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Abstract 

BjGmer, A. and J. Karlander, Invertibility of the base Radon transform of a matroid, Discrete 

Mathematics 108 (1992) 139-147. 

Let M be a matroid of rank r on n elements and let F be a field. Assume that either char F = 0 
or char F > r. It is shown that the point-base incidence matrix of M has rank n - k + 1 over F, 
where k is the number of connected components. This implies that the Radon transform on the 

family of bases is invertible if and only if the matroid is connected. If M is loop-free then the 

Radon transform on the family of m-element independent sets is invertible, for every 

O<m<r. 

1. Introduction 

Let E be a set of n elements and f : E + F a function with values in a field F. 

The Radon transform Rf of f is the F-valued function on the family of subsets of 

E defined by 

Rf (A) = c f(x) for every A G E. 
XEA 

If the A’s belong to a specific family d of subsets we make the following 

definition: 

The Radon transform is invertible on Se if and only if Rf (A) = Rg(A) for all 

A E s4 implies that f = g. 

The Radon transform can be expressed in a different way by the use of 

matrices. Suppose that the elements in E and .~4 are enumerated such that 

E={x,, . . . ,x,} and &={A,, . . ,, A,}. We now define the incidence matrix 

I(& E) by 

Z(& E) = M e M,, = 
1 ifxjEAi, 

0 ifxj$Aj. 
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then Ef = I(&, E) .f Clearly, the F-Radon transform is invertible on & if and 

only if rank,(Z(.$ E)) = IZ. 

Therefore, to find out whether the Radon transform is invertible or not is a 

special case of the problem of finding the rank of I(&, E). Of course, for 

complicated families & this is not necessarily a simple problem. 

In this paper we will study the case when .& is the family of bases of a matroid 

on the set E. Such incidence matrices have earlier been studied from a polyhedral 

point of view (and hence over the field of real numbers) by Edmonds [5]. 

Of course, the Radon transform cannot in this case be generally invertible. The 

most striking counterexample is perhaps when M is the free matroid with B = E 

as the only base. The concept of connectivity plays a key role in this problem. 

Indeed, let M be a connected matroid of rank r, and assume that either 

char F = 0 or char F > r. Then the Radon transform is invertible on the family 

!B(M) of bases. This is our Theorem 1. 

If M is not connected then E can be subdivided into k connected components. 

Assume that char F = 0 or that char F is greater than the matroid rank of any 

component. In this case rank,(Z(B, E)) = IEl - k + 1. This is our Theorem 2. 

The characteristic 0 case of this rank formula is implicit in Edmonds’ work [5]. 

Our proof of the last theorem uses the fact that I(%, E) can be regarded as a 

kind of composition of the incidence matrices corresponding to the components 

of M. This construction allows us to generalize Theorem 2 in a purely 

matrix-theoretic way. This generalization is our Theorem 3. 

The finite Radon transform has previously been studied in several papers, see 

e.g. [2,4,6,7]. From a matroid-theoretic point of view the paper of Kung [6] is 

particularly interesting. He proves that the family of hyperplanes of a simple 

matroid has invertible Radon transform, and similarly for the family of circuits of 

a matroid whose dual is simple. 

2. Invertibility on matroids 

We will assume familiarity with elementary matroid theory, see e.g. [8,9]. 

Nevertheless we begin by reviewing a few basic concepts. 

Let M be a matroid with E as the set of elements, 93(M) as the family of bases, 

9(M) as the family of independent sets and ‘S’(M) as the family of circuits. Let A 

be an arbitrary subset of E. The following defines the deletion and contraction by 

A: 

l ML4 is the matroid with E - A as elements and {X: X E E -A, X E 9(M)} 

as independent sets. 
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l M/A is the matroid with E -A as elements and {X: X E E -A, X U Y E 

9(M) where Y is a basis of A} as independent sets. 
We define a relation - on the set E by 

x-y e x=y or 3CeCe(M) with {x,y}cC. 

The relation - can be shown to be an equivalence relation. Its equivalence 
classes are called the components of M. If M has only one component we say that 
M is connected. 

Our aim is to prove the following theorems. In all the following we assume that 
F is a field such that char F = 0 or char F > r,,,,, where r,,, = max{rank(Mi): Mi is 
a component of M}. If M is connected then r,,, = r. 

Theorem 1. Zf M is a connected matroid with IEl* 2 then the Radon transform is 
invertible on 93(M). 

Theorem 2. Zf B = Z(L%(M), E) is the base incidence matrix of a matroid M with n 
elements, not all loops, and if the number of components of M is k, then 
rank,(B) = n - k + 1. 

As was discussed in the introduction, Theorem 1 is a restatement of the k = 1 
case of Theorem 2. Our method of proof is to first establish Theorem 1 with the 
use of matroid structure, and then deduce Theorem 2 by completely general 
arguments. These results are in general false when 26 char F s r,,,,,. For 
instance, the columns of Z(B)(M), E) are clearly dependent over F whenever 
char F divides r. 

Corollary. For a connected matroid M there exists an injective mapping @ : E + 
9(M) such that x E @(x) for all x E E. 

Such a matching can be found by picking out n bases 3’ such that the square 
matrix Z(3’, E) is nonsingular, and then finding a nonzero term in the defining 
expansion of det Z(%3’, E). 

It is a consequence that 1 B(M)1 3 IEl for every connected matroid M. 
However, this inequality is known to hold for the larger class of all matroids 
without isthmuses and loops, and for connected matroids much better lower 
bounds for l.%(M)I are known, see e.g. [l, Propositions 7.5.1 and 7.5.41. 

Since every proper truncation of a loop-free matroid is connected we can also 
deduce the following consequence of Theorem 1. 

Corollary. Zf M is a loop-free matroid of rank r then the F-Radon transform is 
invertible on the family 9,(M) of k-element independent subsets, for every 
O<k<r. 
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The following lemma, due to Crapo [3], will be of crucial importance for the 

proof. 

Lemma. Let M be a connected matroid and e an arbitrary element. Then M\e or 
Mle is connected. 

We will also make use of the following observation: If e is an element in a 

connected matroid M (actually we only need that e is neither a loop nor an 

isthmus) then there exist bases B,, B, E 93(M) such that e E B1 and e 4 B2. 

Proof of Theorem 1. We use induction on the size of IEl. When E = {x, y} the 

only possible connected matroid over E is generated by the bases B, = {x}, 
B2 = {y}. Obviously, the Radon transform is invertible on B1, B2. 

Suppose the theorem is true for IEl d n. Let M be a connected matroid with 

IE( = rz + 1 and let Rf : 93(M)+ F be the known Radon transform of a function f 

We then must show that f(x) can be uniquely determined for all x E E. We 

choose an element e E E and make use of the lemma. There are two cases to 

consider. 

Case 1: M\e is connected. 
Since 9(M\e) = {B’: B’ E 93(M) and e # B’} the Radon transform Rf (B’) is 

known for every B’ E %(M\e). By induction, it is possible to determine f(x) for 

all x E E - {e} and, since there exists a B E 3(M) with e E B, f(e) can be 

calculated by 

f(e) = Rf (B) - l&,,, f (x). 

We conclude that Rf is invertible on 98(M). 

Case 2: M/e is connected. 
In this case, 93(M/e) = {B’: B’ = B - {e}, B E W(M), e E B}. Let f(e) = t. 

Then 

Rf (B’) = Rf (B) - t. 

By induction, the Radon transform is invertible on the sets B’, and since it is a 

linear transform we can express f(x) on the form 

f(x) = a, + b,t, 

where a, and 6, are known elements of F, depending only on x. 

We now show that t can indeed be determined and thereby all f(x). If there 

exists a B’ with C b, # -1, where x E B’, then t can be found by solving the 

equation 

Rf (B’ U e) = t + c (a, + b,t) 
XES’ 
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On the other hand, suppose that C b, = -1 for all B’ = 93(M/e). Define a 

function g on E - {e} by g(x) = b,. The Radon transform of g on %(M/e) is 

Rg(B’) = -1 for all B’ E %(M/e). Let m = r - 1 be the common cardinality of the 

bases B’ and define a function h by h(x) = -l/m for all x E E - {e j. Then 

Rh(B’) = -1 for all B’, i.e., 

Rg(B’) = Rh(B’) for all B’ E %(M/e). 

By the invertibility of the Radon transform we find that g = h, so b, = -l/m 

for all x E E - {e}. Now, let B, be a base 

by the equation 

of M not containing e. Then t is given 

Bf(B,) = 2 (a, + b,r) = c (a, -t/m) = C a, - t(m + 1)/m. 
x641 X~BO XEB” 

Note that we have used that both m and m + 1 are invertible in F, which 

follows from the assumption that char F = 0 or char F > r = m + 1. 

We conclude that Rf is invertible on 93(M). 0 

Proof of Theorem 2. First, suppose that M contains a set of loops Eo. In that 

case every loop 1 forms a component with 1 as its only element. The columns in B 
corresponding to E. contain only zeroes. If we let M’ = M\Eo we get a matroid 

with n’ = it - lEol elements and k’ = k - IEol components. Let B’ be the new 

base incidence matrix. If the theorem is true for B’ then 

rank(B) = rank(B’) = n’ - k’ + 1 = it -k + 1. 

Therefore, we may assume that M does not contain any loops. 

Now, enumerate the components Ml, M2, . . . , Mk. Every component forms a 

connected matroid with a set of bases. Let these bases be enumerated so that A,,j 
means base j in M,. Obviously, A is a base in M if and only if 

A = A,,j, U A,,j, U . . . U A,,j~, 

where 1 S j,, s mp and mp is the number of bases in M,. By rp we shall mean the 

cardinality of the bases in Mp. Let 

We will show that Bx = 6 if and only if there is a vector 

such that Xi, xi E Mp implies Ai = Aj = pP for all i, j and p,rl + . . - + pkrk = 0. 
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Indeed, let BX = 6 and let xi, Xi E I’$. There exist m,, bases of the form 

Al,l UA2,1U. --UA,,,U*- *UAk,l, where l~q~m,. 

Let LY = C A, where the summation runs over all s such that 

x, EAT,, UA,,, U * . . UA,_l,, UAp+l,, U . . . UAk,l. 

If HP is the incidence matrix of the family {A,,,} and i’ is the vector i restricted 

to M,, then 

(Y 

H,$ = - ; . 

0 a 

Since char F = 0 or char F > rp we can use Theorem 1 to find that there is only 

one solution to this equation, namely 

1 
XI=-!! i . 

‘P 
0 1 

(This is of course also true when the size of the component is 1.) 

We can now set pp = - a!frp. Since 

Hppp for all p, 

we get 

1 

Bi = (plrl + . . . + pkrk) 0 i . 

1 

Then, BX = 6 implies that ,u,r, + p2r2 + . - . + pkrk = 0. 

Conversely, it is obvious that every vector x with Ai = A, = pp if xi, xi E Mp and 

cLlrl + w2 + . f . + pkrk = 0 satisfies BX = 0. 

Since all ri # 0, the choice of the pi’s is restricted to k - 1 degrees of freedom, 

i.e., the kernel of B is of dimension k - 1. 

We conclude that rank(B) = n - k + 1. 0 

3. Composition of matrices 

Let Ml, M,, . . . , Mk be a set of matrices with entries from a given field F, 

which in this section may be of arbitrary characteristic. We assume that the size of 

Mi is mi x ni. Now, we define a (m, . . . m,J X (n, + * . . + n,)-matrix M = M, v 

M2 v . . . v Mk in the following way: Let W be the set of vectors w = 
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( a,, a29 * * * , ak) where ai E (1, . . . , mj}. Given w E W we let r(w) be the 
(n,+**. + nk)-vector obtained by concatenating the rows a,, . . . , uk of 

Ml,..., Mk. The ml.. . mk vectors thus obtained will be ordered lexicographi- 
tally. Let M be the matrix with the rows I, . . . , r(wm ,.... ,,). 

We will now establish the connection between the matrix ranks of the Mis and 
the rank of M over F. To this end we will need the following definition. 

Definition. A matrix A is said to be balanced if there exists a vector X such that 

Theorem 3. If M = MI v M2 v * . . v Mk then rank,(M) = cf==, rankp(Mi) - 
max(p, 1) + 1, where p is the number of balanced matrices Mi. 

Proof. To the row number i in M we have a corresponding vector We. If 

Wi=(ui,. . .) &) we let p(w,) be a (ml + * * * + mk)-vector with 1 in the positions 
m, + . * . + mj-i + ui, 1 s j ok, and 0 in all other positions. Let J be the 

(m,. . . mk)Xh+’ * - + m&matrix with the vectors p(w,) as rows. 
Next,wedefinea(m,+~~~+m,)X(n,+** * + nk)-matrix M’ in the following 

way: 

M’= 

0 0 ..a 0 

0 M2 0 *.a 0 

0 M3 ... 0 
. . . . . . . . . . . . 

0 0 ... it& 

i.e., the diagonal consists of the matrices Mi and the rest of M’ of zeroes. 
Obviously, rank(M’) = C rank(Mi). Furthermore, it is easily realized that M = 
J-M’. 

The null space X(J) = {i: J_iY = 0) has dimension k - 1. Indeed, suppose Ji = 0. 
We can enumerate the components of 2 such that x;,j is the component in position 
ml+.* . + m,_i + j. For every i, j,, j2 such that 

lsisk, lsji, j2dmi 

we can deduce the equation Xi,j, - xi,jZ = 0, i.e., there exists yi such that 

xi,j = Yi, l<j<q, l<i<k. 

Therefore the equations in J2 = 0 are all equal to y, + y2 + * . . + yk = 0, which 
implies that N(J) is (k - 1)-dimensional. 
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Let C&!(M) be the range of M, i.e., S!(M) = {M.f}. Our objective is to find 

rank(M) = dim S!(M). Since M = J . M’, we have 92(M) =_I. %(M’). If we let 

N’ = %!(M’) fl X(J) and make use of the dimension theorem of linear algebra we 

get 

dim 9(M) + dim X’ = dim %!(M’), 

that is 

rank(M) = c rank(Mi) - dim X’. 

If X is a vector in X(J) then X can be represented by the numbers yi, 1~ i < k. We 

find that 

X E %(M’) G yi = 0 for every Mi which is not balanced. 

Therefore, if p 2 1 is the number of balanced Mi’s, we get 

dimX’=k-1-(k-p)=p-1. 

On the other hand, if p = 0 then dim X’ = 0. 

We conclude that 

rank(M) = c rank(Mi) - max(p, 1) + 1. 0 

Theorem 3 has the following application to set families. Suppose that 9& is a 

collection of r,-element subsets of Ei, for 1 c i c k, and let M, = I(Bi, Ei). In this 

case all the Mi’s are balanced. Furthermore, let M be the incidence matrix of the 

set family {A, U . . . UAk: A, E M,, 1 S i S k}. Assume that the ground sets E, are 

pairwise disjoint. Then the theorem gives that 

rank(M) = c rank(M,) -k + 1. 

Theorem 2 is a special case. 

Note added in proof. We have subsequently extended Theorem 2 to all fields. 

The result for a field F of characteristic p (p a prime number or p = 0) is that 

rank&Q = 
n-k if p divides rank(Mi) for all components Mi, 
12 _ k + 1 , otherwise. 

This shows that Theorem 1 is valid for all fields whose characteristic does not 

divide rank(M). 

The details will appear elsewhere. 
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