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We show that any fundamental triangular norm-based T-tribe 7, s € (0, ), is a
weakly generated tribe. Consequently, .7 is a T-tribe for any measurable t-norm T
if and only if it is a T,-tribe for some s € (0,). Further we prove that each
T,-measure m, s € (0, ], defined on a T,-tribe .7, is a generated measure; i.e., the
irreducible part in the Butnariu—Klement decomposition of T,-measures is always
trivial.  © 1996 Academic Press, Inc.

1. INTRODUCTION

Triangular norm-based measures (T-measures) appear under various
names, and in specific analytical form, in such fields as mathematical
statistics, capacity theory, probability and measure theory, pattern recogni-
tion, and game theory. For more details see, e.g., [2, 3]. Throughout this
paper, we will deal with fundamental triangular norm-based measures, as
far as the class (T,; s € [0,]) of Frank’s fundamental t-norms [4] is of
interest in most of the applications mentioned above. For more details
about t-norms see Section 2. Recall that the family (T,) appeared first in
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Frank’s [4] investigation of the functional equation
T(a,b) +S(a,b) =a + b, a,be[0,1], (1)

where T is a triangular norm and S is an associative function on the unit
square. Note that the only strict solutions of (1) are just t-norms T, for
s € (0,) (and T, with T, are the limits of these T,) and the corresponding
S, are just the dual ¢-conorms, i.e., S(a,b) = 1 — T,(1 — a,1 — b). Frank’s
family of fundamental t-norms is given by

T,(a,b) = min(a, b) ifs=0
=a-b ifs=1
=max(a+b—1,0) if s = o0

log,(1+(s“—1) -(s*—1)/(s-1)) ifs<(0,1) U (1,).

T-measures are defined on subsets of the unit cube [0, 1]* = .7(X) which
form triangular norm based tribes (T-tribes); see [6]. Note that a general-
ization to subsets of [0,C]%, C € (0,%), is immediate. Let (X,.*) be a
measurable space, i.e., . is a o-algebra of (crisp) subsets of X. If one takes
a system (%) of all “#measurable functions with the range in the unit
interval, then (%) is a T-tribe for any measurable t-norm T. 9(%) is
called a generated tribe. In Section 2 we give a characterization of gener-
ated tribes which is due to Klement [6] (these are exactly those T,-tribes,
for some s € (0, »), that contain all constant functions from F(X)). For a
denumerable space X, Mesiar [9] showed the structure of a T.-tribe I
based on a strict fundamental t-norm .7, which ensures that 7 is also a
T-tribe with respect to any measurable t-norm T. We extend this result to
the general case showing that .7 is a T-tribe for each measurable t-norm T
if and only if it is a T-tribe for some strict T, (i.e., s € (0,)). For some
details on this topic see also [10, 11].

Let 7 C 9(%) be a T,-tribe. Let M be a finite o-additive measure on .
and let g, h be two M-integrable .%~measurable non-negative functions on
X. Then any real-valued mapping m defined on .9 via

m(A)=f{A>o}(g+h-A)dM, Aeg, (2)

where the right-hand-side integral is a Lebesgue-Stieltjes integral, is a
well defined finite monotone T,-measure, s < %. The measure m defined
by (2) is called a generated measure. Note that a generated measure m is a
T.-measure if and only if g =0 (M-a.e.). The question is whether any
finite monotone T,-measure is necessarily a generated measure. The
answer for s =0 is negative; see Klement [5]. Recall only that any
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T,-measure on a generated tribe can be expressed in an integral form by
means of Markov kernels. For s = », the answer is affirmative; see
Butnariu [1]. Any T_-measure m defmed on a T,-tribe .9 is a Zadeh
measure [13], i.e.,

m(A) = [4dM, A€ (3)

In the case of strict fundamental triangular norm-based measures, an
affirmative answer was given by Klement [7] under the additional assump-
tion that .7 is a generated tribe.

The main result of Butnariu and Klement [2] shows that, in general, any
finite monotone T,-measure, s € (0, ), defined on a T -tribe .7, can be
uniquely decomposed into a sum of a generated measure and a so-called
monotonically irreducible T ,-measure. A natural problem arose: is there
any non-trivial monotonically irreducible T,-measure? This open problem
from [3] is equivalent to the above problem whether any finite monotone
T,-measure is a generated one. A partial solution (for denumerable X) was
found by Mesiar [9]. The main result of this paper is a complete solution of
the above-mentioned problems. We show that any finite monotone T,-
measure, s € (0, «), defined on some T,-tribe .7, is necessarily a generated
measure.

Our representation theorem for T.-measures is valid for mono-
tone (finite) T,-measures. The question whether it is true also for non-
monotone T -measures remains open (see also [3]) and it is equivalent
to the existence of Jordan decomposition of T ,-measures.

2. T-TRIBES

A triangular norm (t-norm for short) is a two place function T: [0, 1] X
[0,1] — [0,1] which is associative, commutative, and non-decreasing in
each component and satisfies the boundary condition T(a,1) = a. In what
follows, we deal with Borel-measurable t-norms only. Note that, e.g., any
continuous t-norm is Borel-measurable. Due to the associativity, we are
able to extend T to be an n-ary operation, n € N. The monotonicity and
boundary conditions allow one to extend T to work on countable se-
guences.

A t-norm T is called strict if it is continuous and strictly monotone on
(0,1) x (0,1). A continuous t-norm T is called Archimedean if T(a,a) < a
for all a €(0,1). Recall that any strict t-norm is Archimedean. Any
fundamental triangular norm is continuous, all T, with s> 0 are
Archimedean, and T,, s € (0, «), are strict t-norms.
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By Ling [8], any continuous Archimedean t-norm T is generated by an
additive generator f, f: [0,1] = [0, ], f is continuous strictly decreasing,
and f(1) = 0, so that

T(a,b) = f1(min(£(0). f(a) +£(b))),  a,be[0,1].

The generator f is unique up to a positive multiplicative constant. The
case f(0) = o corresponds to the strict t-norm case and then

T(a,b) = f71(f(a) + ().

Let X be a non-void set. Recall that a function A: X — [0, 1] was
introduced by Zadeh [12] to generalize the concept of a Cantorian subset
A of X which can be identified with its characteristic function A4: X — {0, 1}
(and then A is called a crisp subset of X). Recall that the collection of all
functions on X with the range in the unit interval [0, 1] is denoted by .7 (X).
For a fixed number d € [0, 1], we denote by d the corresponding constant
function on X. Let T be a given t-norm. We extend T to #(X) pointwise as
usual, i.e., (ATB)(x) = T(A(x), B(x)), x € X. This operation can be con-
sidered as an intersection. The complement is defined by

A'(x) =1-A(x), xe€X (Zadeh[12]).

A dual operation to T, S(a,b) =1—-TA —a,1 —b), a,b €[0,1], is
called a dual t-conorm. Its pointwise extension to .#(X) can be considered
as a union. If f is an additive generator of a t-norm T, then g, g(a) =
f(L — a), a €[0,1], is an additive generator of the dual t-conorm S.

DeriNITION 2.1 (Klement [6]).  Let T be a t-norm. A subfamily 9 c #(X)
containing 0y, being closed under complementation and under countable
intersections induced by T, is called a T-tribe.

Obviously, by the duality of T and S, the closedness with respect to T is
equivalent to the closedness with respect to S in the definition above.

ExamMPLE 2.2. (i) Let 7 c F(X) consist of crisp subsets of X only. Then
T is a T-tribe for some t-norm T if and only if 7" is a o-algebra (we identify
an ordinary subset of X and its characteristic function). Consequently, a
o-algebra 9 is a T-tribe for any t-norm T.

(i) Let . be a o-algebra of crisp subsets of X and let (%) be a
generated tribe (i.e., the system of all #measurable functions from 7(X)).
Then (%) is a T-tribe for any (measurable) t-norm T.

(iii) (Mesiar [9]) Let .% be a o-algebra of crisp subsets of X and let
Y €% Then (7, Y) = {4 € I(¥); ATY' €.%} (where T is any t-norm;
note that ATY' equals zero, resp. A4, on Y, resp. Y¢ = X \Y, independently
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of the choice of T) is called a semigenerated tribe. This tribe consists of all
Fmeasurable functions from Z(X) which possess trivial values out of Y.
Each semigenerated tribe is a T-tribe for any (measurable) t-norm T and it
is a generated tribe only for trivial Y (i.e., when Y = X). If Y = &, then
ANZ,Y) =, ie., the corresponding semigenerated tribe is a o-
algebra of crisp subsets of X.

(iv) (Navara [11]) Let A c.¥ be a o-ideal (i.e., A contains all
measurable subsets of each of its members and it is closed under count-
able unions). Then S(.%, A) = {4 € FAP); {x € X; A(x) € (0,1)} € A} is
called a weakly generated tribe. A weakly generated tribe is a T-tribe for any
(measurable) t-norm T. A weakly generated tribe is a semigenerated tribe
if and only if A is a principal o-ideal, A = A(Y)={Z %, Z Y},
Y €&

(v) (Klement [6]) The family.7 consisting of all functions on X = [0, 1]
with the range [0, 1] which either are constant or have all their values in
the interval [%, 2] is a T,-tribe, but it is not a T-tribe for any continuous
Archimedean t-norm T.

We recall some results of Butnariu and Klement for T,-tribes; see [2, 3,
6, 71.

THEOREM 2.3. Let T be a Ttribe on X, s > 0, and let 7V be the system
of all crisp subsets of X contained in . Then I " is a o-algebra and I is
contained in the corresponding generated tribe, 7 C I(T ).

THEOREM 2.4. Let . be a T -tribe on X. Then S is also a T-tribe; i.e., T
is closed under countable infima and suprema.

THEOREM 2.5.  For any fundamental t-norm T, with s > 0, a Ttribe
on X is a generated tribe if and only if it contains all constant functions from

F(X).

One of the authors (Mesiar [9]) has already shown that if T is a strict
t-norm, then a T-tribe 7 on X contains all constant functions dy, d € [0, 1],
if and only if 5 contains some non-trivial constant function d,, i.e., there
isade(0,1)sothat d, €.

COROLLARY 2.6. A Ttribe 7, s € (0,), is a generated tribe if and only
if there is some d € (0,1) so that dy € J.

The main result of Mesiar [9] characterizes the structure of T -tribes,
s € (0,), on a denumerable set X.

THEOREM 2.7. Let X be denumerable. Then a subsystem 7 C F(X) is a
T,-tribe, s € (0, ), if and only if T is a semigenerated tribe (and hence it is a
T-tribe for any t-norm T). |
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For a general X, the first steps in characterizing a T,-tribe, s € (0, ),
were done by Navara [11] and Mesiar [10]. In the following theorem, we
summarize the main results of [10, 11] and we give a shorter proof.

THEOREM 2.8. Let I be a system of functions from F(X). The following
are equivalent:

(a) T is a T-tribe for each (measurable) t-norm T,
(B) T is a Ttribe for some s € (0, ®);
(y) J is a weakly generated tribe.

The implications (a) = (B) and (y) = (a) are evident. We need only
prove ( B) = (). The proof is divided into several steps.

LEMMA 2.9. Let T be a Ttribe on X for some s € (0,) and let A be a
function contained in . Put F(A) ={xe X; A(x) € (0,1)}. Then the
restriction 71F(A) = {B|F(A); B € 9} is a generated tribe on F(A).

Proof. It is evident that F1F(A) is a T,-tribe on F(A). Now, due to
Corollary 2.6, it is enough to show that some non-trivial constant function
from SAF(A)), say (0.5) 4, is contained in F1F(A). For a given t-norm
T, s € (0, ), put

Pn,m(a) = Tvn(ssm(a))

forany n,m € N, a € (0,1). Here T}(a) = Sj(a) =aandforn = 1,2,...,
we put T/ Y(a) = T(T(a),a) and S"*'(a) = S,(S"(a), a). It is evident
that p, ,,, being defined on [0, 1], can be extended pointwise to #(X) and
that for any B €7, p, ,.(B) is also contained in 7.

Claim 1. For each a,b,t € (0,1), a < b, there are integers n, m € N
such that

Pum(t) € [a,b].

Indeed, let f be an additive generator of T,. The strictness of T,
s € (0,), ensures f(0) = «. Further,

Puw(t) =fH(n-f(g7 (m-g(1)))),

where g(¢) = f(1 — ¢) is an additive generator of the dual t-conorm S,. Put
q = f(a) — f(b) € (0,). Then there is an integer m € N such that

m>f(1—f"(q))/f(1—1),

and consequently

©>q=f(a) = f(b) 2 f(1 = f(m-f(1 1)) =f(g ' (m-g(1))) > 0.
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Now, it is easy to see that there is some integer n € N such that

fla) zn-f(g ' (m-g(1))) = f(b),

ie,a<p,,(t)<b.
Claim 2. There is a function C € 7 such that C|F(A) = (0.5); 4, Put

C = sup{(p,. m(A))To( Py m(A))'; n,m € N}.

Due to Theorem 2.4, C is contained in .7. Further, Claim 1 ensures that
C(x) = 0.5 whenever A(x) € (0,1) and C(x) = 0 whenever A(x) € {0, 1},
which proves Claim 2.

By Claim 2, there is a non-trivial constant function contained in the
T-tribe 71F(A) and consequently 71F(A) is a generated tribe. ||

LEMMA 2.10. Let . be a Ttribe on X for some s € (0,). Put
A={F(A);, AeT}.

Then A is a o-ideal of 7V (i.e., of crisp subsets of X contained in ).

Proof. Theorem 2.3 ensures A c.9 . Let F(A), A €9, be a given
element of A and let D be any subset of F(A) contained in .". Due to
Lemma 2.9, 71F(A) is a generated tribe and hence it contains a function
E such that E(x) = 0.5 whenever x € D and E(x) = 0 otherwise. Conse-
quently, there is a function B € such that B|F(A4) = E. F(A) can be
understood as a crisp subset of X contained in 9 and consequently
C = BT,F(A) € 7. It is easy to see that F(C) = D, which implies D € A.

Further, let {D,},cy € A be a countable sequence of elements of A.
Then there are some functions 4, €. such that D, = F(A4,), n € N.
Similarly, the functions C,, such that C,(x) = 0.5 whenever x € D, and
C(x) = 0 otherwise, n € N, are contained in 7. By Theorem 2.4, C =
sup,C, is contained in .9 and therefore D = U, D, = F(C) is contained
in A. Hence A is a o-ideal. |

Proof of Theorem 2.8. Let 9 be a T, -tribe on X for some s € (0, ) and
let A be a corresponding o-ideal from Lemma 2.10 inducing a weakly
generated tribe 917", A). Lemma 2.9 ensures {7 ¥, A) €7 and Lemma
2.10 ensures I c (T Y, A), ie., I is the weakly generated tribe, 7 =
FTV, M) 1

Note that any o-ideal A on a denumerable space X is a principal
o-ideal. Consequently any T.-tribe, s € (0,%), on a denumerable X is a
semigenerated tribe; i.e., Theorem 2.7 is a corollary of Theorem 2.8.
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ExampLE 2.11. Let X be an uncountable set and let . be a system of
all functions from #(X) differing from 0 or 1 in at most countably many
points. Then 7 is a weakly generated tribe which is not a semigenerated
tribe. Indeed, 9 =.9(2%, A), where A is a o-ideal of all denumerable
subsets of X and hence A is not a principal o-ideal.

We have just shown that a T-tribe .7 (for some strict fundamental
t-norm T,) is also a T-tribe for any (measurable) t-norm T. Is this assertion
true for each /(some other) strict t-norm T? It is evident that non-strict
t-norms do not possess this property.

Open Problem 2.12. Let 9 be a T*-tribe for some strict t-norm T*. Is
there some other measurable t-norm T so that .7 is not a T-tribe?

3. T-MEASURES

Let 7 be a T-tribe for some t-norm T. A mapping m: & — R is called a
T-measure (Klement [7]) if the following conditions are fulfilled:

m(0x) =0 (4)
A,B €T = m(ATB) + m(ASB) = m(4) + m(B) (5)
{A}enCT AycAyC o A, C - = limm(4,)

= m(limA,,). (6)

n

If, moreover, m(1,) <« and 4 < B implies m(4) < m(B), then m is
called a finite monotone T-measure. Note that if .7~ consists of crisp
elements only then a T-measure m may be considered as an ordinary
o-additive measure.

Zadeh [13] in 1968 introduced a probability measure on a generated
tribe (%) via

p(A) = [4dP, (7)

where P is a probability measure on o-algebra . and the right-hand-side
integral is a Lebesgue—Stieltjes integral. The additivity of the
Lebesgue—Stieltjes integral ensures that p is a finite monotone T-measure
on (%) if and only if the t-norm T fulfills the functional equation (1).
The same is true for any Zadeh measure (3) (note that (3) is a generaliza-
tion of (7), replacing a probability P by a finite o-additive monotone
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measure M). Hence any Zadeh measure is a finite monotone T,-measure
for each s € [0, «]. Butnariu [1] (see also [2, 3]) showed a converse in the
case s = .

THEOREM 3.1. Let m be a T -measure on a T -tribe 7 € F(X). Then for
each element A € F we have

m(A) = [AdM,

where M is the restriction of m to 9", M = m|g ",

Let M be a finite o-additive monotone measure on a o-algebra % of
subsets of a given set X and let (%) be the corresponding generated
tribe. For 4 € (%) put

m(A4) = M(supp 4), (8)

where supp A = {x € X; A(x) > 0}. It is easy to see that (8) defines a
finite monotone T-measure m if and only if the t-norm T fulfills T(a, b) =
0 < a=0 or b=0. Hence m defined by (8) is a T,-measure for each
finite s but not for s = o,

Combining the T-measures of type (3) (i.e., Zadeh measures) and
T-measures of type (8) we get just the generated measures; see (2). Recall
that a generated measure m defined on a generated tribe () can
be uniquely decomposed to a sum of a Zadeh measure and a measure of
type (8),

m(A)=[ (g+h-A)dm

{4>0}
= gdM + A-hdM
{4>0} {4>0}

= fA dL + K(supp A4),

where K and L are finite monotone o¢-additive measures whose
Radon—Nikodym derivatives with respect to M are g and #, respectively.
Any generated measure, even restricted to a subtribe of a generated tribe,
is a T,-measure for each finite s (and it is a T,,-measure if and only if it is
continuous from above in 0y, i.e., when g =0 (M-a.e.)). The converse
assertion for strict fundamental t-norms was shown by Klement [7] in the
case when the domain of m is a generated tribe.

THEOREM 3.2. Let m be a finite monotone T-measure, s € (0,%), on a
generated tribe I(.). Then m is a generated measure and for each element
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A € () we have

m(A)=[  (f+ (1 —f)-A)adm, (9)
{4>0}

where M = m|.7 is a finite monotone o-additive measure and f is an M-a.e.

uniquely determined #measurable function with range in the unit interval

(i.e., f € T(P)).

Recall again that the case of T,-measures (on a generated tribe) was
completely solved by Klement [5] by means of Markov kernels and there-
fore this case will be omitted in this paper.

If 7 is a semigenerated tribe, any T,-measure m on .9 can be decom-
posed into a T,-measure k on a generated tribe 7|Y and a o-additive
measure n on a o-algebra 9|Y¢. Consequently, we have the following
corollary (see also Mesiar [9)).

CoROLLARY 3.3. Let X be a denumerable set and let m be a finite
monotone T -measure on some T-tribe 7 on X for some s € (0,°). Then m
is a generated measure and it can be expressed by (9). |

Let m be a T,-measure, s € (0,), on a (non-generated) T -tribe 7.
Butnariu and Klement [2] have defined a T,-measure m* on .9 to be
monotonically irreducible, if it is monotone and if there is no nonzero
generated measure g on . such that (m* — ) is monotone on 7. The
main result of [2] (see also [3]) is summarized in the following theorem.

THEOREM 3.4. Let m be a finite monotone T -measure, s € (0,%), on a
T-tribe T CF(X). Then m can be uniquely decomposed to a sum of a
monotonically irreducible T -measure m* and a generated measure m,,

m(A) —m*(A) =my(A4)=[ (g+h-A)dM foreach 4 €7,
{4>0}

(10)
where M = m|9" is the restriction of m to J ¥ and g, h € I(T ") are two

M-a.e. uniquely determined J "-measurable functions with the range in the
unit interval.

As a main result of this paper, we give a solution of an open problem
from [3] concerning the structure of a finite monotone T,-measure m on a
general T-tribe .7, where s € (0, «). Showing that there is no non-trivial
monotonically irreducible T,-measure m*, by Theorem 3.4 we obtain
immediately that the only T,-measures are the generated measures.

THEOREM 3.5. Let 9 = I(A) be a weakly generated tribe and let m* be a
monotonically irreducible T -measure on 7, s € (0,%). Then m* is identically
zero.
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Proof. Let D € A. Then JID is a generated tribe on D and hence
m, = m*[(71D) is a generated T,-measure. It is evident that m%,, m*%(A)
=m,(A|lD), A €7, forms a generated T,-measure on .7 and that (m* —
m?,) is a monotone T,-measure on 7. But then m%, must be a zero measure
and thus m*(D) = 0 for each D € A.

Now, take any element 4 € 7. Put

Z(A) = {xeX; A(x) = 0}
U(A) = {xeX; A(x) =1}

and recall that F(A) = (Z(A) U U(A))°. The valuation property of m*,
the boundary condition m*(0,) = 0, and the fact that F(A4) € A (i.e,
m*(F(A)) = 0) implies that

m*(A) = m*(U(A)) = M*(U(A))

= M*(U(A) UF(A4)) = [ 1,dm*,
{4>0}
where M* = m*.7Y, which means that m* is a generated measure. The
monotonicity of (m* — m*) ensures the result. |1

COROLLARY 3.6. Let m be a finite monotone T -measure on a T-tribe T
of functions from I(X), s € (0,%). Then m is a generated measure,

VAeT m(A) = f{A>O}(f+ (1, —f) - A) dM,

where M = m|7 " is a restriction of m to the o-algebra I of all crisp
subsets of X contained in I and f is an M-a.e. uniquely determined
I V-measurable function with the range in the unit interval [0, 1], f € AT ).

The proof follows from Theorems 2.8, 3.4, and 3.5. Note that we have
just shown that if m is a finite monotone T ,-measure for some s € (0, ),
then it is a finite monotone T,-measure for each s € (0, ). Further, it is
easy to see that a finite monotone T.-measure m, s € (0,), is a
T.-measure (i.e., f is identically zero and m(A) is an integral of 4 with
respect to M, which means m is a Zadeh measure) if and only if m is
continuous from above in 0, (i.e.,{4,} €7, A, > A4, > ..., lim A4, = 0y
implies lim,m(A4,) = 0}. Finally, note that for any finite monotone T.-
measure m deflned on a T,tribe 7,5 € (0, ], we have the “add|t|V|ty”
property

m(A4) + m(B) = m(C) + m(D)

whenever A, B,C, D € .7, the algebraic sums (4 + B) and (C + D) are
equal, and {x € X; A(x)-B(x) =0} = {x € X; C(x) - D(x) = 0}.
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