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Abstract

We study the problem of clustering points in a metric space so as to minimize the sum of cluster
diameters or the sum of cluster radii. Significantly improving on previous results, we present a primal–dual
based constant factor approximation algorithm for this problem. We present a simple greedy algorithm
that achieves a logarithmic approximation. This also applies when the distance function is asymmetric and
the objective is to minimize the sum of cluster radii. The previous best-known result obtained a logarithmic
approximation with a constant factor blowup in the number of clusters. We also obtain an incremental
clustering algorithm that maintains a solution whose cost is at most a constant factor times that of optimal
with a constant factor blowup in the number of clusters.
r 2003 Elsevier Inc. All rights reserved.

1. Introduction

Clustering problems have been studied extensively in Computer Science, Operations Research
and other fields. Several researchers have studied clustering problems as optimization problems
with different objective functions where the goal is to minimize the objective function. The well-
known p-center problem [10,15] is the clustering problem with the objective function being the
maximum cluster diameter (or radius). Recently, there have been significant advances in our
understanding of objective functions such as facility location [3,5,7,8,11,16,18,21] and k-median
[3,4,16,17,19], both related to minimizing the sum of distances of demand points from their cluster
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centers. Also, researchers have studied min-sum clustering, where the objective function is the sum
of all intra-cluster distances [1,13].
In this paper, we consider the problem of clustering a set of points in a metric space

into a specified number of clusters so as to minimize the sum of cluster diameters. Surprisingly
little is known about this fairly natural objective function. This has been suggested in the
literature as an alternative to the p-center objective in certain applications so as avoid the so-called
dissection effect. Using the maximum diameter as the objective sometimes results in objects
that should have been placed in the same cluster to be placed in different clusters. The sum
of diameters objective is more useful as it reduces this dissection effect [14,20]. In a recent paper,
Doddi et al. [9] considered this problem and designed approximation algorithms for it. They
gave an algorithm that obtains a logarithmic approximation with a constant factor blowup
in the number of clusters. For a constant number of clusters, they give a 2 approximation. On
the negative side, they proved that it is NP-Hard to obtain an approximation factor 2� e for any
e40: In the absence of triangle inequality, they show that it is NP-Hard to obtain any
approximation factor even with only three clusters.
In this paper, we present significant improvements on these results. We will consider the

problem of minimizing the sum of cluster radii which is always within a factor of 2 of the sum of
cluster diameters objective when the distances are symmetric. In Section 2, we present a greedy
algorithm that obtains a logarithmic approximation using at most k clusters. This also applies to
the case when the distances are asymmetric (for the objective of minimizing the sum of cluster
radii). We also give primal–dual based algorithms which achieve a constant factor approximation
using at most k clusters. Our algorithms draw numerous ideas from the recent work on the
k-median problem by Jain and Vazirani [16] as well as Charikar and Guha [3]. It is interesting
that our results parallel several of the results for the k-median problem even though the two
objective functions are very different; one sums up contributions of demand points while the other
sums of contributions per cluster. Finally, in Section 6, we present an incremental algorithm for
clustering with this objective function. The algorithm maintains a solution with cost only a
constant factor worse than the optimal solution with a constant factor blowup in the number of
clusters. This is interesting since such a bicriteria guarantee was not known previously even in the
offline case.

1.1. Preliminaries

Definition 1.1 (sum-diameters). Given n points in a metric space with distance function dði; jÞ; the
goal is to divide the points into k clusters so as to minimize the sum of cluster diameters. Here,
the diameter of a cluster C is maxi;jAC fdði; jÞg; i.e. the maximum distance between any two points

in C:

A closely related problem is to minimize the sum of cluster radii:

Definition 1.2 (sum-radii). Given n points in a metric space with distance function dði; jÞ; the goal
is to divide the points into k clusters and select one point in each cluster as the cluster center so as
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to minimize the sum of cluster radii. The radius of a cluster C with center iAC is maxjAC fdði; jÞg;
i.e. the maximum distance of any point in the cluster from the cluster center.

An a approximation algorithm for one problem yields a 2a approximation for the other. It will
be convenient to deal with the sum-radii formulation, so we will use that for the remainder
of the paper. Also, we will assume that each cluster center is required to lie at one of the given n

points. If arbitrary centers are allowed, our approximation guarantees apply with a multiplicative
factor of 2:

2. A greedy algorithm

The greedy algorithm starts by placing each of the n points in singleton clusters. At each step,
the algorithm operates on the set of centers of the current clusters. In a single step, some of the
current clusters are merged and their centers replaced by the center of the new cluster. This
process is continued till there are at most k clusters remaining. The algorithm maintains a set of
points C and a set of clusters centered at points in C such that these clusters cover the original
point set. We will use Ci to denote the cluster centered at iAC: Also, we will represent clusters by
the set of original points covered by the cluster.

Algorithm Greedy-Cluster

1. Initialize C to be the set of n points.
2. For each point iAC; Ci ¼ fig:
3. Repeat steps 3a to 3d, until jCjpk:

(a) For every point i (in the original point set) and radius r; let SiðrÞ be the points in C within
distance r of i; and niðrÞ ¼ minðjSiðrÞj � 1; jCj � kÞ:

(b) Let i�; r� be values of i and r respectively that minimize r
niðrÞ:

(c) Set Ci� ¼
S

jASi� ðr�Þ Cj

(d) C ¼ C \Si�ðr�Þ,fi�g:
4. For each iAC; output cluster Ci:

Let rðtÞ be the radius of the cluster chosen (i.e. the value of r�) in the tth iteration.

Lemma 2.1. The sum of the radii of the clusters produced by the greedy algorithm at the end of the

t’th iteration is at most
Pt

s¼1 rðsÞ:

Proof. We will prove that the sum of cluster radii increases by at most rðtÞ in the tth iteration.
Initially, this sum is 0; hence this will prove the claim.
Let i�; r� be the values selected by the algorithm in step 3b of the tth iteration. The clusters

Cj; jASi�ðr�Þ are merged to form a single cluster centered at i�: Note that all the centers of the
merged clusters are within a distance r� of the new cluster center i�: Hence the radius of
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the merged cluster Ci� is at most

r� þ max
jASi� ðr�Þ

radiusðCjÞ:

Since the new cluster is added to the collection and the clusters Cj; jASi�ðr�Þ are removed, the sum
of cluster radii increases by

r� þ max
jASi� ðr�Þ

radiusðCjÞ �
X

jASi� ðr�Þ
radiusðCjÞpr�:

Therefore, the sum of cluster radii increases by at most r� ¼ rðtÞ: &

Let Opt be the cost of the optimal solution.

Lemma 2.2. Suppose C is the set of points at the beginning of an iteration and i�; r� are the values
picked in step 3b of the algorithm. Then,

r�

ni�ðr�Þ
p

Opt

jCj � k
:

Proof. Note that clusters centered at all the original points are considered in step 3a, so the
clusters in the optimal solution are also considered in this step. Let ij be the center of the jth

cluster in the optimal solution and rj be its radius. We use SiðrÞ; niðrÞ to denote the values

computed in step 3a (using C for the current iteration). Each point in C must be in at least one of
the clusters in the optimal solution. HenceXk

j¼1
jSijðrjÞjXjCj;

Xk

j¼1
jSijðrjÞj � 1XjCj � k;

Xk

j¼1
nijðrjÞXjCj � k:

The last inequality follows from the previous inequality and the fact that nijðrjÞ ¼ minðjSijðrjÞj � 1;

jCj � kÞ: Now,
r�

ni�ðr�Þ
pmin

j

rj

nijðrjÞ
p

Pk
j¼1 rjPk

j¼1 nijðrjÞ
p

Opt

jCj � k
: &

Theorem 2.1. Given an instance of the sum-radii problem, algorithm Greedy-Cluster produces a

solution that is within Hðn � kÞ of the optimal solution and runs in time Oðn3Þ: Here HðnÞ ¼
1þ 1

2
þ?þ 1

n
:
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Proof. By Lemma 2.1, we need to bound the sum of the radii r� chosen in step 3b. We will prove
that this is at most Opt 
 Hðn � kÞ by induction on n:
Suppose the statement holds for jCjon: We will prove this for jCj ¼ n: Consider the values of

i�; r� selected by the algorithm in step 3b. When the clusters whose centers are in Si�ðr�Þ are
replaced by a single cluster centered at i�; the number of cluster centers (i.e. jCj) drops by
jSi�ðr�Þj � 1: We consider two cases:

Case 1: jSi�ðr�Þj � 1XjCj � k:
In this case, ni�ðr�Þ ¼ jCj � k: By Lemma 2.2,

r�

ni�ðr�Þ
p

Opt

jCj � k
:

Hence, r�pOpt:Note that the algorithm stops after this, since the number of cluster centers is not
more than k after this iteration. The cost of the greedy algorithm is bounded by Opt in this case.

Case 2: jSi�ðr�Þj � 1ojCj � k:
In this case, ni�ðr�Þ ¼ jSi�ðr�Þj � 1: By Lemma 2.2,

r�

ni�ðr�Þ
p

Opt

jCj � k
:

Hence,

r�pOpt 
 jSi�ðr�Þj � 1

n � k

pOpt

1

n � k
þ?þ 1

n � k � jSi�ðr�Þj þ 2

� �
¼OptðHðn � kÞ � Hðn � k � jSi�ðr�Þj þ 1Þ:

Let n0 be the number of cluster centers after this step. Then n0 ¼ n � jSi�ðr�Þj þ 1: By the inductive
hypothesis, the sum of cluster radii r� selected by the greedy algorithm beyond this point is
bounded by Opt 
 Hðn � k � jSi�ðr�Þj þ 1Þ: Hence the cost of the greedy algorithm is bounded by
Opt 
 Hðn � kÞ:
The algorithm can be implemented to run in Oðn3Þ time. For each point i; we maintain a list of

the points in C sorted by distance from i: These n lists can be created initially in time Oðn2 log nÞ:
From these lists, each iteration can be performed in Oðn2Þ time. As there are at most n iterations,

the running time of the algorithm is Oðn3Þ: &

We note that the greedy algorithm applies in the asymmetric case as well, i.e. when distances
satisfy the triangle inequality, but dði; jÞ is not necessarily equal to dðj; iÞ: The radius of a cluster C
with center i is maxjAC dði; jÞ: The analysis of the greedy algorithm goes through for this case,

giving an Oðlog nÞ approximation.

3. Linear programming relaxation

Our algorithms will be primal–dual based. In this section we present the primal and dual LPs on
the basis of which our algorithms are devised.
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We start with the LP formulation for the sum-radii problem. For every center i and radius r;

y
ðrÞ
i is an indicator variable that indicates if there is a cluster of radius r centered at i: The primal
LP is as follows:

min
X

i

X
r

r 
 yðrÞi ; ð1Þ

8j
X

i

X
r : dði;jÞpr

y
ðrÞ
i X1; ð2Þ

X
i

X
r

y
ðrÞ
i pk: ð3Þ

Constraint (2) says that every point is covered by some cluster. Constraint (3) says that the
number of clusters is at most k:
The dual of the previous LP has a variable aj corresponding to every demand point j: The dual

is as follows:

max
X

j

aj � k 
 z; ð4Þ

8i; r
X

j : dði;jÞpr

ajpr þ z: ð5Þ

We consider a facility location like version of the problem where the number of clusters is not
fixed a priori, but every cluster centered at i incurs a fixed cost fi; i.e. for a cluster of radius r
centered at i; the charge to the objective function is r þ fi: Note that fi is independent of the radius
r: We refer to this problem as the fixed costs sum-radii problem. The primal LP for this is as
follows:

min
X

i

X
r

y
ðrÞ
i 
 ðr þ fiÞ; ð6Þ

8j
X

i

X
r : dði;jÞpr

y
ðrÞ
i X1: ð7Þ

The dual LP for this is the basis of our algorithms. The dual LP is as follows:

max
X

j

aj; ð8Þ

8i; r
X

j : dði;jÞpr

ajpr þ fi: ð9Þ

4. Primal–dual algorithm

We describe primal–dual algorithms for sum-radii clustering using the linear programming
formulations in the previous section.
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We start with the fixed costs sum-radii problem. Let CiðrÞ be the cluster of radius r centered at i:
Demand point j belongs to CiðrÞ iff dði; jÞpr: The primal–dual algorithm is the following:

Algorithm Primal–Dual Fixed Cost Sum-Radii

1. For all demand nodes j; aj’0:
2. Repeat step 2a until every node j belongs to a tight cluster Cði; rÞ: A tight cluster is one for

which the dual constraint (9) is tight.
(a) For all nodes j that do not belong to any tight cluster, increase aj arbitrarily subject to the

constraint (9).
3. Perform procedure Prune-Cluster.

Note that in step 2a, we can choose to increase the variables in any fashion subject to the
constraints (9). This will be important later on, when we present the incremental algorithm.
The cluster pruning step invoked in the last step of the algorithm proceeds as follows:

Procedure Prune-Cluster

1. Initially, T is the set of tight clusters.
2. F ¼ |:
3. Repeat steps 3a–3d until T ¼ |:

(a) Let CiðrÞ be the cluster of largest radius in T (break ties arbitrarily).
(b) Let N be the set of all clusters in T that intersect CiðrÞ (including CiðrÞ).
(c) F ¼ F,fCið3rÞg:
(d) T ¼ T \N:

4. Output F :

Lemma 4.1. Every demand point belongs to at least one cluster in the final set of clusters produced
by the algorithm Primal–Dual Fixed Cost Sum-Radii.

Proof. Every demand point j belongs to at least one tight cluster. We will prove that every tight
cluster is contained in one of the clusters in the final solution. Consider a tight cluster CiðrÞ: We
consider two cases:

Case 1: CiðrÞ was selected in step 3a.
Then the cluster Cið3rÞ belongs to the final solution and clearly CiðrÞ is completely contained

in it.
Case 2: CiðrÞ was not selected in step 3a.
In this case, CiðrÞ must intersect some Ci0 ðr0Þ where Ci0 ðr0Þ was selected in step 3a. Since the

largest radius set is picked in this step, r0Xr: Hence CiðrÞ is completely contained in Ci0 ð3r0Þ which
is one of the sets in the final solution. &

Let C be the sum of cluster radii and let F be the sum of the fixed costs fi for the clusters in
solution produced by algorithm Primal–Dual Fixed Cost Sum-Radii. We prove the following
theorem which is similar to a corresponding result in [16] (Theorem 7).
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Theorem 4.1.

C þ 3Fp3
X

j

aj: ð10Þ

Proof. Consider a cluster Cið3rÞ in the final solution. This contributes 3r þ 3fi to the LHS
of (10). Recall that fi is independent of r: Note that this cluster Cið3rÞ was placed in the
final solution because tight cluster CiðrÞ was picked in step 3a at some point. We will charge
the cost of cluster Cið3rÞ to the dual value of the demand points j in CiðrÞ: Since CiðrÞ is
tight, X

j : jACiðrÞ
aj ¼ r þ fi:

Hence the total contribution of the demand points within CiðrÞ to the RHS of (10) is 3r þ 3fi:
Every aj is counted at most once in this accounting process, since the clusters CiðrÞ picked in step

3a are disjoint. This proves the theorem. &

We can use this algorithm to get a bicriteria approximation for the sum-radii problem by setting
the fixed costs appropriately.

Corollary 4.1. For the sum-radii problem, for any g40; we can produce a solution with cost 3ð1þ
1
gÞOpt using at most Jkð1þ gÞn clusters for arbitrarily small d:

Proof. Let Opt be the optimal cost of a solution to the sum-radii problem using exactly k

clusters. Set fi ¼ Opt

gk : Then the optimal cost to the sum-radii with fixed costs problem is at most

ð1þ 1
gÞOpt: Hence

P
j ajpð1þ 1

gÞOpt; since the dual value
P

j aj is a lower bound on the

optimal cost. From Theorem 4.1, C þ 3Fp3
P

j aj: Hence C; the sum of cluster radii is bounded

by 3ð1þ 1
gÞOpt: Let k0 be the number of clusters in the final solution. Then F ¼ k0Opt

gk
: Hence

k0pkð1þ gÞ:
Now, we do not know the value of Opt a priori, but we can guess this to within a factor of

ð1þ dÞ: This gives the claimed result. &

In the next section, we will need to use a slightly modified version of the algorithm and a
correspondingly modified bound (10). After growing the dual variables, the algorithm selects its
final clusters from set T consisting of tight clusters which satisfyX

j : jACiðrÞ
aj ¼ r þ fi:

Suppose instead of this, the algorithm starts with set T being an arbitrary subset of clusters that
satisfy X

j : jACiðrÞ
ajX r þ fi � e;
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such that every demand point is contained in at least one cluster in T : Then, we can prove the
following weaker guarantee:

C þ 3Fp3
X

j

aj þ 3k00e;

where k00 is the number of clusters returned by the procedure Prune-Cluster.
Let C0 be the sum of original radii of the clusters picked up in the solution returned by the

primal–dual algorithm (i.e. before they were expanded to a factor of 3). In other words, C ¼ 3C0:
Then,

C0 þ Fp
X

j

aj þ k00e: ð11Þ

5. Approximation using exactly k clusters

We can get a constant factor approximation using exactly k clusters. Our approach is the same
as in [16], where a primal–dual algorithm for facility location was used to obtain an algorithm for
the k-median problem. We exploit the similarity between the LP formulations of the sum-radii

problem and the fixed costs sum-radii problem. Notice that by setting the fixed costs fi ¼ z; the
constraints in the fixed costs sum-radii dual LP (8)–(9) are exactly the same as the constraints in
the sum-radii dual LP (4)–(5). Thus a feasible solution to the former is a feasible solution to the
latter (although with different objective function value).
The overall outline is similar to previous work on using Lagrangean relaxation and the primal–

dual framework for k-median [16] and k-MST [6]. The basic idea is to invoke the primal–dual
algorithm we described previously for appropriate settings of the fixed costs to obtain two
solutions: one with pk and the other with Xk clusters. Then we combine these two solutions to
obtain a solution with at most k clusters. Our combination step is more complicated than the
corresponding step in [16].
Firstly, we will need some bound on the largest cluster radii used by the optimal solution, in

order to bound one of the terms in the cost of the combined solution. In order to obtain a crude
bound, it suffices to know the largest cluster radius. However, we will guess the largest c clusters
used by the optimal. This is an optimization to reduce the approximation factor. c will be finally
set to Oð1=eÞ and we will incur an additive factor of e in the approximation ratio. Secondly, before
we combine the two solutions, we add clusters from one solution to the other. This guarantees
certain intersection properties for the clusters in the two solutions which are crucial for our
combination step to proceed. A similar idea was used earlier in [3] for the k-median problem, but
there the purpose was to obtain an improved approximation factor.
We now present the overall algorithm deferring some of the details for later discussion.

Algorithm Primal–Dual Sum-Radii

1. Guess the centers i1;y; ic and radii r1;y; rc of the largest c clusters in the optimal solution.
Let k0 ¼ k � c: The remaining steps find at most k0 clusters to cover the points outside the
guessed c clusters.
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2. Run algorithm Primal–Dual Fixed Cost Sum-Radii with all fixed costs set to z; allowing
clusters of radius at most rc with the following rule for increasing dual variables aj: at any

point of time, uniformly increase aj for all j that are not contained in a tight cluster.

Perform a binary search on z to find two values z1 and z2; jz1 � z2jpOpt=ð2n 
 c 
 nÞ; such
that the algorithm produces pk0 clusters for z1 and Xk0 clusters for z2:

3. Let T1 (respectively T2) be the set of tight clusters obtained by the algorithm for z1 (resp. z2).

Let %F1DT1 be the set of original clusters picked in the solution for z1 (before expanding by a

factor of 3) and let %F2DT2 be the set of original clusters picked in the solution for z2:
2

Identify clusters in %F2 that are disjoint from all clusters in %F1: Add these clusters, one at a

time, to %F1 (without deleting them from %F2 until either j %F1j ¼ k0 or no such clusters exist. If

j %F1j ¼ k0; return the clusters in %F1 expanded by a factor of 3; else perform the remaining steps.
4. Let F1 denote the final value of %F1 at the end of the previous step and (for uniform notation)

let F2 ¼ %F2: Let the solutions represented by these be solnð1Þ (respectively solnð2Þ), with
jF1j ¼ k1pk0 (resp. jF2j ¼ k2Xk0) clusters.
Express k0 as a convex combination of k1 and k2 with coefficients a and b; i.e.

a þ b ¼ 1; a 
 k1 þ b 
 k2 ¼ k0:

In fact,

a ¼ k2 � k0

k2 � k1
; b ¼ k0 � k1

k2 � k1
:

5. Perform procedure Group-Clusters to group clusters, each group containing one cluster
from F1 and one or more clusters from F2: All clusters in F2 are grouped with some cluster in
F1; although some clusters in F1 may not be in any group.

6. For group q; let F
ðqÞ
1 denote the single cluster from F1 and let F

ðqÞ
2 denote the clusters from F2:

Further, let F
ðqÞ
2  3 denote the set of clusters Cið3rÞ for every cluster CiðrÞ in F

ðqÞ
2 : Perform

randomized procedure Construct-Distribution to assign each groups to be in configura-

tion 1 or 2. For each group q in configuration 1, we pick the cluster CiðrÞAF
ðqÞ
1 and expand it

to cover all the clusters in F
ðqÞ
2  3: For each group in configuration 2, we pick the clusters

Cið3rÞ for every cluster CiðrÞ in F
ðqÞ
2 :

7. Return the better of the two solutions solnð1Þ and the solution produced as the output of the
previous step.

5.1. Analysis

Note that there are at most n2c possibilities for the guesses made by the algorithm in step 1. If
our guess is correct, then the cth largest radius rcpOpt=c:We will describe the analysis assuming
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that the algorithm guesses correctly. Note that the optimal solution to the new instance excluding
the points covered by the guessed clusters is

Opt
0 ¼ Opt� ðr1 þ?þ rcÞ:

We will show later that jz1 � z2jpOpt=ð2n 
 c 
 nÞ can be achieved in polynomially many
iterations.

Let að1Þj (resp. að2Þj ) be the dual variable corresponding to demand point j in the algorithm with

fixed cost z1 (resp. z2). If indeed j %F1j ¼ k0 (in step 3), then we can show that the clusters in %F1

(expanded by a factor of 3) give a 3þ e approximation. For most of the following discussion, we
assume that this is not the case, i.e. all clusters from %F2 that could be added to %F1 are indeed
added.
Note that the clusters in F1 are disjoint and the clusters in F2 are disjoint. Further, every cluster

in F2 intersects some cluster in F1: It is this property guaranteed by step 3, that is useful in the

combining of the two solutions. Let the solutions represented by F1 and F2 be soln
ð1Þ (respectively

solnð2Þ), with jF1j ¼ k1pk0 (resp. jF2j ¼ k2Xk0) clusters.

Let z ¼ maxðz1; z2Þ and let aj ¼ minðað1Þj ; að2Þj Þ: Note that for every cluster CiðrÞ;X
j : jACiðrÞ

ajpr þ z:

Each cluster CiðrÞ in F1 or F2 must have been a tight cluster in either T1 or T2: In this case, we will
show that (using continuity)X

j : jACiðrÞ
ajXr þ z �Opt

c 
 n
: ð12Þ

The proof of this is deferred to Section 5.2.
Note that the values aj and z are a valid solution to the dual LP (4)–(5). Hence

P
j aj � k0 
 z is a

lower bound on the value of the optimal solution.
Let C0

1 (respectively C0
2) be the sum of original cluster radii (before they were expanded by a

factor of 3) in solnð1Þ (resp. solnð2Þ). The total fixed cost (using a fixed cost of z per cluster) is k1 
 z

in solnð1Þ and k2 
 z in solnð2Þ: We will use the modified primal–dual guarantee (11), for an
appropriate value of e:

C0
1 þ k1 
 zp

X
j

að1Þj þ k1
Opt

c 
 n
; ð13Þ

C0
2 þ k2 
 zp

X
j

að2Þj þ k2
Opt

c 
 n
; ð14Þ

a 
 C0
1 þ b 
 C0

2p
X

j

aj � k0 
 z

 !
þ k0Opt

c 
 n
; ð15Þ

a 
 C0
1 þ b 
 C0

2pOpt
0 þOpt

c
: ð16Þ
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We will bound the cost of the final solution in terms of a 
 C0
1 þ b 
 C0

2: From the above analysis,

this is bounded by Opt
0 þOpt=c:

Grouping clusters from different solutions: We group each cluster in F1 with clusters from F2 as
follows.

Procedure Group-Clusters

1. F 0
1 ¼ F1; F 0

2 ¼ F2:
2. Repeat steps 2a–2e until F 0

1 ¼ |
(a) Let CiðrÞ be any cluster in F 0

1:
(b) Let N be the set of clusters in F 0

2 that intersect CiðrÞ:
(c) F 0

1 ¼ F 0
1\fCiðrÞg:

(d) F 0
2 ¼ F 0

2\N:
(e) If Na|; output the group consisting of CiðrÞ together with the clusters in N: (If N ¼ |;

output nothing).

Lemma 5.1. Every cluster in F2 is grouped with some cluster in F1 by procedure Group-Clusters.

Proof. We prove that F 0
2 ¼ | at the end of procedure Group-Clusters. Suppose F 0

2 is non-empty

at the end of this procedure. Let CiðrÞ be a cluster in F2 that remains in F 0
2 at the end. Note that

CiðrÞ does not intersect any cluster in F1: This is a contradiction. &

Probability distribution on the groups: Note that each group contains one cluster from F1 and one
or more clusters from F2: For each group q; we either pick (suitably expanded versions of ) the

cluster F
ðqÞ
1 or all the clusters in F

ðqÞ
2 such that F

ðqÞ
2  3 is completely covered. The goal is to do this

in such a way that a total of at most k0 clusters are picked. Further, for each group, F
ðqÞ
1 is picked

with probability roughly a and F
ðqÞ
2 is picked with probability roughly b:

For group q; let nq ¼ jF ðqÞ
2 j � 1: Let k0

1pk1 be the number of groups produced. Then
P

q nq ¼
k2 � k0

1:
In Section 5.2, we describe procedure Construct-Distribution which we will use to construct

the required probability distribution. Construct-Distribution takes as input the set of numbers
N ¼ fnq : q ¼ 1ytg and a probability value pA½0; 1�: It produces two sets S1 and S2 which are

disjoint subsets of N:We state two lemmas about the properties of Construct-Distribution we
will use in our analysis. The proofs appears in Section 5.2.

Lemma 5.2. For subsets S1;S2 produced by Construct-Distribution, at most one nqeS1,S2

and

X
nqAS2

nqpp
X

q

nq:
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Lemma 5.3. Construct-Distribution constructs a probability distribution such that
Pr½nqAS2�pp and Pr½nqAS1�p1� p:

We apply procedure Construct-Distribution on the set of numbers nq with probability p set

to b: The allocation of clusters is determined by the disjoint sets S1;S2 produced by the procedure.
For each nqAS2; we say that group q is in configuration 2. For nqAS1; we say that group q is in

configuration 1. If nqeS1,S2; we say that group q is in configuration 1 and mark this group as a

special group. Note that there can be at most one such group. We will need to treat this group
separately in the analysis later on.

For each group in configuration 1, we pick the cluster CiðrÞAF
ðqÞ
1 and expand it to cover all the

clusters in F
ðqÞ
2  3: For each group in configuration 2, we pick the clusters Cið3rÞ for every cluster

CiðrÞ in F
ðqÞ
2 :

The total number of clusters picked by this procedure is at most k0
1 þ b 
 ð

P
q nqÞ ¼ k0

1þ
bðk2 � k0

1Þ ¼ a 
 k0
1 þ b 
 k2pa 
 k1 þ b 
 k2 ¼ k0:

Lemma 5.4. The expected cost of the solution produced is at most a 
 C0
1 þ ð3þ aÞ 
 C0

2 þ 5Opt=c:

Proof. For group q; let C
ðqÞ
1 denote the radius of the cluster in F

ðqÞ
1 and let C

ðqÞ
2 denote the sum of

radii of the clusters in F
ðqÞ
2 : Then

P
q C

ðqÞ
1 pC0

1 and
P

q C
ðqÞ
2 ¼ C0

2: For a cluster in configuration 1,

the radius of the cluster required to cover all clusters in F
ðqÞ
2  3 is at most C

ðqÞ
1 þ 4C

ðqÞ
2 : For a

cluster in configuration 2, the sum of radii of the clusters chosen is 3C
ðqÞ
2 : Note that the maximum

radius of a single cluster required to cover all clusters in F
ðqÞ
2  3 is at most 5rcp5Opt=c: (Recall

that rc was the guessed radius of the cth largest cluster).
We consider various possibilities for group q based on whether Construct-Distribution

places nq in S1 or S2 or neither. With probability at most b; nqAS2; group q is in configuration 2

and the contribution to the cost of the solution is 3C
ðqÞ
2 : With probability at most 1� b ¼ a;

nqAS1; group q is in configuration 1 and the contribution to the cost of the solution is

C
ðqÞ
1 þ 4C

ðqÞ
2 : Further, at most one nqeS1,S2: The corresponding group q is in configuration 1

and the contribution to the cost is at most 5Opt=c: Thus the expected cost of the solution is
at most

a 

X

q

ðCðqÞ
1 þ 4C

ðqÞ
2 Þ þ b 


X
q

3C
ðqÞ
2 þ 5Opt=c

¼ a 

X

q

C
ðqÞ
1 þ ð3þ aÞ

X
q

C
ðqÞ
2 þ 5Opt=c

pa 
 C0
1 þ ð3þ aÞ 
 C0

2 þ 5Opt=c: &

Recall that we also have solution solnð1Þ with k1pk0 clusters and cost 3C0
1: If C0

1pC0
2; then

C0
1pa 
 C0

1 þ b 
 C0
2; in this case, solnð1Þ gives a 3þ 1=c approximation using (16). If C0

2pC0
1; then

the solution cost guaranteed by Lemma 5.4 is at most a 
 C0
1 þ b 
 C0

2 þ ð2þ 2aÞ 
 C0
2 þ 5Opt=c;
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which gives a 5ð1þ 1=cÞ þ 5=c approximation. Setting c ¼ 10=e; this gives a 5þ e approximation.
Note that the algorithm runs in time nOð1=eÞ as the largest c cluster centers and cluster radii must be
guessed by the algorithm.
We can improve the approximation factor by a slightly improved analysis.

Lemma 5.5.

minð3C0
1; a 
 C0

1 þ ð3þ aÞ 
 C0
2Þp

3ð3þ aÞ
ð3� a þ 2a2Þða 
 C0

1 þ b 
 C0
2Þ:

Proof. We want to bound minð3C0
1; a 
 C0

1 þ ð3þ aÞ 
 C0
2Þ: The minimum is less than any convex

combination of the two terms. Consider the convex combination

2a þ 2a2

3� a þ 2a2
 ð3C0

1Þ þ
3� 3a

3� a þ 2a2
 ðaC0

1 þ ð3þ aÞC0
2Þ

¼ 3ð3þ aÞa
3� a þ 2a2

 C0
1 þ

3ð3þ aÞð1� aÞ
3� a þ 2a2

 C0
2

¼ 3ð3þ aÞ
3� a þ 2a2

 ðaC0
1 þ ð1� aÞC0

2Þ:

Note that 1� a ¼ b: This proves the lemma. &

Thus the approximation ratio obtained by taking the better of the two solutions, solnð1Þ and the

solution guaranteed by Lemma 5.4, yields a
3ð3þaÞ
3�aþ2a2

approximation (ignoring the Oð1=cÞ terms).
The expression

3ð3þaÞ
3�aþ2a2

is maximized for a ¼ 2
ffiffiffi
2

p
� 3: For this value of a; the value of the

expression is 3
8
ffiffi
3

p
�13E3:503:

This implies that the approximation ratio is bounded by 3:504þ 9=c: Setting c ¼ 9=e; we get
the following theorem:

Theorem 5.1. There exists a polynomial time randomized algorithm that achieves a 3:504þ e
approximation for the sum-radii problem using at most k clusters, in time nOð1=eÞ:

The only randomization in the algorithm is in the procedure Construct-Distribution which
decides which of two configurations each group is in. The algorithm can be easily derandomized
using the method of conditional expectations. The details are straightforward and hence omitted.

5.2. Technical proofs

Continuity analysis: We establish inequality (12) used in the analysis using a continuity
argument. Our goal is to show that if the primal–dual algorithm is run for two values of z that are
very close, then the resulting values of aj are also very close. Our proof mimics the continuity

argument in [3]. Let ajðzÞ denote the value of aj produced by the primal–dual algorithm when the

algorithm is run with all the fixed costs set to z:
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Lemma 5.6. Suppose we execute the algorithm for z ¼ z1 and z ¼ z1 þ dz: Then, the values of aj in

the two executions differ by at most 2njdzj: Further, if the constraint for cluster CiðrÞ is tight in one

execution, thenX
j : jACiðrÞ

ajXr þ z � 2njdzj

in the other execution.

Proof. Suppose we execute separately and in parallel, the algorithm for z1 and z2 ¼ z1 þ dz:
An event is said to occur if, for some node j; aj stops increasing in one of the two executions.

Thus there are n events in all, one for each node j: Consider these n events in order of
occurrence.
Suppose node j participates in the qth event in this sequence. We will prove that

jajðz1Þ � ajðz1 þ dzÞjp2q�1jdzj:
We prove this by induction on q:
Suppose the claim is true for the first q events. Consider the ðq þ 1Þth event. Suppose node j

participates in the ðq þ 1Þth event. It must be the case that in one of the two executions, for some
cluster CiðrÞ that contains j; the constraint:X

j : jACiðrÞ
ajpr þ z

must have become tight. At this point of time, in the other execution, the difference between the

LHS and the RHS for this constraint can be at most ð1þ
Pq

r¼1 2
r�1Þjdzj ¼ 2qjdzj: Thus, aj can

increase by at most 2qjdzj in the other execution.
A similar proof applies to the base case as well. Hence the claim follows by induction. This

proves the first part of the lemma.
To prove the second part, consider a constraint for cluster CiðrÞ that becomes tight in one

execution:X
j : jACiðrÞ

ajpr þ z:

At the time at which this constraint becomes tight, the difference between the LHS and the RHS

in the other iteration can be at most ð1þ
Pn

q¼1 2
q�1Þjdzj ¼ 2njdzj: Hence at this point of time,X

j : jACiðrÞ
ajXr þ z � 2njdzj

in the other execution. Since the value of the LHS can only increase, this inequality remains true
at the end of the execution. &

The term 2njdzj in Lemma 5.6 can be made equal to Opt=n 
 c by making jdzjpOpt=ð2n 
 n 
 cÞ:
(This gives us inequality (12) used in the analysis). This in turn is achieved by running the
binary search for polynomially many steps. The details are similar to the running time analysis
in [3,16].
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Lemma 5.7. In Oðn log nÞ steps of binary search, we can find z1; z2 such that

* for z ¼ z1; the primal–dual algorithm returns pk0 clusters and for z ¼ z2; the primal–dual
algorithm returns Xk0 clusters.

* z1 � z2pOpt=ð2n 
 n 
 cÞ:

Proof. For z ¼ 0; the primal–dual algorithm will return a solution with many clusters (one for
each point that needs to be covered). Note that we have guessed rcpOpt=c and the remaining

solution uses clusters of radius at most rc: Thus Opt
0pk0rc: Now, for z ¼ 2k0rcXOpt

0; we claim
that the primal–dual algorithm returns at most k0 clusters. Suppose the primal–dual algorithm
returns a solution with k00 clusters, then

3k00zp3Opt
0 þ 3k0z;

ðk00 � k0ÞzpOpt
0:

Since z4Opt
0; this implies that k00pk0:

We conduct a binary search on the interval ½0; 2k0 
 rc� in order to find the required z1; z2
with z1 � z2prc=ð2n 
 nÞpOpt=ð2n 
 n 
 cÞ: It follows that this can be achieved in Oðn log nÞ
steps. &

5.3. Construction of probability distribution on clusters

Suppose we have a set of numbers N ¼ fnq : q ¼ 1;y; tg and probability p; 0ppp1: We will

choose disjoint subsets S1;S2DN such that at most one number nqeS1,S2: We describe a

probability distribution on choices of disjoint subsets S1;S2 such that Pr½nqAS2�pp and

Pr½nqAS1�p1� p andX
nqAS2

nqpp
X

q

nq:

The basic idea behind the procedure is quite simple. We examine each value nq in sequence and

decide to either place it in S1 or S2 or neither. This choice is randomized. The goal is to (roughly)
have

P
nqAS2

nq ¼ p
P

q nq:We think of the LHS as the required value ðreqdÞ: As indices are added
to S2; this required value is correspondingly decreased. We also keep track of the sum of nq for all

q we have not examined so far (including the current one being examined). This is refered to as the
remaining value (rem). Excluding boundary cases (i.e. when reqd is very small or very large), we
place the current value nq in S2 with probability reqd=rem: Note that initially reqd=rem ¼ p: The
precise description of the procedure is as follows:

Procedure Construct-Distribution

1. S1 ¼ |; S2 ¼ |; rem1 ¼
P

q nq; reqd1 ¼ p
P

q nq:

2. for q ¼ 1 to t do steps 3 to 4
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3. if ð0oreqdqonqÞ { /� reqd very small �/

with probability nq=remq {

reqdqþ1 ¼ 0

}
else {

S1 ¼ S1,fnqg
reqdqþ1 ¼ reqdq

}
} else if ðremq � nqoreqdqoremqÞ { /� reqd very large �/

with probability 1� nq=remq {

S2 ¼ S2,fnqg
reqdqþ1 ¼ reqdq � nq

} else {
reqdqþ1 ¼ remq � nq

}
} else {

with probability reqdq=remq {

S2 ¼ S2,fnqg:
reqdqþ1 ¼ reqdq � nq

}
else {

S1 ¼ S1,fnqg
reqdqþ1 ¼ reqdq

}
}

4. remqþ1 ¼ remq � nq:

We now prove Lemmas 5.2 and 5.3 about the properties of Construct-Distribution we used
in our analysis.

Proof of Lemma 5.2. Note that if nq is added to neither S1 or S2 in step 3, then subsequent nq are

either all put in S1 or all put in S2: (This is because either reqdqþ1 is set to 0; in which nqþ1; nqþ2;y

are placed in S1; or reqdqþ1 is set to remq � nq in which case nqþ1; nqþ2;y are all placed in S2:)

Thus at most one number nq is excluded from both S1 and S2: Additionally, the procedure

maintains the invariant that reqdþ
P

nqAS2
nqpp

P
q nq: The procedure also ensures that reqdX0:

Hence,
P

nqAS2
nqpp

P
qnq: &

Proof of Lemma 5.3. We prove that the procedure Construct-Distribution constructs a
probability distribution such that Pr½nqAS2�preqd1=rem1 and Pr½nqAS1�p1� reqd1=rem1: Since
reqd1=rem1 ¼ p; this will establish the lemma. We prove this by induction on q:
For the base case, consider the first iteration. We consider several cases corresponding to the

conditions checked in step 3 of the procedure.
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Case 1: 0oreqd1on1:
Pr½n1AS2� ¼ 0oreqd1=rem1; Pr½n1AS1� ¼ 1� n1=rem1o1� reqd1=rem1:
Case 2: rem1 � n1oreqd1orem1:
Pr½n1AS2� ¼ 1� n1=rem1oreqd1=rem1; Pr½n1AS1� ¼ 0o1� reqd1=rem1:
Case 3:
Pr½n1AS2� ¼ reqd1=rem1; Pr½n1AS1� ¼ 1� reqd1=rem1:
Suppose the claim is true for q iterations. We now prove this for q þ 1 iterations. We need to

prove the claim for nqþ1; since it is true for n1;y; nq by the inductive hypothesis. We consider the

various possibilities considered by the procedure for n1: This results in modified values rem2 and
reqd2: For each of these possibilities, we can bound the probabilities of nqþ1 being included in S1

or S2 in terms of rem2 and reqd2: To do this, we apply the inductive hypothesis to the execution of
the q iterations after the first one. We only prove that Pr½nqþ1AS2� satisfies the claimed bound.

The proof for Pr½nqþ1AS1� follows from similar calculations.

Again, we consider cases corresponding to the conditions checked in step 3 of the procedure.
Case 1: 0oreqd1on1:
With probability n1=rem1; reqd2 ¼ 0 and all subsequent nq values, q ¼ 2;y are included in S1:
With probability 1� n1=rem1; reqd2 ¼ reqd1: By the inductive hypothesis on iterations 2

through q þ 1; Pr½nqþ1AS2�preqd2=rem2 ¼ reqd1=ðrem1 � n1Þ: Hence, Pr½nqþ1AS2� after itera-

tions 1 through q þ 1 is at most

rem1 � n1

rem1

� �

 reqd1

rem1 � n1

� �
¼ reqd1

rem1
:

Case 2: rem1 � n1oreqd1orem1:
With probability 1� n1=rem1; n1 is added to S1; reqd2 ¼ reqd1 � n1: By the inductive

hypothesis on iterations 2 through q þ 1; Pr½nqþ1AS2�preqd2=rem2 ¼ ðreqd1 � n1Þ=ðrem1 � n1Þ:
With probability n1=rem1; reqd2 ¼ rem1 � n1 and all subsequent nq values are added to S2:

Hence, Pr½nqþ1AS2� after iterations 1 through q þ 1 is at most

rem1 � n1

rem1

� �

 reqd1 � n1

rem1 � n1

� �
þ n1

rem1

� �
¼ reqd1

rem1
:

Case 3: With probability reqd1=rem1; n1 is added to S2; reqd2 ¼ reqd1 � n1 By the inductive
hypothesis on iterations 2 through q þ 1; Pr½nqþ1AS2�pðreqd1 � n1Þ=ðrem1 � n1Þ:
With probability 1� reqd1=rem2; n1 is added to S1; reqd2 ¼ reqd1: By the inductive hypothesis

on iterations 2 through q þ 1; Pr½nqþ1AS2�preqd2=rem2 ¼ ðreqd1Þ=ðrem1 � n1Þ:
reqd1
rem1

� �

 reqd1 � n1

rem2 � n1

� �
þ 1� reqd1

rem1

� �

 reqd1

rem1 � n1

� �
¼ reqd1

rem1
:

By induction, the claim is true. &

6. Incremental algorithm

We obtain an incremental algorithm that clusters points so as to minimize the sum of cluster
radii. The notion of an incremental algorithm is similar to that used in [2] where an incremental
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algorithm was presented for the k-center problem. Such an algorithm must make one pass over
the data maintaining at most k clusters and incorporating newly encountered points using a set of
very simple operations. When a new point is encountered, the operations available to update the
current clustering are

1. The new point can be added to an existing cluster.
2. The new point can be placed in a singleton cluster.
3. At any point of time, the algorithm can also merge two of its existing clusters.

We compare the clustering maintained by the algorithm to the optimal clustering of the current
set of points if the set of points was given in advance. The maximum possible ratio of the cost of
the algorithm to the cost of the optimal is called its performance ratio.
The notion of an incremental clustering algorithm is similar to the recently studied notion of

streaming algorithms for clustering problems [12]. We highlight some of the main differences in
the two models. A clustering algorithm in the streaming model is not required to maintain an
explicit clustering as the data stream is read. Indeed, such an algorithm will be able to output a
clustering at any point of time based on the information it stores about the points it has seen so
far, but there is no requirement that the clustering corresponding to prefixes of the data stream
should evolve via the simple operations listed above. Thus in some sense, an incremental
algorithm is more restricted than a streaming algorithm. On the other hand a streaming algorithm
has a strict storage space constraint. This is not a restriction we impose on incremental clustering
algorithms. Thus the two models are related though strictly speaking, incomparable.
However, the incremental algorithm we devise is also a valid streaming algorithm since it only

needs to store a set of points whose size is linear in the number of clusters. Given that the small
storage space constraint is met, the algorithm is indeed a streaming algorithm.
Actually, our algorithm does not maintain at most k clusters. We relax the requirement on the

number of clusters slightly. Given a parameter k; the algorithm is guaranteed to maintain c1 
 k
clusters with total cost c2 
Opt where Opt is the cost of the optimal solution (with at most k

clusters). Here c1; c240 are constants.
We first outline the basic ideas and then describe the details of the algorithm. The idea is to

incrementally maintain a solution to the fixed costs sum-radii problem. The fixed costs are set
proportional to Opt=k: If we are able to maintain a constant factor approximation to the fixed

costs sum-radii problem with these fixed costs, this will imply a bicriteria approximation for the
original sum-radii problem.
The problem of course is that we do not know Opt and that Opt possibly increases as more

points are added to the current point set. However, the algorithm maintains a lower bound on the
optimal cost Opt and updates this as new points are added. In particular, the algorithm operates
in phases. In each phase, the algorithm maintains a lower bound L on the optimal cost and
maintains a solution to the fixed costs sum-radii problem with fixed costs 2L=k: The algorithm
maintains a subset W of the point set seen so far (a witness set) together with a dual solution for
this set of points.3 This is a feasible solution to the dual LP for the fixed costs sum-radii problem
(8)–(9). As new points are received by the algorithm, some of these are added to the witness setW:
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Also, the clusters in the solution maintained are updated to cover newly encountered points.
When the dual solution is sufficiently large, the algorithm proceeds to the next phase and doubles
its lower bound from L to 2L:

6.1. Algorithm details

At any point of time, the algorithm maintains a lower bound L on the cost of the optimal
solution. As stated before, the lower bound is obtained by maintaining a dual solution on an
instance consisting of a subset of the points seen so far, i.e. the witness set W: For ease of
exposition, it will be convenient to assume that the optimal solution is forced to use clusters with
centers at one of the points in W: Of course, the optimal solution for the entire point set need not
place its centers at points in W: However, it is easy to see that a solution with arbitrary centers
can be converted to a solution for the instance consisting of points in W with centers only at
points in W; by increasing the cost of the solution by a factor of 2: Thus we will assume for the
purposes of maintaining the bound, that the optimal solution is forced to use centers in the
witness set and analyze the cost of the solution with respect to this bound. However, this is with
the implicit understanding that a lower bound of L maintained by the algorithm translates to a
true lower bound of L=2 on the cost of the optimal solution.

Description of a phase: The input to a phase is a lower bound of L and a set of at most 4k
clusters with sum of radii at most 40L:
The algorithm treats the cluster centers of the previous phase as input points, processing them

in the same way as points added incrementally during the phase. However we remember which
points were cluster centers in the previous phase and the radius of the clusters they were centers of.
The clusters maintained by the algorithm cover all the points seen during the phase, including the
cluster centers of the previous phase. Now, in order to cover the clusters from the previous phase,
the algorithm increases the radii of the clusters covering the cluster centers. For the analysis of the
solution cost during a phase, we will separate these two contributions. For the most part, we
ignore the fact that clusters need to be expanded to cover the clusters of the previous phase.
Finally, we incorporate the contribution of this expansion on the cost of the solution maintained
during the phase.
The algorithm maintains a set of points W called a witness set together with a dual solution on

these. The dual value aj for all points jAW is L=k: The constraints on the dual solution are:

8iAW; r;
X

j : jACiðrÞ
ajpr þ 2L=k:

A near-tight cluster is a cluster CiðrÞ for iAW such that:X
j : jACiðrÞ

ajXr=2þ L=k:

During the phase, the algorithm maintains a set of clusters that cover all near-tight clusters.
To do this, the algorithm maintains a subset C of disjoint near-tight clusters, called core clusters.

For each core cluster CiðrÞAC; the algorithm uses the cluster Cið5rÞ in its solution.
The phase ends as soon as jWj ¼ 4k: At this point, the algorithm begins a new phase with lower

bound 2L:
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Phase details: In every phase, we execute the following steps:

Procedure Single-Phase-Sum-Radii (sequence S of points, lower bound L)

1. W’|; ap ¼ 0 for all points p:
2. Repeat steps 2a–2d until jWj ¼ 4k:

(a) Let p be the next point in S (remove p from S).
(b) If p lies in a current near-tight cluster, goto step 2a.
(c) W ¼ W,fpg; ap ¼ L=k:
(d) Call procedure Incrementally-Update-Clustering to cover all new near-tight

clusters.
3. Let C be the set of cluster centers in the current solution. Call procedure Single-Phase-Sum-

Radii(C 
 S; 2L). (Here C 
 S represents the sequence C concatenated with the unprocessed
points in the sequence S:)

Observe that in step 2d, we are guaranteed to cover p since p is contained in at least one near-
tight cluster as Cpð0Þ becomes a new near-tight cluster when p is added.

Procedure Incrementally-Update-Clustering

1. Order the set of new near-tight clusters in decreasing order of radius and examine each of
these in order.

2. Suppose CiðrÞ is the current cluster being examined. We consider several cases depending on
the core clusters in C that intersect CiðrÞ:
(a) Case 1: CiðrÞ does not intersect any clusters in C:

In this case, CiðrÞ is added as a core cluster to C and the cluster Cið5rÞ added to the
solution maintained for covering all points seen in the current phase.

(b) Case 2: CiðrÞ intersects some cluster Ci0 ðr0ÞAC with r0Xr=2:
In this case, Ci0 ð5r0Þ completely contains CiðrÞ: Since Ci0 ð5r0Þ is in the current solution,

CiðrÞ is completely covered by the current solution.
(c) Case 3: For all clusters Ci0 ðr0ÞAW that intersect CiðrÞ; r0or=2:

In this case, CiðrÞ is added to C as a core cluster and Cið5rÞ is added to the
current solution. Further, all clusters Ci0 ðr0Þ that intersect CiðrÞ are removed from C
and the corresponding clusters Ci0 ð5r0Þ are removed from the current solution. Effectively,
all the removed clusters Ci0 ð5r0Þ are merged together to form the cluster Cið5rÞ in this
step. Note that, for any removed cluster Ci0 ð5r0Þ; since r0or=2 and Ci0 ðr0Þ intersects
CiðrÞ; the old cluster Ci0 ð5r0Þ is completely contained in the newly added cluster Cið5rÞ:
This implies that all near-tight clusters previously covered by Ci0 ð5r0Þ are now covered
by CiðrÞ:

Observe that procedure Incrementally-Update-Clustering ensures that every new near-

tight cluster CiðrÞ is covered by some cluster in the current solution. In particular this ensures that
the newly added point p is also covered. Further, the algorithm maintains the invariant that the
core clusters in C are disjoint.
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6.2. Analysis

We first prove that the algorithm maintains a valid dual solution during a phase.

Lemma 6.1. The dual solution maintained by the algorithm satisfies all the dual constraints.

Proof. We need to verify that no dual constraints are violated when a new point p is added to W:
Assume for contradiction, that some dual constraint is violated by the addition of p to W: We
consider two cases:

Case 1: The dual constraint for CiðrÞ is violated for iAW; iap: In this case, pACiðrÞ andX
j : jACiðrÞ

ajXr þ L=k:

(Note that the summation does not include the point p). However this means that CiðrÞ was a
near-tight cluster before the addition of p: In this case, the algorithm would not have added
p to W:

Case 2: The dual constraint for CpðrÞ is violated. Hence,X
j : jACpðrÞ

ajXr þ L=k:

(Note that the summation does not include the point p). The cluster CpðrÞ must contain at least

one point in W other than p: Consider any such point, say q: The cluster Cqð2rÞ completely
contains the cluster CpðrÞ: Hence,X

j : jACqð2rÞ
X

X
j : jACpðrÞ

ajXr þ L=k:

(Again, the summation does not include the point p). But this implies that the cluster Cqð2rÞ
was near-tight before the addition of point p: In this case, the algorithm would not have added
p to W:
The contradiction in both cases proves that no dual constraint is violated, proving the

lemma. &

Lemma 6.2. At the end of a phase with lower bound L; the cost of the optimal solution to the sum-
radii problem for the points in W; the lower bound witness set, is at least 2L: (This is with the

restriction that cluster centers are in W:)

Proof. At the end of the phase, jWj ¼ 4k: At this point, the value of the dual solution is 4L:
Suppose the optimal solution for points in W is strictly less than 2L: This can be converted to a
solution to the sum-radii problem with fixed costs 2L=k; the cost of this solution is strictly less
than 2L þ k 
 2L=k ¼ 4L: However, this is strictly less than the lower bound of 4L given by the
dual solution. The contradiction implies that the cost of the optimal solution to the sum-radii
problem is indeed at least 2L at the end of the phase. &
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Lemma 6.3. In a phase with lower bound L; the algorithm maintains at most 4k clusters with sum of

radii at most 40L which cover all input points seen during this phase including the cluster centers from
the previous phase.

Proof. For each core cluster CiðrÞAC; the solution maintained by the algorithm includes cluster
Cið5rÞ: Thus the cost of the solution maintained by the algorithm is

5
X

CiðrÞAC

r:

Note that the core clusters CiðrÞAC are disjoint. Further, each core cluster is near-tight.
Thus,

8CiðrÞAC; r=2p
X

jACiðrÞ
aj;

X
CiðrÞAC

r=2p
X

CiðrÞAC

X
jACiðrÞ

ajp
X
jAW

ajp4L:

Hence the cost of the solution maintained by the algorithm is at most 5 2 4L ¼ 40L: The
number of clusters in the solution is equal to the number of core clusters in C: Since the core
clusters are disjoint, each containing at least one point in W; there are at most jWj ¼ 4k

clusters. &

Lemma 6.4. In a phase with lower bound L; the algorithm maintains at most 4k clusters with sum of
radii at most 80L which cover all input points seen so far.

Proof. Lemma 6.3 bounds the sum of the radii in the solution maintained by the algorithm in
order to cover all the points seen in the current phase, including the cluster centers of the previous
phase. For such a cluster center i; let ri denote the radius of the cluster it was a center for in the
previous phase. In order to cover all points seen so far, we need to expand the clusters so as to
completely cover the clusters from the previous phase. To accomplish this, each cluster center i

from the previous phase is assigned to one of the clusters in the current phase that contains it;
further the radius of this cluster is increased by ri:
Now, the sum of the radii of the clusters in the current solution are increased by (at most) the

sum of the radii of the clusters in the previous phase. Thus the sum of radii of clusters in the
current solution (to cover all points seen so far) is at most 40L þ 40L ¼ 80L: The number of
clusters is at most 4k as bounded by Lemma 6.3. &

Lemma 6.5. At the end of a phase with lower bound L; the algorithm satisfies the conditions required
for the next phase with lower bound 2L:

Proof. By Lemma 6.2, the algorithm establishes a lower bound of 2L at the end of a phase with
lower bound L; By Lemma 6.4, the sum of the radii of the clusters maintained by the algorithm is
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at most 80L ¼ 40 
 2L and there are at most 4k clusters in all. Thus the algorithm satisfies the
conditions for the next phase with lower bound 2L: &

Note that in a phase with lower bound L; the cost of the optimal solution is at least L=2: Using
Lemma 6.4, we get the following theorem.

Theorem 6.1. The algorithm maintains a solution with at most 4k clusters with cost at most 160
times that of the optimal solution.

For ease of exposition, we have not attempted to optimize the constants in the bicriteria
guarantee; our goal rather was to demonstrate that it is possible to obtain an incremental
algorithm with such a guarantee. It is possible to improve the constants by using techniques such
as randomized doubling (see [2] for example) and better utilizing the lower bound provided by the
dual solution.
It is interesting open problem to determine whether it is possible to obtain an incremental

clustering algorithm for this problem without allowing an increased number of clusters. Further,
it would be interesting to investigate general structural properties of clustering objective functions
for which incremental (or streaming) clustering algorithms can be devised.
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