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a b s t r a c t

In this paper, we study the deterministic blind identification of multiple channel state-space models
having a common unknown input using measured output signals that are perturbed by additive white
noise sequences. Different from traditional blind identification problems, the considered system is an
autoregressive system rather than an FIR system; hence, the concerned identification problem is more
challenging but possibly having a wider scope of application. Two blind identification methods are
presented for multi-channel autoregressive systems. A cross-relation identification method is developed
by exploiting the mutual references among different channels. It requires at least three channel systems
with square and stably invertible transfer matrices. Moreover, a general subspace identification method
is developed for which two channel systems are sufficient for the blind identification; however, it
requires the additive noises to have identical variances and the transfer matrices having no transmission
zeros. Finally, numerical simulations are carried out to demonstrate the performance of the proposed
identification algorithms.

© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Blind system identification is to estimate transfer functions
using only output observations with some a priori knowledge of
the systemmodel and system input (Giannakis, Hua, Stoica, & Tong,
2000; Tong & Perreau, 1998; Yu, Zhang, & Xie, 2013a,b). Since
only system outputs are required for the identification problems,
it has a broad range of potential applications. For instance, the
identification of networked systems with unknown disturbed
signals (Li, 2005; Yu, Xie, & Soh, 2014) and the blind deblurring for
the biomedical or optical imaging (Chen et al., 2013; Yu, Zhang, &
Xie, 2012a).

This paper deals with the blind identification of multivariate
or multi-input–multi-output (MIMO) autoregressive systems for
which the system inputs are deterministic but unknown. Con-
ventional blind MIMO system identification requires to identify
the transfer matrix and separate multiple sources. Here, we only
concern the transfer matrix estimation part, so there may exist
a matrix ambiguity for the identification result (Abed-Meraim,
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Loubaton, & Moulines, 1997; Huang, Benesty, & Chen, 2006). To
date, most of the existing deterministic blind MIMO system iden-
tification studies are based on FIR settings (Abed-Meraim et al.,
1997; Huang et al., 2006; Moulines, Duhamel, Cardoso, & Mayrar-
gue, 1995), and limited work has been done on ARMA systems
(Routtenberg & Tabrikian, 2010; Zhang & Cichocki, 2000). In the
present paper, we shall investigate the blind identification of state-
space represented MIMO systems.

The blind deconvolution of dynamical systems using state-
space approaches was reviewed in Zhang and Cichocki (2000),
where the involved cost functions, such asmaximumentropy,min-
imummutual information andmaximumhigh-order cumulant, are
non-convex. Due to the non-convex property, the gradient-descent
type of optimization algorithms may get stuck in local optima. In
this paper, we use ideas from subspace identification (Ljung, 1999;
Verhaegen & Verdult, 2007) to avoid the above mentioned non-
convex optimization problems, since the subspacemethods do not
need to parameterize the model but using reliable linear algebraic
calculations such as QR and SVD decompositions.

In this paper, we present two blind identification methods
for multi-channel systems in state-space forms. A cross-relation
identification method is developed for systems with square
and stably invertible transfer matrices. The blind identification
problem for this type of systems can be recasted into a classic
errors-in-variables identification problem, which can then be
solved using classic subspace identification methods (Ljung, 1999;
Verhaegen & Verdult, 2007). One advantage of the cross-relation
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method is that the involved measurement noises can be spatially
correlated and may not have identical variances. Moreover, a
subspace-based identification algorithm is developed for the
multi-channel systems with tall (possibly not stably invertible)
transfer matrices by exploiting zero and pole diversities of the
multiple channels. For these two blind identification methods,
their associated blind identifiability conditions are provided.

The numerator and denominator polynomial matrices of an
ARMA system are usually coupled together, so the associated iden-
tification problem is challenging. To deal with this identification
problem, prior knowledge of the system input has been adopted
in traditional identification methods, such as piecewise-smooth
input (Bai, Li, & Dasgupta, 2002; Yu, Xie, & Zhang, 2014), white-
noise input (Vanbeylen, Pintelon, & Schoukens, 2008; Yu, Zhang, &
Xie, 2012b; Yu et al., 2013a), periodically modulated input (Gian-
nakis & Serpedin, 1998) and finite-alphabetic input (Routtenberg
& Tabrikian, 2010). In the proposed subspace identification meth-
ods, we do not use any prior knowledge of the system input ex-
cept its persistent excitation property. The proposed identification
methods are derived based on the fact that: a square transfer ma-
trix generically possesses transmission zeros, while an augmented
transfer matrix constructed by stacking two square transfer matri-
ces generically possesses no transmission zeros.

The rest of the paper is organized as follows. Section 2 describes
the multivariate blind system identification problem. Section 3
gives some preliminaries on the identifiability of two-channel
autoregressive systems. Section 4 provides a method for blindly
estimating the characteristic polynomials of multiple channel
systems. This characteristic-polynomial estimationmethodwill be
used in the two blind identification algorithms that are developed
in Section 5. Section 6 shows two simulation examples, followed
by the conclusions in Section 7.

The following notation is adopted throughout the paper. E(·)
denotes the mathematical expectation. δ(·) stands for the Dirac
delta function. H(q) represents the transfer function of a system
with impulse response h(k) in time domain, and q−1 is the
backward shift operator. The upper case letter A denotes a matrix,
and vec(A) represents the vectorization ofA. The superscripts T and
−1 stand for the matrix transpose and inverse, respectively. ∥A∥F
denotes the Frobenius norm of A. det(A) and adj(A) represent the
determinant and adjointmatrices ofA, respectively. I is the identity
matrix of appropriate dimension.

2. Problem formulation

We consider the multiple channel systems in state-space forms
as follows:
xi(k + 1) = Aixi(k) + Bis(k)
yi(k) = Cixi(k) + Dis(k) + wi(k), i = 1, . . . , L,

(1)

where s(k) ∈ Rm is a common source signal, wi(k) ∈ Rp, xi(k) ∈

Rn and yi(k) ∈ Rp are respectively the measurement noise, system
state and output of the i-th channel system, and Ai, Bi, Ci,Di are
real system matrices of appropriate dimensions.

In stating the assumptions that will be used in solving the
blind identification problem in this paper, use will be made of the
following definition.

Definition 1. The input sequence s(k) is persistently exciting of
order ns if and only if for any positive integer k, there exists an
integer N such that the matrix

s(k + 1) s(k + 2) · · · s(k + N)
s(k + 2) s(k + 3) · · · s(k + N + 1)

...
... . .

. ...
s(k + ns) s(k + ns + 1) · · · s(k + N + ns − 1)


has full row rank.
For the systems in (1), the following standard assumptions are
made.

A1. The system input s(k) is persistently exciting of any finite
order.

A2. Thematrix pair (Ai, Bi) is controllable and (Ci, Ai) is observable
for i ∈ {1, . . . , L}.

A3. Ai is stable and Di has full column rank for i ∈ {1, . . . , L}.
A4. The additive white noisewi(k) is independent of s(k) and x(0),

and satisfies that

E(wi(k)wT
j (k − τ)) = σ 2δ(i − j)δ(τ ) · I,

where i, j ∈ {1, . . . , L}.

Assumption A1 assures that the concerned systems can be fully
excited. Assumption A2 indicates that the concerned systems
in state-space forms are minimal realizations. It is assumed in
Assumption A3 that all eigenvalues of Ai have amplitudes less than
one, indicating that the effect of the current state on the future
outputs decays along with the increase of time. In addition, the
dimension of the system output is larger than or equal to that of
the system input, namely p ≥ m.

The problem of interest is to blindly identify the systemmatrices
{Ai, Bi, Ci,Di} up to a matrix ambiguity based on only the system
observations {yi(k)}Li=1. It is noted that the ‘‘up to a matrix
ambiguity’’ is different from ‘‘up to a similarity transformation’’
which is commonly used in state-space system identification.
Suppose that the true transfer matrix of the i-th channel is Hi(q) =

Ci(qI − Ai)
−1Bi + Di. Determination up to a matrix ambiguity

means that the estimated transfer matrix has the form Ĥi(q) =

Hi(q)Γ with Γ a non-singular matrix, while determination up to
a similarity transformation indicates that the estimated transfer
matrix still equals the true transfer matrix.

Generally, there are many matrix fraction description (MFD)
forms for each single-channel system. If Hi(q) = Ni(q)R−1

i (q) with
deg [det (Ri(q))] = n is one MFD form of the i-th transfer matrix,
then Hi(q) = (Ni(q)C(q))


C−1(q)R−1

i (q)

for any unimodular

matrix C(q) is another MFD form with deg [det (Ri(q)C(q))] =

n. Since C(q) can be any unimodular matrix, the numerator and
denominator polynomial matrices of Hi(q) cannot be determined
up to a constant matrix ambiguity. To cope with this problem,
in this paper, the i-th transfer matrix is represented in the form
Hi(q) =

Qi(q)
pi(q)

, where pi(q) = det(qI − Ai) is a monic characteristic
polynomial and Qi(q) is a polynomial matrix having the same size
as Hi(q).

3. Preliminaries on identifiability of two channel systems

The two-channel system can be considered as a basic element of
the multi-channel system, so its identifiability will be investigated
in this section.

Definition 2. Consider the following two-channel systemwithout
noise effect:

y1(k) = H1(q)s(k)
y2(k) = H2(q)s(k),

(2)

where Hi(q) = Ci(qI − Ai)
−1Bi + Di for i = 1, 2. Given the system

outputs y1(k) and y2(k), the above two-channel system is blindly
identifiable if any solution {Ĥ1(q), Ĥ2(q), ŝ(k)} to Eq. (2), with Ĥ1(q)
and Ĥ2(q) having minimal realizations of order n, satisfies

Ĥ1(q) = H1(q)Γ

Ĥ2(q) = H2(q)Γ
ŝ(k) = Γ −1s(k)

with Γ ∈ Rm×m being a non-singular ambiguity matrix.
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Denote

Hi(q) = Ci(qI − Ai)
−1Bi + Di =

Qi(q)
pi(q)

for i = 1, 2.

The two-channel system without additive noise effect can also be
written as


y1(k)
y2(k)


=


Q1(q)
p1(q)
Q2(q)
p2(q)

 s(k) =


Q1(q)p2(q)
Q2(q)p1(q)


  

G(q)

s(k)
p1(q)p2(q)  

u(k)

. (3)

Let G1(q) = Q1(q)p2(q) and G2(q) = Q2(q)p1(q). The signal
u(k) =

s(k)
p1(q)p2(q)

is a pseudo common source signal. As shown in
Eq. (3), the two autoregressive systems can be transformed to two
FIR systems. To ensure the blind identifiability of G(q) in (3), it is
necessary that the polynomialmatrixG(q) is irreducible (Giannakis
et al., 2000, Chapter 3), i.e. the matrix G(q) has full column rank for
any q ∈ C. The next theorem shows that this is not the case for
G(q) in (3).

Theorem 1. Suppose that A1 and A2 are cyclic matrices (Gopal,
1993). Let the dimension parameters m, p ≥ 2. Then, the polynomial
matrix G(q) defined in (3) is reducible even if AssumptionsA1–A3 hold
and {p1(q), p2(q)} are coprime.

Proof. By the following relations for any i ∈ {1, 2}:

(qI − Ai)
−1

=
adj(qI − Ai)

det(qI − Ai)

pi(q) = det(qI − Ai),

Qi(q) can be represented as

Qi(q) = Ciadj(qI − Ai)Bi + Dipi(q). (4)

The polynomial matrix G(q) can be written as

G(q) =


C1adj(qI − A1)B1p2(q) + D1p1(q)p2(q)
C2adj(qI − A2)B2p1(q) + D2p2(q)p1(q)


. (5)

Let z0 be a zero of p1(q), namely p1(z0) = 0. It follows that

G(z0) =


C1adj(z0I − A1)B1p2(z0)

0


.

In addition, it can be established that

[adj(z0I − A1)] (z0I − A1) = det(z0I − A1)I = 0. (6)

Since A1 is a cyclic matrix, z0I − A1 is rank deficient by one (Gopal,
1993). It can then be derived that adj(z0I − A1) has rank less than
or equal to one, so does the matrix C1adj(z0I − A1)B1p2(z0). When
the dimension parametersm, p ≥ 2, it is obvious that G(z0) is rank
deficient, namely G(q) is reducible.

Theorem 1 shows that the FIR transfer matrix G(q) in (3) cannot
be identified up to a matrix ambiguity. By taking an insight in the
structure of G(q), we can find that the system poles of H1(q) and
H2(q) are exactly the latent roots (Kailath, 1980) of G(q). Since the
unavailability of system poles causes the two FIR systems in (3)
to be unidentifiable, we shall investigate the identification of the
characteristic polynomials pi(q) in Section 4.

Before proceeding to the characteristic-polynomial identifica-
tion, we would like to investigate the persistent excitation proper-
ties of the system outputs {yi(k)}2i=1 in (3), since they are essential
for analyzing the system identifiability in the sequel.

The matrix form of (3) can be written as
Y 1
2n+1,r,N

Y 2
2n+1,r,N


  

Y2n+1,r,N

=


G1
r

G2
r


  

Gr

U1,2n+r,N , (7)
where

Y i
2n+1,r,N =

yi(2n + 1) · · · yi(2n + N)
... . .

. ...
yi(2n + r) · · · yi(2n + r + N − 1)


with the superscript i denoting the channel index, the first
subscript 2n+1 indicating the time index of the top-left entry, the
second and third subscripts r,N representing the numbers of block
rows and columns, respectively. The matrix Gi

r ∈ Rrp×(2n+r)m is
defined by

Gi
r =

Gi
2n · · · Gi

0
. . .

...
. . .

Gi
2n · · · Gi

0


with the superscript i denoting the channel index, the subscript r
indicating the number of block rows, and {Gi

j}
2n
j=0 being the matrix

coefficients of Gi(q). In the sequel, we assume that N ≫ r , namely
Y2n+1,r,N in (7) is a flat matrix.

The rank property of the augmented block Toeplitz matrix Gr
is shown in the next lemma. Here, we make use of the following
definition.

Definition 3. Them×mminors of the transfer function H1(q) are
the determinants of allm × m sub-matrices of H1(q).

Lemma 1. Suppose that the following assumptions hold:

(1) Assumptions A1–A3 hold;
(2) H1(q) and H2(q) do not share common zeros and poles;
(3) The poles of Hi(q) for any i ∈ {1, 2} do not coincide with its zeros;
(4) The greatest degree of all m×mminors of Q1(q) (or Q2(q)) equals

that of

Q1(q)
Q2(q)


.

Then, for any r > 2n, the rank of Gr satisfies

rank(Gr) = rm + 2n.

Furthermore, the rank of Y2n+1,r,N in (7) satisfies

rank

Y2n+1,r,N


= rm + 2n.

Proof of this lemma can be found in Appendix A.
Following the above analysis of two channel systems, the rank

properties of single-channel systems will be derived analogously.
For the i-th channel with i ∈ {1, 2}, the associated system model
without measurement noise can be written as

yi(k) = Qi(q)
s(k)
pi(q)

, (8)

where s(k)
pi(q)

is regarded as a pseudo source signal.

Corollary 1. Suppose that Assumptions A1–A3 hold. We have that:

(1) when p = m, rank

Y i
2n+1,r,N


= rm.

(2) when p > m and Hi(q) has no transmission zeros,
rank


Y i
2n+1,r,N


= rm + n for any r > n.

The above corollary can be proven by using the same means
adopted in the proof of Lemma 1. For the sake of brevity, the proof
will not be detailed here.

According to the results of Lemma 1 and Corollary 1, we can
see that the two-channel output sequence


y1(k)
y2(k)


lacks persistent

excitation whenever {Hi(q)}2i=1 are square or tall. For a single
channel with p = m, yi(k) is persistently exciting under somemild
conditions; however, yi(k) lacks persistent excitationwhen p > m.
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4. Blind identification of characteristic polynomials

As shown in the previous section, the pole information is
crucial for the blind identification of autoregressive systems. In this
section, we shall investigate the identification of the characteristic
polynomials of two channel systems.

Suppose that H1(q) = L−1
1 (q)N1(q) with deg[det(L1(q))] = n

is an MFD of the first channel system. In order to estimate the
input signal from the first channel, we need to find a left inverse
of H1(q), which is denoted by H̃1(q). One direct way is to represent
the inverse transfer matrix in a state-space form with order n.
However, one drawback of such a way is that, when the number of
transmission zeros is less than n, unknown poles will be included
in H̃1(q) apart from those zeros of H1(q). To this end, the inverse
transfer matrix is represented in terms of anMFD form rather than
the state-space form.

When Di is strictly tall, the numerator polynomial matrix Ni(q)
is generically right coprime, namely it has no transmission zeros.
In such a case, the left inverse of Hi(q) does not possess any poles.
To make it more rigorous, we make the following assumption:
A5. Hi(q) has no transmission zeros for i ∈ {1, 2}.

Under Assumption A5 and by rational matrix theory (Kailath,
1980), we can always find a polynomial matrix which is the left-
inverse of Hi(q).

Lemma 2. Suppose that Assumptions A2–A3 and A5 hold. Then, for
any positive integer K ≥ 2n, there exists an m× p polynomial matrix
Ei(q) of degree K such that Ei(q)Hi(q) = I .

Proof. By Assumptions A2–A3, there exists a matrix fraction
description Hi(q) = L−1

i (q)Ni(q), where deg [det (Li(q))] = n and
Ni(q) is column reducedwith its column degrees being summed up
to n. Assumption A5 implies that Ni(q) is right coprime. Since Ni(q)
is right coprime and column reduced, for any positive integer K0 ≥

n, there exists a polynomial matrix Ñi(q) of degree K0 such that
Ñi(q)Ni(q) = I (Gorokhov & Loubaton, 1997, Lemma 1). Therefore,
the polynomial matrix Ei(q) = Ñi(q)Li(q), with its degree being
larger than or equal to 2n, is a left inverse of Hi(q).

By Lemma 2, there exists a polynomial matrix E1(q) of degree
2n such that

s(k) = E1(q) (y1(k) − w1(k)) .

Substituting the above equation into the second channel yields that

y2(k) = H2(q)E1(q) (y1(k) − w1(k)) + w2(k). (9)

Note that H2(q)E1(q) in the above equation may not be a proper
transfer matrix, so it may not be able to be represented in a regular
(non-descriptor) state-space form. Substituting H2(q) =

Q2(q)
p2(q)

into
Eq. (9) yields that

y2(k) =
Q2(q)
p2(q)

E1(q) (y1(k) − w1(k)) + w2(k),

or p2(q) (y2(k) − w2(k)) = Q2(q)E1(q) (y1(k) − w1(k)) ,

(10)

where p2(q) has degree n and Q2(q)E1(q) has degree 3n. Let p2 be
the coefficient vector of p2(q) and Ē1 the stackedmatrix coefficients
of Q2(q)E1(q). The matrix form of (10) can then be written as

−Y 1
τ+1,3n+1,N + W 1

τ+1,3n+1,N
Y 2

τ+1,n+1,N − W 2
τ+1,n+1,N

T 
Ē1

p2 ⊗ I


= 0, (11)

where τ is a positive time index. In order to remove the noise effect
in the above equation, we apply the instrumental-variable method
(Ljung, 1999) as follows:

1
N


Y 1
1,τ ,N

Y 2
1,τ ,N

 
−Y 1

τ+1,3n+1,N + W 1
τ+1,3n+1,N

Y 2
τ+1,n+1,N − W 2

τ+1,n+1,N

T 
Ē1

p2 ⊗ I


= 0, (12)
where the instrumental variable

Y1
1,τ ,N

Y2
1,τ ,N


and the measurement

noise

W1

τ+1,3n+1,N
W2

τ+1,n+1,N


are uncorrelated, i.e.,

lim
N→∞

1
N


Y 1
1,τ ,N

Y 2
1,τ ,N

 
W 1

τ+1,3n+1,N
W 2

τ+1,n+1,N

T

= 0.

Then, we have that

lim
N→∞

1
N


Y 1
1,τ ,N

Y 2
1,τ ,N

 
−Y 1

τ+1,3n+1,N
Y 2

τ+1,n+1,N

T 
Ē1

p2 ⊗ I


= 0. (13)

Let the QR factorization be given:

1
N


Y 1
1,τ ,N

Y 2
1,τ ,N

 
−Y 1

τ+1,3n+1,N
Y 2

τ+1,n+1,N

T

= U

R11,N R12,N
0 R22,N


, (14)

where U is the matrix consisting of (4n + 2)p orthonormal
column vectors, R11,N ∈ R(3n+1)p×(3n+1)p, R22,N ∈ R(n+1)p×(n+1)p.
Substituting Eq. (14) into (13) yields that

lim
N→∞

R22,N (p2 ⊗ I) = 0. (15)

Since p2(q) is amonic polynomial of degree n, the coefficient vector
p2 contains n unknown variables.

Next, we shall analyze the identifiability of p2(q) in the errors-
in-variables model (10). The concept of (dual) minimal basis of
a polynomial matrix (David Forney, 1975) will be used in the
following lemma.

Lemma 3. Consider the two-channel system model in (3) without
measurement noise. Suppose that the following assumptions hold:

(1) Assumptions A1–A3 and A5 hold;
(2) There exists an integer index i ∈ {1, 2, . . . , p} such that the

degrees of the minimal polynomial basis of

G1(q)
G2,i(q)


, with G2,i(q)

being the i-th row vector of G2(q), are summed up to 2n, and the
greatest degree of the dual minimal basis of


G1(q)
G2,i(q)


is smaller

than or equal to n.

Let Si ∈ R(n+1)×(n+1)p be a selection matrix defined as

Si = I(n+1)×(n+1) ⊗ ei,

where ei is the i-th row of a p × p identity matrix. Then we have that

rank

Y 1

τ+1,3n+1,N
SiY 2

τ+1,n+1,N


= rank


Y 1

τ+1,3n+1,N


+ n.

Proof of this lemma is given in Appendix B.

Remark 1. The result of Lemma 3 indicates that there ex-
ist n linearly independent equations for estimating p2(q). Let
Y 2

τ+1,n+1,N/Y 1
τ+1,3n+1,N


denote the projection of Y 2

τ+1,n+1,N on the
orthogonal complement to the row space of Y 1

τ+1,3n+1,N . Under
noise-free measurements, it can be derived from (11) that
pT
2 ⊗ I

 
Y 2

τ+1,n+1,N/Y 1
τ+1,3n+1,N


= 0.

It then follows that

pT
2Si


Y 2

τ+1,n+1,N/Y 1
τ+1,3n+1,N


= 0 for i = 1, . . . , p.

Based on the result of Lemma 3, there exists an integer i ∈

{1, . . . , p} such that thematrix Si

Y 2

τ+1,n+1,N/Y 1
τ+1,3n+1,N


has rank

n. Since p2 contains only n variables, it can be uniquely determined
from (11) without the noise effect. However, in the presence of
measurement noise, by properly choosing the value of τ , the
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instrumental variable

Y1
1,τ ,N

Y2
1,τ ,N


in (13) can be of high rank such that

it does not destroy the rank properties of


Y1
τ+1,3n+1,N

SiY
2
τ+1,n+1,N


shown in

Lemma 3.

Remark 2. In the proof of Lemma 1, we can find that the
polynomial matrix, which consists of the first p + 1 rows of
the coprime part of


G1(q)
G2(q)


in (A.3) in Appendix A, is likely to

be irreducible with the degrees of its minimal polynomial basis
being summed up to 2n. In addition, according to the properties of
the dual minimal basis of a polynomial matrix that are described
(David Forney, 1975; Kailath, 1980), the dimension of the dual
minimal basis of


G1(q)
G2,i(q)


is (p + 1 − m), and the associated basis

degrees are summed up to 2n. As a result, the condition in Lemma3
that the greatest degree of the dual minimal basis is smaller than or
equal to n can easily be satisfied in practical scenarios.

As shown above, in order to identify the first characteristic
polynomial p1(q) of the two channel systems, the second channel
system H2(q) should not possess any zeros, and vice versa.
When the concerned two channel systems have square transfer
matrices, they are very likely to have transmission zeros, so their
corresponding characteristic polynomials cannot be identified
using the proposed method above. To cope with this problem,
we adopt one more channel and combine it with the original
two channel systems for identifying characteristic polynomials. In
order to identify the characteristic polynomial of the first channel,
the three-channel system is rewritten as

y1(k) = H1(q)s(k) + w1(k)
y2(k)
y3(k)


  

ȳ2(k)

=


H2(q)
H3(q)


  

H̄2(q)

s(k) +


w2(k)
w3(k)


  

w̄2(k)

. (16)

According to the above discussion, if the tall transfer matrix
H̄2(q) in the above system does not have any zeros, then the
characteristic polynomial of the first channel can be identified.
Similarly, the other characteristic polynomials can be estimated
using the same approach.

After obtaining all the characteristic polynomials pi(q), we
shall investigate the identification of the numerator polynomial
matrices Qi(q) in next section.

5. Blind identification of numerator polynomial matrices

In this section, two methods for identifying the numerator
polynomialmatrices {Qi(q)}2i=1 will be developed. The firstmethod
requires the associated transfer matrices {Hi(q)}2i=1 to be square
and stably invertible. The second one relaxes this requirement, but
requires all the measurement noises to satisfy Assumption A4 and
the transfer matrices {Hi(q)}2i=1 having no transmission zeros.

5.1. Blind identification of square and stably invertible transfer
matrices

For two scalar FIR systemswith a common source signal, the as-
sociated cross-relation equation can be easily constructed (Xu, Liu,
Tong, & Kailath, 1995). However, for the two channel multivari-
able systems, due to the fact that the product of two polynomial
matrices is not commutable, the so called cross-relation equation
cannot be directly derived. In this section, we shall develop a new
cross-relation identification method for the autoregressive MIMO
systems.
Denote the state-space representation of the i-th channelmodel
(Zhou, 1996):

Hi(q) :=


Ai Bi
Ci Di


. (17)

The corresponding transfermatrix isHi(q) = Ci(qI−Ai)
−1Bi+Di. By

Assumption A3,Di is a square and regularmatrix. Then, the inverse
of Hi(q) can be expressed as:

H̃i(q) :=


Ãi B̃i

C̃i D̃i


=


Ai − BiD−1

i Ci −BiD−1
i

D−1
i Ci D−1

i


. (18)

It follows that

Hi(q)H̃i(q) = H̃i(q)Hi(q) = I.

To ensure the stability of H̃i(q), we need the following assumption:

A6. Hi(q) is stably invertible for i = 1, 2, namely Ai − BiD−1
i Ci is a

stable matrix.

Given the inverse transfer matrix H̃1(q), it can be derived
from the first channel model that s(k) = H̃1(q) (y1(k) − w1(k)).
Substituting it into the second channel model yields that

y2(k) = H2(q)H̃1(q) (y1(k) − w1(k)) + w2(k). (19)

The above system can be regarded as a multivariable errors-
in-variables system with a noisy input and a noisy output. Let
H21(q) = H2(q)H̃1(q) and

H21(q) : =


A21 B21
C21 D21


=

 A2 B2C̃1 B2D̃1

0 Ã1 B̃1

C2 D2C̃1 D2D̃1

 . (20)

The state-space representation of (19) can be defined as

x21(k + 1) = A21x21(k) + B21(y1(k) − w1(k))
y2(k) = C21x21(k) + D21(y1(k) − w1(k)) + w2(k),

(21)

where A21 ∈ R2n×2n, B21 ∈ R2n×p, C21 ∈ Rp×2n, D21 ∈ Rp×p. The
associated data equation for the above system model is written as

Y 2
1,r,N = OrX1,N + TrY 1

1,r,N − TrW 1
1,r,N + W 2

1,r,N , (22)

where

X1,N =

x21(1) x21(2) · · · x21(N)


∈ Rn×N ,

Or =


C21

C21A21
...

C21Ar−1
21

 ,

and

Tr =


D21

C21B21 D21
...

. . .
. . .

C21Ar−2
21 B21 · · · C21B21 D21

 .

Remark 3. By Corollary 1, in the absence of measurement noise,
Y 1
1,r,N in (22) has full row rank when the transfer matrices

{Hi(q)}2i=1 are square, while it is rank deficient under tall transfer
matrices. In other words, the input signal y1(k) in (21) lacks
persistent excitation when {Hi(q)}2i=1 are tall transfer matrices.
This is the reason why the presented identification method in this
subsection cannot be applied to themultiple channel systemswith
tall transfer matrices.
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Next, we shall apply the classical instrumental-variable tech-
nique to deal with the identification of the errors-in-variables sys-
tem in (21). Eq. (22) can be extended to the following form:

Y 2
1,r,N

Y 2
r+1,r,N


=


OrX1,N

OrXr+1,N


+


Tr


Y 1
1,r,N − W 1

1,r,N


Tr


Y 1
r+1,r,N − W 1

r+1,r,N

 +


W 2

1,r,N
W 2

r+1,r,N


.

Post-multiplying the second equation above by

Y 1,T
1,r,N Y 2,T

1,r,N


yields that

1
N
Y 2
r+1,r,N


Y 1,T
1,r,N Y 2,T

1,r,N


=

1
N

OrXr+1,N


Y 1,T
1,r,N Y 2,T

1,r,N


+

1
N

TrY 1
r+1,r,N


Y 1,T
1,r,N Y 2,T

1,r,N


−

1
N

TrW 1
r+1,r,N


Y 1,T
1,r,N Y 2,T

1,r,N


+

1
N
W 2

r+1,r,N


Y 1,T
1,r,N Y 2,T

1,r,N


. (23)

For any τ > 0, w1(k + τ) and w2(k + τ) are independent of y2(k)
and y1(k). Thus, the last two terms in the above equation approach
zero as N → ∞. Let the following QR factorization be given:
Y 1
r+1,r,NY

1,T
1,r,N Y 1

r+1,r,NY
2,T
1,r,N

Y 2
r+1,r,NY

1,T
1,r,N Y 2

r+1,r,NY
2,T
1,r,N


=


L11,N 0
L21,N L22,N

 
V1,N
V2,N


. (24)

It follows that

lim
N→∞

1
√
N
L22,N = lim

N→∞

1
√
N

OrXr+1,N


Y 1,T
1,r,N Y 2,T

1,r,N


V T
2,N . (25)

The following result can be derived subsequently.

Theorem 2. Assume that Assumptions A1–A3 and A6 hold. In view
of the QR factorization in (24), if the matrix limN→∞

1
√
N
Xr+1,N

Y 1,T
1,r,N Y 2,T

1,r,N


V T
2,N has full row rank, then

range


lim
N→∞

1
√
N
L22,N


= range (Or) . (26)

Remark 4. The regularity of the matrix

lim
N→∞

1
√
N
Xr+1,N


Y 1,T
1,r,N Y 2,T

1,r,N


V T
2,N

was discussed in Chou and Verhaegen (1997) and Verhaegen and
Verdult (2007), which shows that the regularity condition is easy
to be satisfied when system model in (21) is minimal and the
corresponding system input is persistently exciting. By Lemma 1
and Corollary 1, it can be established that rank


L22,N


= 2n under

square transfer matrices, while rank

L22,N


= n under tall transfer

matrices. In Eq. (26), Or is supposed to have rank 2n. Therefore,
the range of Or can be determined under square transfer matrices
rather than tall transfer matrices.

From Theorem 2, we can see that the column space of Or
can be numerically computed, so the matrices A21 and C21 can
be estimated using the classic subspace identification method
(Verhaegen & Verdult, 2007). Next, we shall estimate the matrices
B21 and D21 based on the systemmodel (21) with available A21 and
C21. In view of the data equation in (22), the following equation can
be derived:
y2(k + l) = Al
21x21(k) + D21 (y1(k + l) − w1(k + l))

+

l
i=1

C21Ai−1
21 B21 (y1(k + l − i) − w1(k + l − i))

+ w2(k + l). (27)

By Assumptions A3 and A6, the matrix A21 is stable; therefore, the
first term Al

21x21(k) is negligible if l is large enough. Then, Eq. (27)
can be accurately approximated as

y2(k + l) − w2(k + l) ∼= Γl

 y1(k) − w1(k)
...

y1(k + l) − w1(k + l)

 , (28)

where Γl =

C21Al−1

21 B21 · · · C21B21 D21

. The matrix form of

the above equation is written as

Y 2
l+1,1,N − W 2

l+1,1,N
∼= Γl


Y 1
1,l+1,N − W 1

1,l+1,N


. (29)

Applying the classic instrumental-variable technique yields that

lim
N→∞

1
N
Y 2
2l+2,1,NY

1,T
1,l+1,N  

RY2Y1

∼= Γl lim
N→∞

1
N
Y 1
l+2,l+1,NY

1,T
1,l+1,N  

RY1Y1

. (30)

By Corollary 1, without noise effect, Y 1
l+2,l+1,N and Y 1

1,l+1,N are
of full row rank under square transfer matrices; hence, RY1Y1 in the
above equation is a regularmatrix. As a result,Γl can bedetermined
from (30). Partition the matrix RY1Y1 into block rows as

RY1Y1 =

 R̄1
...

R̄l+1

 .

The vectorization form of Eq. (30) is written as

vec

RY2Y1


=


l

i=1

R̄T
i ⊗


C21Al−i

21


R̄T
l+1 ⊗ I



×


vec (B21)
vec (D21)


. (31)

Then, B21 and D21 can be estimated accordingly by solving the
above equation.

Using the above developed algorithm, the system matrices
{A21, B21, C21,D21} corresponding to the transfer matrix H21(q) =

H2(q)H̃1(q) can be estimated accordingly. Similarly, the system
matrices {A12, B12, C12,D12} corresponding to the transfer matrix
G12(q) = H1(q)H̃2(q) can be estimated as well. Next, we will try to
recover the transfer matrices H1(q) and H2(q) from the estimated
H12(q) and H21(q).

According to the definitions of H12(q) and H21(q), the following
relations can be derived:

I −H12(q)
−H21(q) I

 
H1(q)
H2(q)


= 0. (32)

Pre-multiplying the left-hand side of (32) by thematrix


I 0
H21(q) I


yields that

I 0
H21(q) I

 
I −H12(q)

−H21(q) I

 
H1(q)
H2(q)


=


I −H12(q)
0 I − H21(q)H12(q)

 
H1(q)
H2(q)


= 0. (33)

When the transfer matrix Hi(q) is square, we have that

H21(q)H12(q) = H2(q)H̃1(q)H1(q)H̃2(q) = I.
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Therefore, the second equation of (33) is redundant. It indicates
that it is unnecessary to estimate H12(q). Then, Eq. (32) can be
simplified into
−H21(q) I

 
H1(q)
H2(q)


= 0. (34)

Substituting Hi(q) =
Qi(q)
pi(q)

into (34) yields that


−H21(q) I

 
Q1(q)p2(q)
Q2(q)p1(q)


= 0. (35)

By Theorem 1, the augmented polynomial matrix

Q1(q)p2(q)
Q2(q)p1(q)


in

the above equation is not right coprime; hence, it is not blindly
identifiable.

However, once {pi(q)}2i=1 have been estimated using the
method in Section 4, Eq. (35) can be recasted as
−Hji(q)pj(q) pi(q)I

 
Qi(q)
Qj(q)


= 0, (36)

where Qi(q) and Qj(q) are unknown polynomial matrices which
are to be estimated. In the above equation, in order to determine
Qi(q)
Qj(q)


up to a matrix ambiguity, it requires


Qi(q)
Qj(q)


to be right

coprime and column reduced and all its column degrees should
be identical (Giannakis et al., 2000, Chapter 3). By Assumption A3,
i.e. Di and Dj have full column rank, and in view of the expression

of Qi(q) in (4), we can obtain that

Qi(q)
Qj(q)


is column reduced. In

addition, by the assumption that the set consisting of all the zeros
and poles of Hi(q) does not intersect with those of Hj(q), it can

be verified that

Qi(q)
Qj(q)


is right coprime. Therefore, if


Qi(q)
Qj(q)


has

identical column degrees, it can be blindly identified from Eq. (36).
The matrix form of (36) can be written as

−T
ji
2n+1P

j
n+1 P i

n+1

 
Q̄ i

Q̄ j


= 0, (37)

where

T
ji
2n+1 =


Dji
CjiBji Dji

...
. . .

. . .

CjiA2n−1
ji Bji · · · CjiBji Dji

 ,

P i
n+1 =



I

pi1I
. . .

...
. . . I

pinI pi1I
. . .

...

pinI


  

n+1 block columns

with {pij}
n
j=1 being the coefficients of pi(q), and Q̄ i

=

Q i
0
.
.
.

Q i
n

with

{Q i
j }

n
j=0 being the matrix coefficients of Qi(q). Then, a nontrivial

solution of

Q̄ i

Q̄ j


can be obtained by taking the singular value

decomposition of

−T

ji
2n+1P

j
2n+1 P i

2n+1


.

For ease of reference, the blind identification of three channel
systemswith square and stably invertible transfermatrices is sum-
marized in Algorithm 1. The objective of Algorithm 1 is to estimate
the system matrices {Ai, Bi, Ci,Di}
3
i=1 using only the system out-

puts {yi(k)}3i=1. The first four steps are carried out for estimating
the transfer functions {Hi(q) =

Qi(q)
pi(q)

}
3
i=1: the first two steps are de-

voted to estimating the characteristic polynomials {pi(q)}3i=1 while
the third and fourth steps are designed for estimating the numer-
ator polynomial matrices {Qi(q)}3i=1. In the third step, the hybrid
transfer function Hi,j(q) is estimated through identifying its cor-
responding system matrices of the state-space system model in
(21). To identify the system matrices in (21), we use the subspace
identification method described in Eqs. (22)–(31). In the last step,
the system matrices {Ai, Bi, Ci,Di}

3
i=1 are estimated using the clas-

sic deterministic realization method ‘‘Ho–Kalman’s method’’ de-
scribed in Katayama (2006) and Verhaegen and Verdult (2007):

(1) Expand the transfer function of the i-th channel system as

Qi(q)
pi(q)

= M i
0 + M i

1q
−1

+ M i
2q

−2
+ · · · ;

(2) Form the block Hankel matrix

M =


M i

1 M i
2 M i

3 · · ·

M i
2 M i

3 M i
4 · · ·

M i
3 M i

4 M i
5 · · ·

...
...

...

 .

(3) Compute the extended observability and controllability matri-
ces by taking the singular value decomposition of the above
block Hankel matrix;

(4) Estimate the system matrices of the i-th channel system by
exploiting the shifting structures of the extended observabil-
ity/controllability matrices.

Algorithm 1 Blind identification of three channel
systems with square transfer matrices
(1)Recast the three channel systems into the form of (16).
(2)Estimate characteristic polynomials {pi(q)}3i=1 using

Eq. (15) derived in Section 4.
(3) Identify the hybrid transfer matrices Hij(q) of the

system in (21) for i ≠ j ∈ {1, 2, 3}.
(4)Form Eq. (37) and estimate matrix coefficients of

{Qi(q)}3i=1.
(5)Estimate the system matrices {Ai, Bi, Ci,Di}

3
i=1 using

the standard Ho–Kalman method.

The implementation of Algorithm 1 requires at least three
channel systems. The main reason is that, based on only two
channel outputs,we are not able to estimate the denominator parts
of their square transfer matrices. It is noteworthy that Algorithm
1 can be applied to the case that wi(k) is spatially correlated but
temporally uncorrelated.

5.2. Blind identification of tall transfer matrices having no transmis-
sion zeros

Under tall transfer matrices, the characteristic polynomials can
be identified by the method in Section 4. Herein, we only consider
the estimation of the numerator polynomial matrices {Qi(q)}. The
presented algorithm in this subsection is called the generalized
subspace identification method.

Analogous to (3), the two channel systems with measurement
noise can be written as
y1(k)
y2(k)


=


Q1(q)p2(q)
Q2(q)p1(q)


  

G(q)

s(k)
p1(q)p2(q)  

u(k)

+


w1(k)
w2(k)


. (38)
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The matrix form of the above equation is written as
Y 1
2n+1,r,N

Y 2
2n+1,r,N


  

Y2n+1,r,N

=


G1
r

G2
r


  

Gr

U1,r,N +


W 1

2n+1,r,N
W 2

2n+1,r,N


  

W2n+1,r,N

, (39)

where Gi
r for i ∈ {1, 2} is defined in (7).

By Assumption A4, it can be derived that

lim
N→∞

Y2n+1,r,NY T
2n+1,r,N

N  
RYY

= Gr lim
N→∞

U1,r,NUT
1,r,N

N  
RUU

GT
r + σ 2I. (40)

ByAssumptionA1, it can be established thatRUU is a regularmatrix.
Furthermore, it can be derived that

range

RYY − σ 2I


= range (Gr) .

According to Lemma 1, the matrix Gr is rank deficient, so is RYY −

σ 2I . Let the eigenvalue decomposition of RYY be given:

RYY =

Us Un

 
Σ + σ 2I

σ 2I

 
UT
s

UT
n


, (41)

where Us and Un denote the signal and noise subspace of RYY ,
respectively. By Lemma 1, the matrix Un consists of nl = 2rp −

(rm + 2n) independent orthonormal column vectors. Note that nl
is always non-negative since Gr ∈ R2rp×(2n+r)m is a tall matrix. Let
Un =


φ1 · · · φnl


with φi ∈ R2rp the i-th column vector. Then it

holds that

φT
i Gr = 0 for i = 1, . . . , nl. (42)

Partition φi as φT
i =


φi,1 · · · φi,2r


with φi,j ∈ R1×p for j =

1, . . . , 2r . Since Gr is a stacked block Toeplitz matrix, the above
equation is equivalent to the following polynomial equation:
Φi,1(q) Φi,2(q)

 
G1(q)
G2(q)


= 0, (43)

where Φi,1(q) = φi,1 + φi,2q + · · · + φi,rqr−1, Φi,2(q) = φi,r+1 +

φi,r+2q + · · · + φi,2rqr−1, and G1(q) and G2(q) are defined in (3).
Stacking all equations of (43) yields that
Φ1(q) Φ2(q)

 
G1(q)
G2(q)


= 0, (44)

where Φi(q) =


ΦT

i,1(q) · · · ΦT
i,nl

(q)
T

for i = 1, 2.

When {pi(q)}2i=1 are available, substituting G(q) shown in (38)
into Eq. (44) yields that
Φ1(q)p2(q) Φ2(q)p1(q)

 
Q1(q)
Q2(q)


= 0. (45)

Analogous to Eq. (36),

Q1(q)
Q2(q)


in the above equation can be

identified up to a matrix ambiguity if the following assumptions
hold:

(1) Assumption A3 holds;
(2) The set consisting of all the zeros and poles of H1(q) does not

intersect with those of H2(q);

(3)

Q1(q)
Q2(q)


has identical column degrees.

The matrix form of (45) can be written as
Φ̄1

2n+1P
2
n+1 Φ̄2

2n+1P
1
n+1

 
Q̄ 1

Q̄ 2


= 0, (46)
where

Φ̄ i
2n+1 =



Φ i
1

Φ i
2

. . .

...
. . . Φ i

1
Φ i

r Φ i
2

. . .
...

Φ i
r


  

2n+1 block columns

with {Φ i
j }

r
j=1 being the matrix coefficients of Φi(q), and P i

n+1

and Q̄ i are the same as in (37). From (46), we can numerically

obtain a nontrivial solution of

Q̄ 1

Q̄ 2


by taking the singular value

decomposition of

Φ̄1

2n+1P
2
n+1 Φ̄2

2n+1P
1
n+1


.

For ease of reference, the blind identification of two channel
systems with tall transfer matrices is summarized in Algorithm 2.
We estimate the associated transfer matrices {Hi(q)}2i=1, followed
by estimating the system matrices {Ai, Bi, Ci,Di}

2
i=1. The first

step aims to estimate the denominator parts of the associated
transfer matrices, while the second and third steps are devoted
to estimating the numerator parts. The last step refers to the
realization of the state-space system models from their transfer
matrices, which is accomplished using the ‘‘Ho–Kalman’s method’’
described in Katayama (2006) and Verhaegen and Verdult (2007).

Algorithm 2 Blind identification of two channel
systems with tall transfer matrices
(1)Estimate characteristic polynomials {pi(q)}2i=1 using

Eq. (15) derived in Section 4.
(2)Derive Eq. (43) using the method shown in Eqs.

(39)–(42).
(3)Form Eq. (46) and estimate coefficient matrices of

{Qi(q)}2i=1.
(4)Estimate the system matrices {Ai, Bi, Ci,Di}

2
i=1 using

the standard Ho–Kalman method.

Comparing Algorithm 1 with Algorithm 2, we can find that Eqs.
(43) and (35) have similar forms, andEqs. (45) and (36) have similar
forms as well. It is remarked that Algorithm 2 is developed based
on Assumption A4, i.e. the covariance matrix of wi(k) is a scaled
identity matrix. Under Assumption A4, steps 2–3 in Algorithm 2
can also be applied to identify two square transfer matrices.

6. Numerical simulations

In this section, two numerical simulation examples are carried
out to validate the proposed blind identification algorithms for
multiple channel systems sharing a common source signal.

The proposed algorithms aim to identify the systemmatrices of
the concerned state-spacemodels up to amatrix ambiguity. Instead
of directly measuring the estimation error of the system matrices,
we assess the estimation performance of the associated transfer
matrices. Denote by {Âi, B̂i, Ĉi, D̂i} the estimated coefficient
matrices of the i-th channel and Ĥi(q) =

Q̂i(q)
p̂i(q)

= Ĉi(qI −

Âi)
−1B̂i + D̂i the corresponding transfer matrix. Here, we

adopt the following normalized mean-square error to assess the
identification performance of the numerator parts {Qi(q)}Li=1:

nMSEN =
1
K

K
j=1

min
Γ

∥Q̄ − Q̂ jΓ ∥
2
F

∥Q̄∥
2
F

, (47)
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Fig. 1. Example 1: identification performance of Algorithm 2 against SNR. Blue
curves correspond to the sum-of-sine input signal, while red ones correspond to
the white noise input. Solid-star curves correspond to numerator matrices, while
solid-diamond ones correspond to characteristic polynomials. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

whereΓ denotes thematrix ambiguity, Q̄ stands for a block vector
stacked by the matrix coefficients of {Qi(q)}Li=1, Q̂ j represents
the estimate of Q̄ in the j-th experimental trial, and K is the
total number of Monte-Carlo trials. Similarly, the identification
performance of characteristic polynomials is evaluated by

nMSED =
1
K

K
j=1

∥p̄ − p̂j
∥
2
2

∥p̄∥
2
2

, (48)

where p̄ denotes a vector stacked by the coefficients of all the
characteristic polynomials and p̂j is the estimate in the j-th
experimental trial. In the simulation, the common system input is
generated as a white-noise signal or a sum-of-sine signal. To show
the identification performance against noise effect, the signal-to-
noise ratio (SNR) is defined as

SNR = 10 log


L,N

i=1,k=1
∥yi(k) − wi(k)∥2

2

L,N
i=1,k=1

∥wi(k)∥2
2

 . (49)

Example 1. Two channel systems with tall transfer matrices are
considered. Their system matrices are shown as follows:

A1 =


−0.6537 0.1005
1.0000 0


, B1 =


1.4525 0.6578
0.6726 0.2015


,

C1 =

−0.0082 0.0885
−0.9403 −1.0258
0.1616 −2.0666

 , D1 =

−0.0810 −0.3231
−0.1936 1.7654
−1.0544 0.3209

 ,

A2 =


−1.0060 −0.2162
1.0000 0


, B2 =


−0.1088 −0.4299
−1.0141 −0.9198


,

C2 =

−0.2591 0.7364
−1.7646 0.0137
−0.3099 0.6287

 , D2 =

−1.2215 −0.3806
−0.5776 2.0738
−2.9127 −1.2171

 .

(50)

It can be verified that the above two transfer matrices possess no
transmission zeros and have no common poles.

Figs. 1 and 2 show the identification performance of both
numerator matrices and characteristic polynomials. The nMSE
curves in Fig. 1 are plotted with respect to SNR. The length of
Fig. 2. Example 1: identification performance of Algorithm 2 against the number
of observation samples. Blue curves correspond to the sum-of-sine input signal,
while red ones correspond to the white noise input. Solid-star curves correspond
to numerator matrices, while solid-diamond ones correspond to characteristic
polynomials. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

adopted output data is set to 8000 and the number of Monte-Carlo
trials is set to K = 50. We can see that the nMSE values for both
the numerator matrices and characteristic polynomials decrease
along with the SNR, indicating that the identification performance
can be improved by increasing the SNR. The nMSE values of
the characteristic polynomials are slightly smaller than those of
numerator matrices, because the identification of the numerator
matrices relies on the identification results of the characteristic
polynomials. In addition, the nMSE values corresponding to the
white-noise input are slightly smaller than those corresponding
to the sum-of-sine input signal. This is because the frequency
component of the white-noise input is much richer than the sum-
of-sine input signal. Fig. 2 shows the identification performance
against the number of observation samples, where the SNR is set to
20 dB. We can observe that the nMSE values decrease along with
the number of observation samples.

Example 2. Three channel systems with square transfer matrices
are considered. Their system matrices are shown as follows:

A1 =


1.0328 −0.2000
1.0000 0


, B1 =


0.4692 −0.4205
0.5282 0.1416


,

C1 =


0.2957 −0.1632

−0.6861 1.0004


, D1 =


−1.1490 −0.5662
−0.6648 −1.6503


,

A2 =


−1.2533 −0.3927
1.0000 0


, B2 =


0.7369 0.2112
0.7080 −0.3047


,

C2 =


1.8618 0.2300
1.9953 −0.0621


, D2 =


−1.5296 −2.9723
−2.2695 0.8078


,

A3 =


1.3981 −0.4872
1.0000 0


, B3 =


1.4372 −0.8803

−0.5827 0.0493


,

C3 =


0.3931 −0.2496
0.4023 −0.1164


, D3 =


−1.5417 −1.4544
−0.3472 −0.0452


.

In the above setting, the first two systems are stably invertible
while the third one is not. It can be verified that the above three
transfer matrices have no common zeros and poles.

In this example, the characteristic polynomial of each channel
can be determined by carrying out steps 1–2 of Algorithm 1.
Since the first two systems are stably invertible, their numerator
polynomial matrices can then be identified by steps 3–4 of
Algorithm 1 or steps 2–3 of Algorithm 2. Due to the fact that the
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Fig. 3. Example 2: identification performance of the first two channels using
Algorithm 1. Blue curves correspond to the sum-of-sine input signal, while red ones
correspond to the white noise input. Solid-star curves correspond to numerator
matrices, while solid-diamond ones correspond to characteristic polynomials. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

third system is non-invertible, its numerator polynomial matrix
Q3(q) cannot be identified by Algorithm 1. However, since


Q2(q)
Q3(q)


is

right coprime, Q3(q) can then be identified by carrying out steps
2–3 of Algorithm 2.

Fig. 3 shows the identification performance of the first two sys-
tems using Algorithm 1, while Fig. 4 shows the identification per-
formance of the last two systems using Algorithm2. In Algorithm1,
the value of l in (27) is set to 100. Analogous to Example 1, the iden-
tification accuracy improves along with the SNR. In addition, the
performance associated with a sum-of-sine signal input is slightly
worse than that with a white-noise input.

Since the numerator polynomial matrices of the first two sys-
tems {Qi(q)}2i=1 can be identified using either Algorithm 1 or Algo-
rithm 2, the identification performances of these two algorithms
are compared. From Fig. 5, we can find that the identification per-
formance of Algorithm 1 is slightly worse than that of Algorithm 2,
which might be caused by the approximation error introduced by
neglecting the first term on the right-hand side of (27).

7. Conclusion

In this paper, we have presented a comprehensive study
of the blind identification of multivariable systems in state-
space form. Identification algorithms have been developed for
systems with invertible or non-invertible, square or tall transfer
matrices. The present work is challenging in the following aspects.
Different from the blind system identification with scalar transfer
functions, the product of twomultivariate transfermatrices is non-
commutable. Hence, the cross-relation equation between different
channels cannot be derived immediately. Unlike the traditional
blind identification of FIR systems, the rational transfer matrices
of the concerned systems have coupled poles and zeros, which
is difficult to deal with. For the proposed identification methods,
their blind identifiability conditions have been investigated. In
addition, two numerical simulation examples have been provided
to validate the presented identification algorithms.

The derived identification results in this paper do not rely on
any statistical properties of the input signal. In other words, any
persistently exciting deterministic input sequence is acceptable.
Due to the fact that both the input and plants are unavailable, the
derived identification results possess a wide range of applications,
such as the detection of a common fault sequence of multiple
plants, the reconstruction of the object image frommultiple sensed
images, and so on.
Fig. 4. Example 2: identification performance of the last two channels using
Algorithm 2. Blue curves correspond to the sum-of-sine input signal, while red ones
correspond to the white noise input. Solid-star curves correspond to numerator
matrices, while solid-diamond ones correspond to characteristic polynomials. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. Example 2: comparison of Algorithm 1 and Algorithm 2 on identifying the
first two systems. The star-blue curve corresponds to the performance of Algorithm
1,while the diamond-red curve corresponds to the performance of Algorithm2. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Appendix A. Proof of Lemma 1

According to the generalized resultant matrix properties in
Kung, Kailath, and Morf (1976) and Lemma 1 in Giannakis et al.
(2000, Chapter 3.3.2), it can be established that rank(Gr) = rm+ n̄,
where n̄ denotes theminimal order (sum of the degrees of minimal
polynomial basis) of G(q). Thus, to obtain the results in the lemma,
it is sufficient to prove that n̄ = 2n.

In this proof, we shall use following facts (David Forney, 1975;
Kailath, 1980):

(1) ThepolynomialmatrixG(q) in (3) is irreducible if rank [G(q)] =

m for all q ∈ C;
(2) If G(q) is irreducible, then theminimal order of G(q) equals the

maximum degree of allm × m minors of G(q).

By Assumptions A2 and A3, there exists an MFD of the i-th
channel system Hi(q) = Ni(q)R−1

i (q) such that deg [det(Ri(q))] =

n,

Ni(q)
Ri(q)


is irreducible and the maximum degree of the m × m

minors of Ni(q) is n.
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Since Ni(q)R−1
i (q) = Qi(q)(pi(q)I)−1, the polynomial matrix

G(q) in (3) can be rewritten as

G(q) =


G1(q)
G2(q)


=


N1(q)R−1

1 (q)p1(q)p2(q)
N2(q)R−1

2 (q)p1(q)p2(q)


. (A.1)

It has that
det


R−1
1 (q)p1(q)p2(q)


det


R−1
2 (q)p1(q)p2(q)

 =


p2(q)
p1(q)


pm−1
1 (q)pm−1

2 (q).

By the assumption that H1(q) and H2(q) have no common poles,
i.e. p1(q) and p2(q) have no common zeros, there exist polynomial
matrices R̃1(q), R̃2(q) and C̃(q) such that
R−1
1 (q)p1(q)p2(q)

R−1
2 (q)p1(q)p2(q)


=


R̃2(q)
R̃1(q)


C̃(q), (A.2)

where det(C̃(q)) = pm−1
1 (q)pm−1

2 (q), det(R̃2(q)) = p2(q),
det(R̃1(q)) = p1(q). Then we have that

G(q) =


G1(q)
G2(q)


=


N1(q)R̃2(q)
N2(q)R̃1(q)


C̃(q). (A.3)

Under the Assumption (2)–(3) of the lemma, it can be verified
that


N1(q)R̃2(q)
N2(q)R̃1(q)


has full column rank for any q ∈ C, so it is the

coprime part of G(q). In addition, by the properties of Ni(q) shown
above, we can obtain that the greatest degree of m × m minors
of either N1(q)R̃2(q) or N2(q)R̃1(q) is 2n. By the Assumption (4)
of the lemma, it can be established that the greatest degree of all
m×mminors of


N1(q)R̃2(q)
N2(q)R̃1(q)


is equal to that of either N1(q)R̃2(q) or

N2(q)R̃1(q). As a consequence, the minimum order of

G1(q)
G2(q)


is 2n.

So far, it has been proven that rank(Gr) = rm + 2n.
The pseudo source signal u(k) in (3) is considered as an output

of s(k) by linear filtering. By Assumption A1, i.e. s(k) is persistently
exciting, it can be established that u(k) is persistently exciting as
well (Ljung, 1999); hence, thematrix U1,r,N in (7) has full row rank.
We can obtain from Eq. (7) that
rank


Y2n+1,r,N


= rank (Gr) = rm + 2n.

Therefore, the lemma is proven.

Appendix B. Proof to Lemma 3

As shown in the proof of Lemma 1, the pseudo input
u(k) is persistently exciting. Without noise effect, the rank of

Y1
τ+1,3n+1,N

SiY
2
τ+1,n+1,N


is therefore equal to that of

G1,2
3n+1,n+1 =


G1
3n+1

SiG2
n+1 0


, (B.1)

where G1
3n+1 and G2

n+1 are defined in (7). Note that the
coefficient matrix G1,2

3n+1,n+1 is determined by the polynomial

matrix

G1(q)
G2,i(q)


with G2,i(q) being the i-th row of G2(q).

ByAssumption (2) of this lemma,we can obtain that (Kung et al.,
1976):

rank


G1
n+1

SiG2
n+1


= (n + 1)m + 2n.

Furthermore, following the proof procedure in Section III of Kung
et al. (1976) or the rank analysis in Chen (1999, Chapter 7.8.2), we
can obtain that

rank

G1,2
3n+1,n+1


= rank


G1
n+1

SiG2
n+1


+ 2nm

= (3n + 1)m + 2n.
It then follows that
rank

Y 1

τ+1,3n+1,N
SiY 2

τ+1,n+1,N


= rank


G1,2
3n+1,n+1


= (3n + 1)m + 2n.

By Corollary 1, we have that
rank


Y 1

τ+1,3n+1,N


= (3n + 1)m + n.

As a consequence, we can obtain that

rank

Y 1

τ+1,3n+1,N
SiY 2

τ+1,n+1,N


= rank


Y 1

τ+1,3n+1,N


+ n.

The lemma has been proven.
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