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Ž .We show that any fundamental triangular norm-based T -tribe TT, s g 0, ` , is as
weakly generated tribe. Consequently, TT is a T-tribe for any measurable t-norm T

Ž .if and only if it is a T -tribe for some s g 0, ` . Further we prove that eachs
Ž xT -measure m, s g 0, ` , defined on a T -tribe TT, is a generated measure; i.e., thes s

irreducible part in the Butnariu]Klement decomposition of T -measures is alwayss
trivial. Q 1996 Academic Press, Inc.

1. INTRODUCTION

Ž .Triangular norm-based measures T-measures appear under various
names, and in specific analytical form, in such fields as mathematical
statistics, capacity theory, probability and measure theory, pattern recogni-

w xtion, and game theory. For more details see, e.g., 2, 3 . Throughout this
paper, we will deal with fundamental triangular norm-based measures, as

Ž w x. w xfar as the class T ; s g 0, ` of Frank’s fundamental t-norms 4 is ofs
interest in most of the applications mentioned above. For more details

Ž .about t-norms see Section 2. Recall that the family T appeared first ins

*The second author gratefully acknowledges the support of EC Grant CIPA 3510 PL
922147.
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w xFrank’s 4 investigation of the functional equation

w xT a, b q S a, b s a q b , a, b g 0, 1 , 1Ž . Ž . Ž .

where T is a triangular norm and S is an associative function on the unit
Ž .square. Note that the only strict solutions of 1 are just t-norms T fors

Ž . Ž .s g 0, ` and T with T are the limits of these T and the corresponding0 ` s
Ž . Ž .S are just the dual t-conorms, i.e., S a, b s 1 y T 1 y a, 1 y b . Frank’ss s s

family of fundamental t-norms is given by

T a, b s min a, b if s s 0Ž . Ž .s

s a ? b if s s 1

s max a q b y 1, 0 if s s `Ž .

s log 1q say1 ? sby1 r sy1 if s g 0, 1 j 1, ` .Ž . Ž . Ž . Ž . Ž .Ž .s

w xX Ž .T-measures are defined on subsets of the unit cube 0, 1 s FF X which
Ž . w xform triangular norm based tribes T-tribes ; see 6 . Note that a general-

w xX Ž . Ž .ization to subsets of 0, C , C g 0, ` , is immediate. Let X, SS be a
Ž .measurable space, i.e., SS is a s-algebra of crisp subsets of X. If one takes

Ž .a system TT SS of all SS-measurable functions with the range in the unit
Ž . Ž .interval, then FF SS is a T-tribe for any measurable t-norm T. TT SS is

called a generated tribe. In Section 2 we give a characterization of gener-
w x Žated tribes which is due to Klement 6 these are exactly those T -tribes,s

Ž . Ž ..for some s g 0, ` , that contain all constant functions from FF X . For a
w xdenumerable space X, Mesiar 9 showed the structure of a T -tribe TTs

based on a strict fundamental t-norm TT which ensures that TT is also as
T-tribe with respect to any measurable t-norm T. We extend this result to
the general case showing that TT is a T-tribe for each measurable t-norm T

Ž Ž ..if and only if it is a T -tribe for some strict T i.e., s g 0, ` . For somes s
w xdetails on this topic see also 10, 11 .

Ž .Let TT ; TT SS be a T -tribe. Let M be a finite s-additive measure on SSs
and let g, h be two M-integrable SS-measurable non-negative functions on
X. Then any real-valued mapping m defined on TT via

m A s g q h ? A dM, A g TT , 2Ž . Ž . Ž .H
� 4A)0

where the right-hand-side integral is a Lebesgue]Stieltjes integral, is a
well defined finite monotone T -measure, s - `. The measure m defineds

Ž .by 2 is called a generated measure. Note that a generated measure m is a
Ž .T -measure if and only if g s 0 M-a.e. . The question is whether any`

finite monotone T -measure is necessarily a generated measure. Thes
w xanswer for s s 0 is negative; see Klement 5 . Recall only that any
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T -measure on a generated tribe can be expressed in an integral form by0
means of Markov kernels. For s s `, the answer is affirmative; see

w xButnariu 1 . Any T -measure m defined on a T -tribe TT is a Zadeh` `

w xmeasure 13 , i.e.,

m A s A dM, A g TT. 3Ž . Ž .H

In the case of strict fundamental triangular norm-based measures, an
w xaffirmative answer was given by Klement 7 under the additional assump-

tion that TT is a generated tribe.
w xThe main result of Butnariu and Klement 2 shows that, in general, any

Ž .finite monotone T -measure, s g 0, ` , defined on a T -tribe TT, can bes s
uniquely decomposed into a sum of a generated measure and a so-called
monotonically irreducible T -measure. A natural problem arose: is theres
any non-trivial monotonically irreducible T -measure? This open problems

w xfrom 3 is equivalent to the above problem whether any finite monotone
Ž .T -measure is a generated one. A partial solution for denumerable X wass

w xfound by Mesiar 9 . The main result of this paper is a complete solution of
the above-mentioned problems. We show that any finite monotone T -s

Ž .measure, s g 0, ` , defined on some T -tribe TT, is necessarily a generateds
measure.

Our representation theorem for T -measures is valid for mono-s
Ž .tone finite T -measures. The question whether it is true also for non-s

Ž w x.monotone T -measures remains open see also 3 and it is equivalents
to the existence of Jordan decomposition of T -measures.s

2. T -TRIBESs

Ž . w xA triangular norm t-norm for short is a two place function T: 0, 1 =
w x w x0, 1 ª 0, 1 which is associative, commutative, and non-decreasing in

Ž .each component and satisfies the boundary condition T a, 1 s a. In what
follows, we deal with Borel-measurable t-norms only. Note that, e.g., any
continuous t-norm is Borel-measurable. Due to the associativity, we are
able to extend T to be an n-ary operation, n g N. The monotonicity and
boundary conditions allow one to extend T to work on countable se-
quences.

A t-norm T is called strict if it is continuous and strictly monotone on
Ž . Ž . Ž .0, 1 = 0, 1 . A continuous t-norm T is called Archimedean if T a, a - a

Ž .for all a g 0, 1 . Recall that any strict t-norm is Archimedean. Any
fundamental triangular norm is continuous, all T with s ) 0 ares

Ž .Archimedean, and T , s g 0, ` , are strict t-norms.s



MESIAR AND NAVARA94

w xBy Ling 8 , any continuous Archimedean t-norm T is generated by an
w x w xadditive generator f , f : 0, 1 ª 0, ` , f is continuous strictly decreasing,

Ž .and f 1 s 0, so that

y1 w xT a, b s f min f 0 , f a q f b , a, b g 0, 1 .Ž . Ž . Ž . Ž .Ž .Ž .

The generator f is unique up to a positive multiplicative constant. The
Ž .case f 0 s ` corresponds to the strict t-norm case and then

T a, b s fy1 f a q f b .Ž . Ž . Ž .Ž .

w xLet X be a non-void set. Recall that a function A: X ª 0, 1 was
w xintroduced by Zadeh 12 to generalize the concept of a Cantorian subset

� 4A of X which can be identified with its characteristic function A: X ª 0, 1
Ž .and then A is called a crisp subset of X . Recall that the collection of all

w x Ž .functions on X with the range in the unit interval 0, 1 is denoted by FF X .
w xFor a fixed number d g 0, 1 , we denote by d the corresponding constantX

Ž .function on X. Let T be a given t-norm. We extend T to FF X pointwise as
Ž .Ž . Ž Ž . Ž ..usual, i.e., ATB x s T A x , B x , x g X. This operation can be con-

sidered as an intersection. The complement is defined by

w xA9 x s 1 y A x , x g X Zadeh 12 .Ž . Ž . Ž .

Ž . Ž . w xA dual operation to T, S a, b s 1 y T 1 y a, 1 y b , a, b g 0, 1 , is
Ž .called a dual t-conorm. Its pointwise extension to FF X can be considered

Ž .as a union. If f is an additive generator of a t-norm T, then g, g a s
Ž . w xf 1 y a , a g 0, 1 , is an additive generator of the dual t-conorm S.

Ž w x. Ž .DEFINITION 2.1 Klement 6 . Let T be a t-norm. A subfamily TT ; FF X
containing 0 , being closed under complementation and under countableX
intersections induced by T, is called a T-tribe.

Obviously, by the duality of T and S, the closedness with respect to T is
equivalent to the closedness with respect to S in the definition above.

Ž . Ž .EXAMPLE 2.2. i Let TT ; FF X consist of crisp subsets of X only. Then
ŽTT is a T-tribe for some t-norm T if and only if TT is a s-algebra we identify

.an ordinary subset of X and its characteristic function . Consequently, a
s-algebra TT is a T-tribe for any t-norm T.

Ž . Ž .ii Let SS be a s-algebra of crisp subsets of X and let TT SS be a
Ž Ž ..generated tribe i.e., the system of all SS-measurable functions from FF X .

Ž . Ž .Then TT SS is a T-tribe for any measurable t-norm T.
Ž . Ž w x.iii Mesiar 9 Let SS be a s-algebra of crisp subsets of X and let

Ž . � Ž . 4 ŽY g SS . Then TT SS , Y s A g TT SS ; ATY9 g SS where T is any t-norm;
note that ATY9 equals zero, resp. A, on Y, resp. Yc s X _Y, independently
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.of the choice of T is called a semigenerated tribe. This tribe consists of all
Ž .SS-measurable functions from FF X which possess trivial values out of Y.

Ž .Each semigenerated tribe is a T-tribe for any measurable t-norm T and it
Ž .is a generated tribe only for trivial Y i.e., when Y s X . If Y s B, then

Ž .TT SS , Y s SS ; i.e., the corresponding semigenerated tribe is a s-
algebra of crisp subsets of X.

Ž . Ž w x. Živ Navara 11 Let D ; SS be a s-ideal i.e., D contains all
measurable subsets of each of its members and it is closed under count-

. Ž . � Ž . � Ž . Ž .4 4able unions . Then TT SS , D s A g TT SS ; x g X; A x g 0, 1 g D is
called a weakly generated tribe. A weakly generated tribe is a T-tribe for any
Ž .measurable t-norm T. A weakly generated tribe is a semigenerated tribe

Ž . � 4if and only if D is a principal s-ideal, D s D Y s Z g SS ; Z : Y ,
Y g SS .

Ž . Ž w x. w xv Klement 6 The family TT consisting of all functions on X s 0, 1
w xwith the range 0, 1 which either are constant or have all their values in

1 2w xthe interval , is a T -tribe, but it is not a T-tribe for any continuous03 3

Archimedean t-norm T.

wWe recall some results of Butnariu and Klement for T -tribes; see 2, 3,s
x6, 7 .

THEOREM 2.3. Let TT be a T -tribe on X, s ) 0, and let TT k be the systems
of all crisp subsets of X contained in TT. Then TT k is a s-algebra and TT is

Ž k.contained in the corresponding generated tribe, TT ; TT TT .

THEOREM 2.4. Let TT be a T -tribe on X. Then TT is also a T -tribe; i.e., TTs 0
is closed under countable infima and suprema.

THEOREM 2.5. For any fundamental t-norm T with s ) 0, a T -tribe TTs s
on X is a generated tribe if and only if it contains all constant functions from
Ž .FF X .

Ž w x.One of the authors Mesiar 9 has already shown that if T is a strict
w xt-norm, then a T-tribe TT on X contains all constant functions d , d g 0, 1 ,X

if and only if TT contains some non-trivial constant function d , i.e., thereX
Ž .is a d g 0, 1 so that d g TT.X

Ž .COROLLARY 2.6. A T -tribe TT, s g 0, ` , is a generated tribe if and onlys
Ž .if there is some d g 0, 1 so that d g TT.X

w xThe main result of Mesiar 9 characterizes the structure of T -tribes,s
Ž .s g 0, ` , on a denumerable set X.

Ž .THEOREM 2.7. Let X be denumerable. Then a subsystem TT ; FF X is a
Ž . ŽT -tribe, s g 0, ` , if and only if TT is a semigenerated tribe and hence it is as

.T-tribe for any t-norm T .



MESIAR AND NAVARA96

Ž .For a general X, the first steps in characterizing a T -tribe, s g 0, ` ,s
w x w xwere done by Navara 11 and Mesiar 10 . In the following theorem, we

w xsummarize the main results of 10, 11 and we give a shorter proof.

Ž .THEOREM 2.8. Let TT be a system of functions from FF X . The following
are equï alent:

Ž . Ž .a TT is a T-tribe for each measurable t-norm T;
Ž . Ž .b TT is a T -tribe for some s g 0, ` ;s

Ž .g TT is a weakly generated tribe.

Ž . Ž . Ž . Ž .The implications a « b and g « a are e¨ident. We need only
Ž . Ž .pro¨e b « g . The proof is dï ided into se¨eral steps.

Ž .LEMMA 2.9. Let TT be a T -tribe on X for some s g 0, ` and let A be as
Ž . � Ž . Ž .4function contained in TT. Put F A s x g X; A x g 0, 1 . Then the

< Ž . � < Ž . 4 Ž .restriction TT F A s B F A ; B g TT is a generated tribe on F A .

< Ž . Ž .Proof. It is evident that TT F A is a T -tribe on F A . Now, due tos
Corollary 2.6, it is enough to show that some non-trivial constant function

Ž Ž .. Ž . < Ž .from SS F A , say 0.5 , is contained in TT F A . For a given t-normF Ž A.
Ž .T , s g 0, ` , puts

P a s T n Sm aŽ . Ž .Ž .n , m s s

Ž . 1Ž . 1Ž .for any n, m g N, a g 0, 1 . Here T a s S a s a and for n s 1, 2, . . . ,s s
nq1Ž . Ž nŽ . . nq1Ž . Ž nŽ . .we put T a s T T a , a and S a s S S a , a . It is evidents s s s s s

w x Ž .that p , being defined on 0, 1 , can be extended pointwise to FF X andn, m
Ž .that for any B g TT, p B is also contained in TT.n, m

Ž .Claim 1. For each a, b, t g 0, 1 , a - b, there are integers n, m g N
such that

w xp t g a, b .Ž .n , m

Indeed, let f be an additive generator of T . The strictness of T ,s s
Ž . Ž .s g 0, ` , ensures f 0 s `. Further,

p t s f y1 n ? f gy1 m ? g t ,Ž . Ž .Ž .Ž .Ž .n , m

Ž . Ž .where g t s f 1 y t is an additive generator of the dual t-conorm S . Puts
Ž . Ž . Ž .q s f a y f b g 0, ` . Then there is an integer m g N such that

m G f 1 y f y1 q rf 1 y t ,Ž . Ž .Ž .
and consequently

` ) q s f a y f b G f 1 y f y1 m ? f 1 y t s f gy1 m ? g t ) 0.Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .
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Now, it is easy to see that there is some integer n g N such that

f a G n ? f gy1 m ? g t G f b ,Ž . Ž . Ž .Ž .Ž .

Ž .i.e., a F p t F b.n, m

< Ž . Ž .Claim 2. There is a function C g TT such that C F A s 0.5 . PutF Ž A.

C s sup p A T p A 9; n , m g N .� 4Ž . Ž .Ž . Ž .n , m 0 n , m

Due to Theorem 2.4, C is contained in TT. Further, Claim 1 ensures that
Ž . Ž . Ž . Ž . Ž . � 4C x s 0.5 whenever A x g 0, 1 and C x s 0 whenever A x g 0, 1 ,

which proves Claim 2.

By Claim 2, there is a non-trivial constant function contained in the
< Ž . < Ž .T -tribe TT F A and consequently TT F A is a generated tribe.s

Ž .LEMMA 2.10. Let TT be a T -tribe on X for some s g 0, ` . Puts

D s F A ; A g TT .� 4Ž .

k Ž .Then D is a s-ideal of TT i.e., of crisp subsets of X contained in TT .
k Ž .Proof. Theorem 2.3 ensures D ; TT . Let F A , A g TT, be a given

Ž . kelement of D and let D be any subset of F A contained in TT . Due to
< Ž .Lemma 2.9, TT F A is a generated tribe and hence it contains a function
Ž . Ž .E such that E x s 0.5 whenever x g D and E x s 0 otherwise. Conse-

< Ž . Ž .quently, there is a function B g TT such that B F A s E. F A can be
understood as a crisp subset of X contained in TT and consequently

Ž . Ž .C s BT F A g TT. It is easy to see that F C s D, which implies D g D.s
� 4Further, let D ; D be a countable sequence of elements of D.n ng N

Ž .Then there are some functions A g TT such that D s F A , n g N.n n n
Ž .Similarly, the functions C , such that C x s 0.5 whenever x g D andn n n

Ž .C x s 0 otherwise, n g N, are contained in TT. By Theorem 2.4, C s
Ž .sup C is contained in TT and therefore D s D D s F C is containedn n n n

in D. Hence D is a s-ideal.

Ž .Proof of Theorem 2.8. Let TT be a T -tribe on X for some s g 0, ` ands
let D be a corresponding s-ideal from Lemma 2.10 inducing a weakly

Ž k . Ž k .generated tribe TT TT , D . Lemma 2.9 ensures TT TT , D ; TT and Lemma
Ž k .2.10 ensures TT ; TT TT , D , i.e., TT is the weakly generated tribe, TT s

kŽ .TT TT , D .

Note that any s-ideal D on a denumerable space X is a principal
Ž .s-ideal. Consequently any T -tribe, s g 0, ` , on a denumerable X is as

semigenerated tribe; i.e., Theorem 2.7 is a corollary of Theorem 2.8.
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EXAMPLE 2.11. Let X be an uncountable set and let TT be a system of
Ž .all functions from FF X differing from 0 or 1 in at most countably many

points. Then TT is a weakly generated tribe which is not a semigenerated
Ž X .tribe. Indeed, TT s TT 2 , D , where D is a s-ideal of all denumerable

subsets of X and hence D is not a principal s-ideal.

ŽWe have just shown that a T -tribe TT for some strict fundamentals
. Ž .t-norm T is also a T-tribe for any measurable t-norm T. Is this assertions

Ž .true for eachr some other strict t-norm T? It is evident that non-strict
t-norms do not possess this property.

Open Problem 2.12. Let TT be a T*-tribe for some strict t-norm T*. Is
there some other measurable t-norm T so that TT is not a T-tribe?

3. T -MEASURESs

Let TT be a T-tribe for some t-norm T. A mapping m: TT ª R is called a
Ž w x.T-measure Klement 7 if the following conditions are fulfilled:

m 0 s 0 4Ž . Ž .X

A , B g TT « m ATB q m ASB s m A q m B 5Ž . Ž . Ž . Ž . Ž .
� 4A ; TT , A : A : ??? : A : ??? « lim m AŽ .n 1 2 n nngN

n

s m lim A . 6Ž .ž /n
n

Ž . Ž . Ž .If, moreover, m 1 - ` and A F B implies m A F m B , then m isX
called a finite monotone T-measure. Note that if TT consists of crisp
elements only then a T-measure m may be considered as an ordinary
s-additive measure.

w xZadeh 13 in 1968 introduced a probability measure on a generated
Ž .tribe TT SS via

p A s A dP, 7Ž . Ž .H

where P is a probability measure on s-algebra SS and the right-hand-side
integral is a Lebesgue]Stieltjes integral. The additivity of the
Lebesgue]Stieltjes integral ensures that p is a finite monotone T-measure

Ž . Ž .on TT SS if and only if the t-norm T fulfills the functional equation 1 .
Ž . Ž Ž .The same is true for any Zadeh measure 3 note that 3 is a generaliza-

Ž .tion of 7 , replacing a probability P by a finite s-additive monotone
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.measure M . Hence any Zadeh measure is a finite monotone T -measures
w x w x Ž w x.for each s g 0, ` . Butnariu 1 see also 2, 3 showed a converse in the

case s s `.

Ž .THEOREM 3.1. Let m be a T -measure on a T -tribe TT ; FF X . Then for` `

each element A g TT we ha¨e

m A s A dM,Ž . H
k < kwhere M is the restriction of m to TT , M s m TT .

Let M be a finite s-additive monotone measure on a s-algebra SS of
Ž .subsets of a given set X and let TT SS be the corresponding generated

Ž .tribe. For A g TT SS put

m A s M supp A , 8Ž . Ž . Ž .

� Ž . 4 Ž .where supp A s x g X; A x ) 0 . It is easy to see that 8 defines a
Ž .finite monotone T-measure m if and only if the t-norm T fulfills T a, b s

Ž .0 m a s 0 or b s 0. Hence m defined by 8 is a T -measure for eachs
finite s but not for s s `.

Ž . Ž .Combining the T-measures of type 3 i.e., Zadeh measures and
Ž . Ž .T-measures of type 8 we get just the generated measures; see 2 . Recall

Ž .that a generated measure m defined on a generated tribe TT SS can
be uniquely decomposed to a sum of a Zadeh measure and a measure of

Ž .type 8 ,

m A s g q h ? A dMŽ . Ž .H
� 4A)0

s g dM q A ? h dMH H
� 4 � 4A)0 A)0

s A dL q K supp A ,Ž .H
where K and L are finite monotone s-additive measures whose
Radon]Nikodym derivatives with respect to M are g and h, respectively.
Any generated measure, even restricted to a subtribe of a generated tribe,

Žis a T -measure for each finite s and it is a T -measure if and only if it iss `

Ž ..continuous from above in 0 , i.e., when g s 0 M-a.e. . The converseX
w xassertion for strict fundamental t-norms was shown by Klement 7 in the

case when the domain of m is a generated tribe.

Ž .THEOREM 3.2. Let m be a finite monotone T -measure, s g 0, ` , on as
Ž .generated tribe TT SS . Then m is a generated measure and for each element
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Ž .A g TT SS we ha¨e

m A s f q 1 y f ? A dM, 9Ž . Ž . Ž .Ž .H X
� 4A)0

<where M s m SS is a finite monotone s-additï e measure and f is an M-a.e.
uniquely determined SS-measurable function with range in the unit inter̈ al
Ž Ž ..i.e., f g TT SS .

Ž .Recall again that the case of T -measures on a generated tribe was0
w xcompletely solved by Klement 5 by means of Markov kernels and there-

fore this case will be omitted in this paper.
If TT is a semigenerated tribe, any T -measure m on TT can be decom-s

<posed into a T -measure k on a generated tribe TT Y and a s-additives
< cmeasure n on a s-algebra TT Y . Consequently, we have the following

Ž w x.corollary see also Mesiar 9 .

COROLLARY 3.3. Let X be a denumerable set and let m be a finite
Ž .monotone T -measure on some T -tribe TT on X for some s g 0, ` . Then ms s

Ž .is a generated measure and it can be expressed by 9 .

Ž . Ž .Let m be a T -measure, s g 0, ` , on a non-generated T -tribe TT.s s
w xButnariu and Klement 2 have defined a T -measure m* on TT to bes

monotonically irreducible, if it is monotone and if there is no nonzero
Ž .generated measure q on TT such that m* y q is monotone on TT. The

w x Ž w x.main result of 2 see also 3 is summarized in the following theorem.

Ž .THEOREM 3.4. Let m be a finite monotone T -measure, s g 0, ` , on as
Ž .T -tribe TT ; FF X . Then m can be uniquely decomposed to a sum of as

monotonically irreducible T -measure m* and a generated measure m ,s 1

m A y m* A s m A s g q h ? A dM for each A g TT ,Ž . Ž . Ž . Ž .H1
� 4A)0

10Ž .
< k k Ž k.where M s m TT is the restriction of m to TT and g, h g TT TT are two

M-a.e. uniquely determined TT k-measurable functions with the range in the
unit inter̈ al.

As a main result of this paper, we give a solution of an open problem
w xfrom 3 concerning the structure of a finite monotone T -measure m on as

Ž .general T -tribe TT, where s g 0, ` . Showing that there is no non-trivials
monotonically irreducible T -measure m*, by Theorem 3.4 we obtains
immediately that the only T -measures are the generated measures.s

Ž .THEOREM 3.5. Let TT s TT D be a weakly generated tribe and let m* be a
Ž .monotonically irreducible T -measure on TT, s g 0, ` . Then m* is identicallys

zero.
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<Proof. Let D g D. Then TT D is a generated tribe on D and hence
< Ž < . U U Ž .m s m* TT D is a generated T -measure. It is evident that m , m AD s D D

Ž < . Žs m A D , A g TT, forms a generated T -measure on TT and that m* yD s
U . Um is a monotone T -measure on TT. But then m must be a zero measureD s D

Ž .and thus m* D s 0 for each D g D.
Now, take any element A g TT. Put

Z A s x g X; A x s 0� 4Ž . Ž .
U A s x g X; A x s 1� 4Ž . Ž .

Ž . Ž Ž . Ž ..cand recall that F A s Z A j U A . The valuation property of m*,
Ž . Ž . Žthe boundary condition m* 0 s 0, and the fact that F A g D i.e.,X

Ž Ž .. .m* F A s 0 implies that

m* A s m* U A s M* U AŽ . Ž . Ž .Ž . Ž .

s M* U A j F A s 1 dM*,Ž . Ž .Ž . H X
� 4A)0

< kwhere M* s m* TT , which means that m* is a generated measure. The
Ž .monotonicity of m* y m* ensures the result.

COROLLARY 3.6. Let m be a finite monotone T -measure on a T -tribe TTs s
Ž . Ž .of functions from TT X , s g 0, ` . Then m is a generated measure,

; A g TT : m A s f q 1 y f ? A dM,Ž . Ž .Ž .H X
� 4A)0

< k kwhere M s m TT is a restriction of m to the s-algebra TT of all crisp
subsets of X contained in TT and f is an M-a.e. uniquely determined

k w x Ž k.TT -measurable function with the range in the unit inter̈ al 0, 1 , f g TT TT .

The proof follows from Theorems 2.8, 3.4, and 3.5. Note that we have
Ž .just shown that if m is a finite monotone T -measure for some s g 0, ` ,s

Ž .then it is a finite monotone T -measure for each s g 0, ` . Further, it iss
Ž .easy to see that a finite monotone T -measure m, s g 0, ` , is as

Ž Ž .T -measure i.e., f is identically zero and m A is an integral of A with`

.respect to M, which means m is a Zadeh measure if and only if m is
Ž � 4continuous from above in 0 i.e., A ; TT, A G A G . . . , lim A s 0X n 1 2 n X

Ž . 4implies lim m A s 0 . Finally, note that for any finite monotone T -n n s
Ž xmeasure m defined on a T -tribe TT, s g 0, ` , we have the ‘‘additivity’’s

property

m A q m B s m C q m DŽ . Ž . Ž . Ž .
Ž . Ž .whenever A, B, C, D g TT, the algebraic sums A q B and C q D are

� Ž . Ž . 4 � Ž . Ž . 4equal, and x g X; A x ? B x s 0 s x g X; C x ? D x s 0 .



MESIAR AND NAVARA102

REFERENCES

1. D. Butnariu, Values and cores for fuzzy games with infinitely many players, Internat. J.
Ž .Game Theory 16 1987 , 43]68.

2. D. Butnariu and E. P. Klement, Triangular norm-based measures and their Markov
Ž .kernel representation, J. Math. Anal. Appl. 162 1991 , 111]143.

3. D. Butnariu and E. P. Klement, ‘‘Triangular Norm-Based Measures and Games with
Fuzzy Coalitions,’’ Kluwer, Boston, 1993.

Ž . Ž .4. M. D. Frank, On the simultaneous associativity of F x, y and x q y y F x, y , Aequa-
Ž .tiones Math. 19 1979 , 194]226.

5. E. P. Klement, Characterization of finite fuzzy measures using Markoff-kernels, J. Math.
Ž .Anal. Appl. 75 1980 , 330]339.

6. E. P. Klement, Construction of fuzzy s-algebras using triangular norms, J. Math. Anal.
Ž .Appl. 85 1982 , 543]565.

7. E. P. Klement, Characterization of fuzzy measures constructed by means of triangular
Ž .norms, J. Math. Anal. Appl. 86 1982 , 345]358.

Ž .8. C. H. Ling, Representation of the associative functions, Publ. Math. Debrecen 12 1965 ,
189]212.

9. R. Mesiar, Fundamental triangular norm-based tribes and measures, J. Math. Anal.
Ž .Appl. 177 1993 , 633]640.

Ž .10. R. Mesiar, On the structure of T -tribes, Tatra Mountains Math. Publ. 3 1993 , 167]172.s
11. M. Navara, A characterization of triangular norm based tribes, Tatra Mountains Math.

Ž .Publ. 3 1993 , 161]166.
Ž .12. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 1965 , 338]353.

Ž .13. L. A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl. 23 1968 ,
421]427.


