4) has no positive solutions. 

Let X = C[0, 1] with the usual normal [[u[[ = maxt~[o,x ] [u(t)[. Define T : X ~ X by 

/o r u ( t )  = - ( t  - s ) A h ( s ) f ( u ( s ) ) d s  

Let K b e  the cone defined by 

1 - a?? (~l - s)Ah(s)y(u(s)) ds 

fo + 1 - a---~ (1 - s)Ah(s)f(u(s)) ds. 

K =  { u  e X l u k O, te[,,,lmin u(t) > ~llull}. 

Let C be the cone defined by 

c =  { u • X l u > O } .  

Then by Lemma 2.3, we know tha t  T(C) c K. Clearly, T : X --~ X is completely continuous. 

PROOF OF THEOREM 3.1. If q > 0, then 

]3(q) = [ / o  t max - (t - s)h(s)f(u(s))  ds 
u~K, Ilull=q 

at  ~o n 1 - ~v ( v -  s)h(s)f(u(s)) ds 

I ] 
+ 1 - - - - ~  (1 - s)h(s) f (u(s))ds  > O. 

For any number  0 < rx, let 51 = r l / ~ ( r l )  and set 

Then  for A ¢ (0,51) and y ¢ OKra, we have 

[// Tu(t)  < 51 - ( t -  s )h(s) f (u(s))ds  1 - a~ 

+ 1 - a---~ (1 - s)h(s)f(u(s))  ds 

--- ~1~ ( r l )  = r l .  

- -  fo'l(?? - s)h(s)f(u(s))  ds 

(3.1) 

(3.2) 

(3.3) 

( 3 . a )  
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Thus, Lemma 1.3 implies 
i (A,  Kr , ,K)  = I .  (3.~) 

Since foo = ~ ,  there is H > 0 such that  f (u)  > #u for u _> H,  where # is chosen so that  

1 -c~n (1 - s ) h ( s ) d s  > 1. (3.~) 

Let r2 _> H/7,  and set 

If y E OKr=, then 

Therefore, 

Hence, 

which implies 

K~: = {u • x [ liull < r2}. 

min u(t) > "fllYll - H. 
tE[n,X] 

fon a~l Tu(~?) = A - (r 1 - s)h(s)f(u(s)) dt 1 - arl 

q 17"  r l f o l (1 - s )h ( s ) f ( u ( s ) )  ds] 

[ ' / ;  = A 1 - an (0 - s)h(s)f(u(s)) ds + 

= A 1 - arl oh(s)f(u(s)) ds + 

+ l  ~-~O fo 'h(s ) f (u(s ) )  ds 

fO ~? - -  (r] - s)h(s)f(u(s)) ds 

1 ] 
1 - ca/ ( I  - s)h(s)f(u(s)) ds 

/o 1 - arl sh(s)f(u(s)) ds 

I ] 
1 - aT? sh(s)f(u(s))  ds 

l fo~ I --arl sh(s)f(u(s))ds 

l ?ar l  fn lsh(s) f (u(s) )  ds] 

1 

= A h(s)f(u(s)) ds + - -  

rl sh(s)f(u(s)) ds 
1 - arl 

> A h(s)f(u(s)) ds 

A~T]~ Z 1 HTull > ~-~'rj (1 -s)h(s)ds[]ull, 

l lTul[ > [['~11, 

for y E OKr:. An application of Lemma 1.3 again shows that  

( b y  ~ / <  I )  

(3.7) 

i (A, Kr2, K) = 0. (3.8) 

Since we can adjust r l , r 2  so that  r l  < r2, it follows from the additivity of the fixed-point index 

that  
i (A,  gr2 \ g r , , g )  = -1 .  

Thus, T has a fixed point in Kr2 \ ~ r ~  which is the desired positive solution of (1.3),(1.4). 
To prove the nonexistence part, we note that  (As) and (A4) imply the existence of a constant 

Co > 0 such that  
f (u)  >_ Cou, for u >_ 0. 
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Let u E X be a positive solution of (1.3),(1.4). By Lemma 2.3, u • K. 
enough so that  

1 ds] 
;~c0"y [1 - - -D '~  ~ ( 1 - s ) h ( s ) u ( s )  J > 1. 

By Lemma 3.2 and the similar method used to prove (3.7), we have that 

[/0 o /0 u(rl) = ,~ - (rl - s )h(s ) f (u(s ) )  dt 1 - arl (rl - s )h (s ) f (u (s ) )  ds 

] -t 1 - arl (1 - s )h(s ) f (u(s ) )  ds 

71 1 ds] 
J 

> )~ 77 1 s)h(s)cou(s) ds] 

> Ilull. 
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Now choose ,~ large 

(3.9) 

We have an obvious contradiction. 

4 .  U P P E R  A N D  L O W E R  S O L U T I O N S  

In this section, we shall develop upper and lower solution methods for the boundary value 
problem 

DEFINITION 4.1. 

i f  

u"(t) + )~h(t)f(u(t)) = 0, t • (0, 1), (4.1) 

u(0) = 0, ~ , ( ~ )  = , ( 1 )  = 0. (4.2) 

We say that the function x • C2[0, 1] is an upper solution of  problem (4.1),(4.2) 

x"( t)  + )~h(t)f(x(t))  _< 0, t E (0, 1), 

x(o) >_ o, ~(1) - a z ( v )  >_ o, 

and y E C2[0, 1] is a lower solution of  problem (4.1),(4.2) i f  

(4.3) 

(4.4) 

y"(t)  + Ah( t ) f (y ( t ) )  _> 0, t E (0, 1), (4.5) 

y(0) __ 0, y(1) - ~ y ( , )  < 0. (4.8) 

We now establish several lemmas that  will be used throughout. 
Let x, y be upper and lower solutions for (4.1),(4.2) and satisfy x(t)  >_ y(t) on [0, 1]. We define 

f* by 
f(x(t)),  u(t) >z ( t ) ,  

F (u( t ) )  = f(u(t)),  y(t) < ~(t) < x(t), (4.7) 

f(y(t)), u(t) < x(t). 

Consider the following problem: 

u"(t) + )~h(t)f*(u(t))  = o, 

u(O) = o, 

t e (0,1),  (4.s) 

~u(n) = u(1) = o. (4.9) 
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LEMMA 4.2. / f  there is a solution u of  (4.8),(4.9), then 

y ( t )  <_ u( t )  <_ x ( t ) ,  ~or t e [0, 1]. 

In other words, u is a solution of  (4.1),(4.2). 

PROOF. We first prove tha t  u(t)  <_ x( t ) ,  for all t E (0, 1]. Suppose to the contrary tha t  u(to) > 

x(to)  for some to E (0, 1]. 
Set 

c = inf{t E [0, 1] I u(t) > x(t)}, (4.10) 

then from the fact tha t  u(O) -- 0 and x(O) _> O, we know tha t  c > 0 and 

u(c) = x(c).  (4.11) 

There are three cases as follows. 

CASE 1. There exists d E (c, 1], such tha t  u(d) = x(d)  and u(t)  > x( t ) ,  for all x E (c, d). 

In this case, we have 

f * (u ( t ) )  = f ( x ( t ) ) ,  for t E (c,d),  

u(c) = x(c),  u(d) = x(d).  (4.12) 

Therefore, 
(x - u )"  < - A h ( t ) [ f ( x ( t ) )  - f* (u(t))] = O, for t E (c, d), 

(4.13) 
(~ - u) (c)  = ( z  - u ) (d )  = O, 

which, by the concavity of x - u, implies the contradiction (x - u)( t )  >_ O, for all t E (c, d). 

CASE 2. c E (0, rl) and u(t)  > z ( t ) ,  for all t E (c, 1]. 
In this case, we have 

f * ( u ( t ) )  = f ( z ( t ) ) ,  for t E (c, 1], 
(4.14) 

u(c) = ~(c). 

Therefore, 
(x - u)"  <_ - A h ( t ) [ f ( x ( t ) )  - f*(u( t ) )]  = 0, for t E (c, 1]. 

Using the boundary  conditions u(1) = c~u(ff) and x(1) _> ctx(rl), we know tha t  

(4.15) 

(z - u)(1)  - ~ ( z  - u)(v)  > 0. (4.16) 

Combining (4.16) and (4.11) and using the same arguments used to prove Lemma 2.2, we can 
get the desired contradiction x - u >_ 0, for all t E [c, 1]. 

CASE 3. c E [rh 1) and u(t)  > x(t),  for all t E (c, 1]. 
In this case, we have 

f* (u( t ) )  = / ( z ( t ) ) ,  for t e (c, 11, 
(4.17) 

u(c) = x(c).  

Therefore, 
(x - u)"  _< -Ah( t )  [ f (x( t ) )  - f*(u( t ) )]  = 0, for t E (c, 1]. (4.18) 

By the definition of c, we know tha t  

u(t)  <_ x( t ) ,  for all t E [0, c]. (4.19) 

In particular,  we have tha t  
u(~) < x(n).  (4.20) 
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This, together with the boundary conditions u(1) = au(~)  and x(1) >_ ax(rl) , implies 

u(1) < x(1). (4.21) 

Combining this with (4.11) and (4.18) and using the concavity of x - u, we obtain the desired 
contradiction (x - u)( t)  >_ 0, for all t E (c, 1]. 

By the same arguments, we see that  y(t) < u(t) ,  for x c [0, 1]. Since y(t)  <_ u < x( t )  for 
t E [0, 1], it follows that  I = f*, and so u is a solution of (4.1),(4.2). 

LEMMA 4.3. I f  there exist upper and lower solutions x and y of  (4.1),(4.2) with y(t)  <_ x( t ) ,  for t E 
[0, 1], then there is a solution u to (4.1),(4.2) such that  

y(t) <_ u(t)  <_ x(t) ,  for t E [0, 1]. 

PROOF. Consider problem (4.8),(4.9). By Lemma 2.1, we know that  (4.8),(4.9) is equivalent to 
the integral equation 

/0' u(t)  = - (t - s )Ah(s ) f*  (y(s)) ds 

(~t for 1 - a~? (7 - s )ah(s)Z*(y(s) )  ds 

t fO 1 + 1 - a----~ (1 - s ) a h ( s ) f * ( y ( s ) )  ds.  

Let 

~o 
t( 

T * u ( t )  = - t -  s ) ~ h ( s ) f * ( y ( s ) )  ds  

at  fo r 1 - ar 1 (rl - s )Ah(s ) f* (y ( s ) )  ds 

fo + 1 - a-------~ (1  - s ) a h ( s ) f * ( y ( s ) )  ds. 

Then T* : C[0, 1] ~ C[O, 1] is completely continuous. Since f* is bounded, T* is bounded. By 
the Schauder fixed-point theorem, T* has a fixed point u, which is a solution of (4.8),(4.9). By 
Lemma 4.2, u is also a solution of (4.1),(4.2). 

5. M U L T I P L I C I T Y  

In order to guarantee that  all possible solutions of (1.3),(1.4) are nonnegative, we make the 
convention that  

f ( u )  = f(O), if u < 0. (5.1) 

We first need the following priori estimate. 

LEMMA 5.1. There is a constant bi > 0 such that  [[y[J _< bi, for all solutions u of  (1.3),(1.4) 
where A belongs to a compact  subset I of  (0, oo). 

PROOF. Now suppose there is an unbounded sequence {un} of solutions of (1.3),(1.4) which 
corresponding An belongs to a compact subset of (0, oo). By Lemma 2.3, un E K,  which implies 
that  

min un(x) > 3' Hun[[. 
te[ml] 

Since f c ¢ =  co, there is a q > 0 such that  

f ( u )  >_ flzu, for all u > q, 



202 R. MA 

where/2 is chosen so that  

inf {An} ~ [171_--71_--~ f 1 ( 1 -  s)a(s)ds] > 1 .  

Choosing n large enough so that  "y[[un[[ _> q, then by the same arguments used to get (3.7), we 
have that  

[:o ' un(~) = A. - (~7 - s)a(s)f(un(s)) dt - 1 - a~ (77 - s)a(s)f(Un(S)) ds 

"b l ~---~--'~ fo l ( l  - s)a(s)f(un(s))ds ] 

> An]2 7 (1 - s)a(s)ds Ilunll > Ilunll, 

which is a contradiction. 

Now let F denote the set of A > 0 such that  a positive solution of (1.3),(1.4) exists. Let 
A* = supF. By Theorem 3.1, F is nonempty and bounded, and thus, 0 < A* < oo. We claim 
that  A* E F. To see this, let )% --* A*, where An E F: 

A1 < A2 < . . .  < A n - I  < An < " ' "  < A*. 

Since the (An) are bounded, Lemma 5.1 implies that  the corresponding solutions {un} are 
bounded. By the compactness of the integral operator T, it easily follows that  A* E F. 

Let u* be a solution of (1.3),(1.4) corresponding to A* and define 

f ( u * ( t ) + e ) ,  

f(u(t)) = f(u(t)), 

f(-e), 

u(t)  > u*(t)  + e, 

- e  < u(t)  < u*(t)  + e, 

u(t)  < -~ .  

Let 

Consider 

[:0' T~u(t) -- A - (t - s)h(s)f(u(s))  ds 1 - a------~ (77 - s)h(s)f(u(s))  ds 

+ l  t_-~ f o l ( 1 -  s)h(s)f(u(s))ds] . 

= {u e x I - ~  < u(t)  < ~*(t)  + d -  

LEMMA 5.2. There /s  an e > 0, sufficiently small, such that if u e C[0, 1] satisfies T~u = u for 
some 0 < A < A*, then u E ~. 

PROOF. Since u > 0, to prove that  u <_ u* + e, we first show that  u* + e is an upper solution of 
(1.3),(1.4). Since u* >_ 0, there is a constant do > 0 such that  f(u*(t)) > do > 0, for all t E [0, 1]. 
By uniform continuity, there is an e0 > 0 such that  

I: (~*(~) + ~) - : (~*(t))l < do (~* - A) 
A ' 
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for all t E [0, 1], 0 < e < c0. Now 

(u*(t) + = (u*(t))" 
= -A*h(t) f (u ' ( t ) )  
= -Ah( t ) f  (u*(t) + e) 

+ Ah(t) [f (u*(t) + c) - f (u*(t))] + (A - A*) h(t)f  (u*(t)) 

< -Ah( t ) f  (u*(t) + ~) 

(5.2) 

and 
(u* + > 0, 

Clearly, if e > 0, then (5.3) becomes 

(u* + ~) (1) > O. (5.3) 

(u* + c)(0) > 0, (u* + e)(1) > 0. (5.4) 

Therefore, u* + e is an upper solution of (1.3),(1.4). It follows from Lemma 4.1 that  u _< u* + ~. 

PROOF OF THEOREM 1.1. Let A E (0, A*); we show that  (1.3),(1.4) has at least two positive 
solutions. Since u* is an upper solution and 0 is a lower solution, Lemma 4.3 implies the existence 
of a solution uA of (1.3),(1.4) such that  0 _< u~ < u*. Thus, for 0 < A < A*, a positive solution 
exists, whereas for A > A*, a positive solution does not exist. Moreover, u~ E ~t. 

Choose I = [0, A* + 1]; then 

and 
(A*,c~) n I # 0. 

We next establish the existence of a second positive solution to (1.3),(1.4) for A E (0, A*) n I. 
Since TA is bounded for A E I, 

deg ( I -  2"~,B(u~,R),O) = 1, (5.5) 

for R large enough, where B(u~, R) is the ball centered at u~ with radius R in C[0, 1]. If there 
exists a u E 0~ such that  u = 2~(u), then f = ] ,  and so u is a second positive solution. Now 
suppose u # T~(u), for all u e 0~. Then deg(I - 2~, ~, 0) is well defined. Since Lemma 5.2 
implies T~ has no fixed point in B(u~, R) \ ~, we have from the excision property of degree that  

deg ( I -  T:~, fl, O) : 1. (5.6) 

This, together with the fact that  

¢~ In -- T~ln, 

implies that  
deg (I - T~, a ,  0) = 1. (5.7) 

On the other hand, by Lemma 5.1, all positive solutions of (1.3),(1.4) are bounded for A E I, and 
thus, 

deg (I - T~, B(0, M), 0) = constant, for A E I, (5.8) 

for M large enough, where B(0, M) is the ball centered at 0 with radius M in C[0, 1]. The late 
degree must equal 0, since for all A > A*, no solutions exist. (We note that  (A3) and (5.1) and 
Lemma 2.2 imply that  all solutions of (1.3),(1.4) are positive solutions!) Finally, by the excision 
property 

deg(I  - T~,B(O,M) \ ~,0) = -1 ,  (5.9) 

and so a second positive solution of (1.3),(1.4) exists for A E (0, A*) N I. 
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