JOURNAL OF ALGEBRA 40, 618-626 (1976)

Zur Charakterisierung der Fittinggruppe der Automorphismengruppe einer endlichen Gruppe

R. LAUE

Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, Deutschland

Submitted by B. Huppert

Received December 10, 1975

1. Ergebnisse

Schmid [9] warf die Frage auf, ob sich der größte nilpotente Normalteiler der Automorphismengruppe $\operatorname{Aut}(G)$ einer endlichen Gruppe G, die Fittinggruppe $F(\operatorname{Aut}(G))$, durch eine ausgezeichnete Operation auf G charakterisieren läßt. Schmid zerlegt $F(\operatorname{Aut}(G))$ in das direkte Produkt seiner π - und π' -Hallgruppen, wobei π die Menge der Primteiler von |F(G)| ist und sucht, diese Hallgruppen einzeln zu charakterisieren. Wir folgen diesem Ansatz und zerlegen außerdem noch G in charakteristische direkte Komponenten G — $G_1 \times \cdots \times G_n$. Dabei ist G_i eine abelsche p_i -Gruppe, p_i eine Primzahl für $i=1,\ldots,n-1$, und G_n besitzt keinen charakteristischen direkten abelschen Faktor. Da $\operatorname{Aut}(G) \cong \operatorname{Aut}(G_1) \times \cdots \times \operatorname{Aut}(G_n)$ ist, ist auch $F(\operatorname{Aut}(G)) \cong F(\operatorname{Aut}(G_1)) \times \cdots \times F(\operatorname{Aut}(G_n))$. Es reicht also, $F(\operatorname{Aut}(G_i))$ für jedes i einzeln zu charakterisieren.

SATZ 1. Sei G eine abelsche p-Gruppe, B die p'-Hallgruppe von F(Aut(G)). Ist G nicht vom Typ (2,2) oder (3,3), so gilt: $B=Z(Aut(G))_{p'}$, B ist zyklisch von der Ordnung (p-1), und B besteht aus homogenen Potenzautomorphismen. Ist G vom Typ (2,2), so ist B zyklisch von der Ordnung 3, und ist G vom Typ (3,3), so ist B isomorph zur Quaternionengruppe der Ordnung 8.

Eine Charakterisierung der p-Sylowgruppe von F(Aut(G)) ergibt sich für G aus Satz 1 aus dem folgenden allgemeineren Ergebnis, das [9, Satz 2 Teil (a)] verallgemeinert.

SATZ 2. Sei F(G) eine p-Gruppe. Dann ist die p-Sylowgruppe A von F(Aut(G)) die Stabilitätsgruppe aller Aut(G)-Kompositionsreihen von G. Ist dabei G von G Elementen erzeugt, so ist |A| ein T eiler von $|F(G)|^d$.

Dabei stabilisiert eine Automorphismengruppe A eine Kette $1=U_0 < U_1 < \cdots < U_n = G$, wenn A jede Restklasse von U_{i-1} in U_i fest läßt für $i=1,\ldots,n$. Die größte dieser Automorphismengruppen ist die Stabilitätsgruppe der Kette.

Es bleibt nun noch der Fall zu betrachten, daß G keinen charakteristischen direkten abelschen Faktor besitzt. Aus dem nachfolgenden Satz ergibt sich, daß dann die π' -Hallgruppe von $F(\operatorname{Aut}(G))$ trivial ist, d.h. $F(\operatorname{Aut}(G))$ ist wiederum eine π -Gruppe.

SATZ 3. Sei B die π' -Hallgruppe von F(Aut(G)). Dann ist $G = C_G(B) \times [G, B]$, wobei [G, B] = [G, B, B] abelsch ist. Die beiden direkten Faktoren $C_G(B)$ und [G, B] sind charakteristisch in G.

Damit ist die π' -Hallgruppe von $F(\operatorname{Aut}(G))$ charakterisiert. Leider können wir für eine Gruppe G ohne charakteristischen direkten abelschen Faktor keine allgemeine Charakterisierung für $F(\operatorname{Aut}(G)) = F(\operatorname{Aut}(G))_{\pi}$ angeben. Wir haben allgemein nur folgende Ergebnisse.

SATZ 4. F(Aut(G)) stabilisiert jede Aut(G)-Kompositionsreihe von G/Z(G) und von G'.

SATZ 5. Besitzt G keinen direkten abelschen Faktor, so liegt die Gruppe $C_{\operatorname{Aut}(G)}(G/Z(G))$ der zentralen Automorphismen in $F(\operatorname{Aut}(G))$. Insbesondere hat dann die Stabilitätsgruppe einer $\operatorname{Aut}(G)$ -Kompositionsreihe von G/Z(G) höchstens nilpotente Länge 2. Ist G dabei von G Elementen erzeugt, so gelten folgende Abschätzungen: $|\operatorname{Hom}(G/G', Z(G))| \cdot |F(G)/Z_2(G)|$ teilt $|F(\operatorname{Aut}(G))|$ und $|F(\operatorname{Aut}(G))|$ teilt $|\operatorname{Hom}(G/G', Z(G))| \cdot |F(G)/Z(G)|^d$.

Unter einigen schärferen Voraussetzungen erhalten wir jedoch eine Charakterisierung von F(Aut(G)).

Satz 6. Sei $Z(G) \leqslant \Phi(G)$ oder $G' \geqslant \Psi(G)$, wobei $\Psi(G) = \langle U \mid U \leqslant G, U$ minimal nichttrivial oder $|U| = 4 \rangle$ das erweiterte Frattinidual ist. Dann ist jeweils F(Aut(G)) die Stabilitätsgruppe aller Aut(G)-Kompositionsreihen von G.

Darüberhinaus liefert auch Satz 2 ein entsprechendes Ergebnis.

Abschließend behandeln wir noch eine Folgerung aus Satz 5, die sich nicht auf eine Charakterisierung von F(Aut(G)) bezieht.

SATZ 7. G besitze keinen direkten abelschen Faktor. Ist dann $C_G(F(G)) \leq F(G)$, so ist auch $C_{\operatorname{Aut}(G)}(F(\operatorname{Aut}(G))) \leq F(\operatorname{Aut}(G))$.

Die Klasse aller Gruppen, deren Fittinggruppe ihren Zentralisator enthält, ist eine Fittingklasse und gleich der Klasse aller Gruppen, deren

größter auflösbarer Normalteiler seinen Zentralisator enthält. Daher ergibt sich aus Satz 7 als Folgerung

KOROLLAR 8. Sei $N \subseteq \operatorname{Aut}(G)$, wobei G eine auflösbare Gruppe ohne direkten abelschen Faktor ist. Dann ist $C_N(F(N)) \leq F(N)$ und $C_N(S(N)) \leq S(N)$, wobei S(N) der größte auflösbare Normalteiler von N ist.

Die Definitionen und Bezeichnungen sind Standard, siehe etwa Huppert's Buch [4].

2. Abelsche Gruppen

Beweis von Satz 1. Sei zunächst G eine homogene abelsche p-Gruppe vom Typ ($p^n,...,p^n$) für ein $n \in \mathbb{N}$. Dann läßt sich $\operatorname{Aut}(G)$ als die Gruppe aller $d \times d$ -Matrizen über $\mathbb{Z}/p^n\mathbb{Z}$ darstellen, deren Determinante modulo p nicht kongruent Null ist. Nach Shoda [10, Satz 7] besitzt $\operatorname{Aut}(G)$ eine Kette $N_1 > N_2 > \cdots > N_n = 1$ von Normalteilern, wobei N_i gerade aus den Automorphismen besteht, die $\Omega_i(G)$ zentralisieren. Es ist G/N_1 isomorph zu GL(d,p) und N_i/N_{i+1} elementarabelsch von der Ordnung p^{d^2} für i=1,...,n-1, insgesamt $|N_1| = p^{(n-1)d^2} = |\Phi(G)|^d$. Da $|\operatorname{Aut}(G)/N_i| = |\operatorname{Aut}\Omega_i(G)|$ ist, läßt sich jeder Automorphismus von $\Omega_i(G)$ auf ganz G fortsetzen.

Die p-1 Elemente von Z(GL(d,p)) entsprechen den homogenen Potenzautomorphismen von $\Omega_1(G)$. Für diese lassen sich Fortsetzungen auf ganz G angeben, die in $Z(\operatorname{Aut}(G))$ liegen: Die p-1 Automorphismen $\alpha(m)$, die jedes $g \in G$ auf g^m abbilden, wobei 0 < m < p ist. Die Gruppe P(G) der homogenen Potenzautomorphismen deckt also die Faktorgruppe $Z(\operatorname{Aut}(G)/N_1) \cong Z(GL(d,p))$, es ist sogar $P(G)_{p'} \cong P(G)N_1/N_1 \cong Z(GL(d,p))$ zyklisch von der Ordnung p-1. Für $(p^n,...,p^n) \notin \{(2^n,2^n),(3^n,3^n)\}$ ist Z(GL(d,p)) = F(GL(d,p)), also

$$P(G)_{p'} \leqslant F(\operatorname{Aut}(G))_{p'} \cong F(\operatorname{Aut}(G))/N_1 \leqslant Z(\operatorname{Aut}(G)/N_1) \cong P(G)_{p'}$$
.

Daher ist dann $F(\operatorname{Aut}(G))_{p'} = P(G)_{p'} = Z(\operatorname{Aut}(G))_{p'}$. Sei nun G vom $\operatorname{Typ}(2^n, 2^n)$. Für n = 1 ist $G \cong Z_2 \times Z_2$ und $F(\operatorname{Aut}(G)) \cong Z_3$ wie behauptet. Ist n > 1, so ist $|F(\operatorname{Aut}(G))_{p'}|$ ein Teiler von 3. Wäre $|F(\operatorname{Aut}(G))_{p'}| = 3$, so hätte $\operatorname{Aut}(G)$ genau eine 3-Sylowgruppe der Ordnung 3. Nun sind aber $\binom{0-1}{1-1}$, $\binom{-1}{1-1}$, $\binom{0}{1-1}$, $\binom{-1}{1-1}$ vier verschiedene Elemente der Ordnung 3, die nicht in einer 3-Sylowgruppe liegen können. Daher ist $F(\operatorname{Aut}(G))_{p'} = 1$. Sei endlich G vom Typ $(3^n, 3^n)$. Für n = 1 ist $G \cong Z_3 \times Z_3$ und

 $F(\operatorname{Aut}(G))\cong Q_8$. Ist n>1, so ist zunächst $Z_2\cong N_1P(G)/N_1\leqslant F(\operatorname{Aut}(G))/N_1\leqslant F(\operatorname{Aut}(G)/N_1)\cong Q_8$. Da in GL(2,3) kein Normalteiler echt zwischen Z(GL(2,3)) und F(GL(2,3)) liegt, brauchen wir nur zu zeigen, daß $F(\operatorname{Aut}(G))/N_1$ nicht zu Q_8 isomorph sein kann. Jede 2-Sylowgruppe S von $\operatorname{Aut}(G)$ ist isomorph zu einer 2-Sylowgruppe S von S

Insbesondere hat dann $\operatorname{Aut}(G)/N_2 \cong \operatorname{Aut}(\Omega_2(G))$ nur eine Untergruppe vom Typ der Quaternionengruppe. Wir brauchen also nur für den Fall n=2 einen Widerspruch zu finden: Hier ist

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$, $\begin{pmatrix} 2 & 2 \\ 2 & 7 \end{pmatrix}$, $\begin{pmatrix} 7 & 2 \\ 2 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 7 \\ 7 & 7 \end{pmatrix}$, $\begin{pmatrix} 7 & 7 \\ 7 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 8 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 8 \\ 1 & 0 \end{pmatrix}$

eine Quaternionengruppe, die von $\begin{pmatrix} 8 & 8 \\ 2 & 1 \end{pmatrix}$ nicht normalisiert wird.

Sei nun G eine nicht homogene abelsche p-Gruppe, $G = H_1 \times \cdots \times H_r$ eine direkte Zerlegung in homogene Komponenten H_i vom Typ (p^i, \dots, p^i), $n_i > 0$. Ist A die p-Sylowgruppe von $F(\operatorname{Aut}(G))$, so ist $\operatorname{Aut}(G)/A \cong \prod_{i=1}^r GL(n_i, p)$, siehe [10, Satz 7(B)]. Setzen wir $N = \bigcap_{i=1}^r N_{\operatorname{Aut}(G)}(H_i)$, und bezeichnen wir mit K die p-Sylowgruppe von F(N), so ist auch $N/K \cong \prod_{i=1}^r GL(n_i, p)$. Da $A \cap N \leqslant K$ ist, folgt $\operatorname{Aut}(G) = AN$, und N enthält zu jedem Primteiler $q \neq p$ von $\operatorname{Aut}(G)$ eine q-Sylowgruppe von $\operatorname{Aut}(G)$.

Daher liegt B in N, natürlich dann auch in $F(N)_{p'} \cong \prod_{i=1}^r F(\operatorname{Aut}(H_i))_{p'}$. Da G nicht homogen ist, existiert eine homogene Komponente H_j mit j > 1. Auf H_j induziert B daher nach dem ersten Teil des Beweises eine zyklische Gruppe homogener Potenzautomorphismen. Wir zeigen zunächst, daß B auf H_i treu operiert. Sei dazu $H_i \neq H_i$ eine weitere homogene Komponente, $y \in \Omega_1(H_i)$. Multiplikation aller Elemente der Ordnung p^j von H_i mit y ergibt einen Automotphismus α von G, der $G/\Phi(G)$ zentralisiert, also in A liegt. Da [A, B] = 1 ist, gilt für jedes $\beta \in C_B(H_i)$ und ein Element x der Ordnung p^{j} von H_{j} , $xy = x^{\alpha} = x^{\beta\alpha} = x^{\alpha\beta} = (xy)^{\beta} = xy^{\beta}$ also $y^{\beta} = y$. Daher zentralisiert β auch $\Omega_1(H_i)$. Da $C_{\text{Aut}(H_i)}(\Omega_1(H_i))$ eine p-Gruppe aber B eine p'-Gruppe ist, zentralisiert β ganz H_i . Da H_i beliebig gewählt werden konnte, operiert Balso treu auf H_i , ist also zyklisch von einer Ordnung, die p-1 teilt. Nun induzieren die p-1 Element $\alpha(m)$ von P(G), die jedes $g \in G$ auf g^m abbilden, wobei 0 < m < p ist, auf $\Omega_1(G)$ alle Automorphismen aus $Z(\text{Aut}(\Omega_1(G))) \cong$ Z_{v-1} . Daher ist p-1 ein Teiler von |P(G)| und von $|F(\operatorname{Aut}(G))|$, also von B. Daher ist $B \leq P(G)$ zyklisch von der Ordnung p-1. Damit ist Satz 1 bewiesen.

3. Stabilitätsgruppen nichtabelscher Gruppen

Wir stellen hier einige Verallgemeinerungen bekannter Hilfssätze zusammen, die auch von unabhängigem Interesse sein dürften.

HILFSSATZ 1. (a) Ist $N \subseteq G$ und $A \subseteq Aut(G)$, so ist $[N, A] \subseteq G$. Ist N unter A invariant, so auch [N, A].

- (b) Sind N_1 , $N_2 \subseteq G$ und $A \subseteq \operatorname{Aut}(G)$, so ist $[N_1N_2, A] = [N_1, A][N_2, A]$.
- (c) Sind N_1 , $N_2 \leqslant G$, $A \leqslant \operatorname{Aut}(G)$ und $M \leq G$, M unter A invariant und zwei der Untergruppen $[N_1, A, N_2]$, $[N_2, A, N_1]$ und $[N_1, N_2, A]$ in M enthalten, dann ist auch die dritte in M enthalten.
- Beweis. (a) Sei $n \in N$, $\alpha \in A$ und $g \in G$. Dann ist $[n, \alpha]^g = (n^{-1}n^{\alpha})^g = n^{-g}n^{\alpha g} = n^{-g}n^{g\alpha} = n^{-1}n_1^{\alpha_1} = [n_1, \alpha_1]$, wobei $n_1 = n^g \in N$ und $\alpha_1 = \alpha^{\bar{g}}$, das Bild von α unter der Konjugation durch den inneren Automorphismus \bar{g} von G, in A enthalten ist. Analog folgt auch die zweite Aussage.
- (b) Ist $n_1 \in N_1$, $n_2 \in N_2$ und $\alpha \in A$, so ist $[n_1 n_2, \alpha] = [n_1, \alpha]^{n_2} [n_2, \alpha]$ nach (a) in $[N_1, A][N_2, A]$ enthalten. Die andere Inklusion ist trivial.
- (c) Im semidirekten Produkt *GA* wenden wir das 3-Untergruppen-Lemma [4, III, 1.10] an und erhalten die Behauptung.

HILFSSATZ 2. Eine Automorphismengruppe A von G stabilisiere eine Kette $N=N_0\geqslant N_1\geqslant \cdots\geqslant N_r=1$, wobei jedes N_i in G normal ist. Dann stabilisiert A auch die Kette $G=C_0\geqslant C_1\geqslant \cdots\geqslant C_r=C_G(N)$, wobei $C_j=\bigcap_{i=1}^r C_G(N_{i-1}/N_{i+j-1})$ ist, mit $N_k=N_r$ für $k\geqslant r$.

Beweis. Für $i=1,\ldots, r$ ist $[N_i$, C_j , $A]\leqslant [N_{i+j}$, $A]\leqslant N_{i+j+1}$ und $[N_i$, A, $C_j]\leqslant [N_{i+1}$, $C_j]\leqslant N_{i+j+1}$. Nach Hilfssatz 1(c) ist dann auch $[C_j$, A, $N_i]\leqslant N_{i+j+1}$. Daher liegt $[C_j$, A] in C_{j+1} für jedes j.

HILFSSATZ 3. Ein Normalteiler A von Aut(G) stabilisiere eine Kette $G = G_0 \geqslant \cdots \geqslant G_r = Z(G)$ von Normalteilern von G. Dann stabilisiert A auch die Kette $G' = N_0 \geqslant N_1 \geqslant \cdots \geqslant N_{2r} = 1$, wobei $N_n = \prod_{i+j=n} [G_i, G_j]$ für $n \in \mathbb{N} \cup \{0\}$ ist.

Beweis. Nach Hilfssatz 1 ist $[N_n, A] = [\prod_{i+j=n} [G_i, G_j], A] = \prod_{i+j=n} [G_i, G_j, A] \leqslant \prod_{i+j=n} [G_i, A, G_j] [G_j, A, G_i] \leqslant \prod_{i+j=n} [G_{i+1}, G_j] [G_{j+1}, G_i] = \prod_{i+j=n+1} [G_i, G_j] = N_{n+1}$ für $n = 0, 1, 2, \ldots$

Der hier wiedergegebene Beweis von Hilfssatz 3 stammt von Dr. H. Laue, dem ich dafür herzlich danken möchte. Mein ursprünglicher Beweis beruhte auf einer komplizierter aufgebauten Kette von Normalteilern N_i .

Nach Schmid [8, Satz 3.1] stabilisiert eine Automorphismengruppe mit einer Kette von $G/\Phi(G)$ auch eine Kette von ganz G. Wir werden dies Ergebnis benötigen, sowie auch die folgende Dualisierung.

HILFSSATZ 4. Eine Automorphismengruppe A stabilisiere eine Kette $\Psi(G) = N_0 \geqslant N_1 \geqslant \cdots \geqslant N_r = 1$ von Normalteilern von G. Dann stabilisiert A eine Kette von ganz G.

Beweis. Nach Hilfssatz 2 stabilisiert A eine Kette von $G/C_G(\Psi(G))$, es reicht daher zu zeigen, daß A auch eine Kette von $C_G(\Psi(G))$ stabilisiert. Nun ist $C_G(\Psi(G))$ nach [4, IV, 5.5] nilpotent, wir brauchen daher nur zu zeigen, daß A in jeder Sylowgruppe eine Kette stabilisiert. Ist $P \in \operatorname{Syl}_p(C_G(\Psi(G)))$, so ist $\Omega_e(P) \leqslant \Psi(G)$, wobei e=1 für $p \neq 2$ und e=2 für p=2 ist. Da A eine Kette von $\Psi(G)$ stabilisiert und $\Omega_e(P)$ unter A invariant ist, stabilisiert A auch eine Kette von $\Omega_e(P)$. Also ist $A/C_A(\Omega_e(P))$ eine p-Gruppe. Nach [4, 3, IV, 5.12] ist auch $C_A(\Omega_e(P))/C_A(P)$ eine p-Gruppe. Also induziert A auf P eine p-Automorphismengruppe $A/C_A(P)$. Im semi-direkten Produkt von P mit $A/C_A(P)$ existiert dann eine Zentralreihe, die durch P läuft. Daher stabilisiert A eine Kette von P und schließlich eine von ganz G.

Bemerkung. Aus Hilfssatz 4 folgt sofort, daß ein Normalteiler U von G nilpotent ist, wenn $[\Psi(G), U,..., U] = 1$ ist. Ist insbesondere $\Psi(G) \leqslant Z_{\infty}(G)$, so ist G nilpotent. Diese Folgerung ist dual zu dem bekannten Ergebnis von Gaschütz [2, Satz 10], daß ein Normalteiler N von G nilpotent ist, wenn $N/(N \cap \Phi(G))$ nilpotent ist, wenn also $[G, N,..., N] \leqslant \Phi(G)$ ist.

4. F(Aut(G)) als stabilisierende Automorphismengruppe

Bekanntlich läßt sich die Fittinggruppe einer Gruppe als Stabilitätsgruppe aller Hauptreihen der Gruppe charakterisieren, siehe z.B. [4, III, 4.3]. Daher stabilisiert F(Aut(G)) alle Aut(G)-Kompositionsreihen von In(G), und damit alle Aut(G)-Kompositionsreihen von G/Z(G). Nach Hilfssatz 2 stabilisiert F(Aut(G)) dann auch eine und damit alle Aut(G)-Kompositionsreihen von G'. Wir haben also Satz 4 bewiesen.

Mit [8, Satz 3.1] und Hilfssatz 4 erhalten wir dann jeweils unter den Voraussetzungen von Satz 6, daß F(Aut(G)) eine Kette von G stabilisiert. Nun ist F(Aut(G)) normal in Aut(G), daher sind alle Kommutatoren [G, F(Aut(G)), ..., F(Aut(G))] für $n \in \mathbb{N}$ charakteristisch in G. Also stabilisiert F(Aut(G)) eine und damit jede Aut(G)-Kompositionsreihe von G. Umgekehrt ist jede Stabilitätsgruppe einer Aut(G)-Kompositionsreihe bekanntlich nilpotent und normal in Aut(G), siehe [4, III, 2.9]. Wir haben damit Satz 6 bewiesen.

Da $[\operatorname{In}(G), F(\operatorname{Aut}(G))] \leq \operatorname{In}(G) \cap F(\operatorname{Aut}(G)) = F(\operatorname{In}(G))$ ist, zentralisiert $F(\operatorname{Aut}(G))$ die Faktorgruppe G/F(G). Ist nun F(G) eine p-Gruppe, so stabilisiert die p-Sylowgruppe A von $F(\operatorname{Aut}(G))$ außerdem eine Kette von F(G). Da A normal in $\operatorname{Aut}(G)$ ist, stabilisiert A eine (also jede) $\operatorname{Aut}(G)$ -Kompositionsreihe von G. Andererseits ist die Stabilitätsgruppe einer $\operatorname{Aut}(G)$ -Kompositionsreihe von G ein p-Normalteiler von $\operatorname{Aut}(G)$, siehe [7, Lemma 5]. Damit ist A in Satz 2 charakterisiert. Die Ordnungsabschätzung dort ergibt sich nun durch eine einfache Induktion aus [5, Proposition 1.1].

Wir kommen nun zum Beweis von Satz 3. Es ist $[\operatorname{In}(G), B] \leq \operatorname{In}(G) \cap F(\operatorname{Aut}(G)) \cap B = F(\operatorname{In}(G)) \cap B = 1$, also ist $[G, B] \leq Z(G)$. Wegen (|B|, |Z(G)|) = 1 ist nach Glauberman [3, Corollary 3] dann $G = [G, B] \setminus C_G(B)$ und [G, B, B] = [G, B]. Da $[G, B] \leq Z(G)$ ist, ist $[G, B, B] \leq [Z(G), B] \leq [G, B]$, also [G, B] = [Z(G), B]. Da Z(G) abelsch ist, ist $Z(G) = [Z(G), B] \times C_{Z(G)}(B)$, siehe [4, III, 13.4]. Daher ist

$$[G, B] \cap C_G(B) = [Z(G), B] \cap Z(G) \cap C_G(B) = 1.$$

Wir erhalten also $G = [G, B] \times C_G(B)$. Da B normal in Aut(G) ist, sind [G, B] und $C_G(B)$ charakteristisch in G. Damit ist Satz 3 bewiesen.

5. Gruppen ohne direkten abelschen Faktor

Hat G keinen direkten abelschen Faktor, so existiert nach Adney und Yen [1] eine Bijektion zwischen $C_{Aut(G)}(G/Z(G))$ und Hom(G/G',Z(G)). Dabei definiert $f \in \text{Hom}(G/G', Z(G))$ durch $\sigma_f : g \mapsto gf(g)$ ein $\sigma_f \in C_{\operatorname{Aut}(G)}(G/Z(G))$, während $\alpha \in C_{\operatorname{Aut}(G)}(G/Z(G))$ durch $f_\alpha : g \mapsto g^{-1}g^\alpha$ ein $f_{\alpha} \in \operatorname{Hom}(G/G', Z(G))$ definiert. Ist $G/G' = G_{p_{\gamma}}/G' \times \cdots \times G_{p_{\gamma}}/G'$ und $Z(G) = Z_{p_1} \times \cdots \times Z_{p_r}$ jeweils die Zerlegung in das direkte Produkt der p_i -Sylowgruppen, wobei p_i alle Primteiler von |G| durchläuft, so läßt sich $jedes f \in Hom(G/G', Z(G))$ als r-Tupel $(f_1, ..., f_r)$ mit $f_i \in Hom(G_{p_i}/G', Z_{p_i})$ schreiben. Dann definiert $(1,...,f_i,...,1)$ einen Automorphismus α_i von G, der G/Z_{p_i} zentralisiert und umgekehrt. Wir erhalten so eine Bijektion zwischen $C_{\operatorname{Aut}(G)}(G/Z_{p_i})$ und $\operatorname{Hom}(G_{p_i}/G', Z_{p_i})$. Daher ist $|C_{\operatorname{Aut}(G)}(G/Z_{p_i})| =$ $|\operatorname{Hom}(G_p/G', Z_p)|$ eine p_i -Potenz, und $\prod_{i=1}^r C_{\operatorname{Aut}(G)}(G/Z_p)$ ist nilpotent. Nun ist $\prod_{i=1}^r C_{\operatorname{Aut}(G)}(G/Z_{p_i}) \leqslant C_{\operatorname{Aut}(G)}(G/Z(G))$ und $\prod_{i=1}^r C_{\operatorname{Aut}(G)}(G/Z_{p_i}) =$ $\prod_{i=1}^r |\operatorname{Hom}(G_{p_i}/G', Z_{p_i})| = |\operatorname{Hom}(G/G', Z(G))| = |C_{\operatorname{Aut}(G)}(G/Z(G))|, \text{ also}$ $C_{\operatorname{Aut}(G)}(G/Z(G))$ nilpotent. Da die Gruppe der zentralen Automorphismen normal in der Automorphismengruppe ist, liegt sie in F(Aut(G)). Also wird $|F(\operatorname{In}(G))|C_{\operatorname{Aut}(G)}(G/Z(G))| = |F(G)/Z_2(G)| \cdot |\operatorname{Hom}$ von (G/G', Z(G)) geteilt. Andererseits ist die von F(Aut(G)) auf G/Z(G) induzierte Automorphismengruppe nach Satz 4 eine Stabilitätsgruppe. Wie im Beweis zu Satz 2 folgt nun mit Induktion aus [5, Proposition 1.1], daß $|F(\operatorname{Aut}(G))/C_{\operatorname{Aut}(G)}(G/Z(G))|$ ein Teiler von $|F(G)/Z(G)|^d$ ist. Insgesamt folgt daraus, daß $|F(\operatorname{Aut}(G))|$ ein Teiler von $|\operatorname{Hom}(G/G', Z(G))| \cdot |F(G)/Z(G)|^d$ ist. Damit ist Satz 5 bewiesen.

Sei nun G ohne direkten abelschen Faktor und $C_G(F(G)) \leqslant F(G)$. Wir wollen zeigen, daß dann auch $C_{\operatorname{Aut}(G)}(F(\operatorname{Aut}(G))) \leqslant F(\operatorname{Aut}(G))$ ist. Dazu zeigen wir zunächst, daß $C_G(F(G)|Z(G)) \leqslant F(G)$ ist. $C_G(F(G)|Z(G))$ induziert auf F(G) eine abelsche Automorphismengruppe, also ist $C_G(F(G)|Z(G))/C_G(F(G))$ abelsch. Nach unserer Voraussetzung ist $C_G(F(G))=Z(F(G))$ ebenfalls abelsch. Daher ist $C_G(F(G)|Z(G))$ auflösbar. Nun ist F(G)/Z(G)=F(G/Z(G)), und $C_{G/Z(G)}(F(G/Z(G)))F(G/Z(G))/F(G/Z(G))$ enthält keinen auflösbaren nichttrivialen Normalteiler, siehe [4, III, 4.2]. Also ist $C_G(F(G)|Z(G))/Z(G)$ in F(G)/Z(G) enthalten. Wir setzen $C=C_{\operatorname{Aut}(G)}(F(\operatorname{Aut}(G)))$ und zeigen nun, daß C in $F(\operatorname{Aut}(G))$ liegt. C zentralisiert mit $F(\operatorname{In}(G))$ auch F(G)/Z(G), nach Hilfssatz 2 also auch $G/C_G(F(G)/Z(G))$. Da $C_G(F(G)/Z(G))$ in F(G) liegt, zentralisiert C also auch $C/C_G(F(G)/Z(G))$. Nun ist $C_{\operatorname{Aut}(G)}(G/Z(G))$ eine abelsche Automorphismengruppe. Nun ist $C_{\operatorname{Aut}(G)}(G/Z(G))$ nach Satz 5 nilpotent, also C auflösbar. Wie oben folgt daraus $C \leqslant F(\operatorname{Aut}(G))$, wie in Satz 7 behauptet.

Wir zeigen nun zunächst, daß genau dann $C_G(F(G)) \leq F(G)$ gilt, wenn $C_G(S(G)) \leq S(G)$ gilt. Trivialerweise folgt aus $C_G(F(G)) \leq F(G)$ auch $C_G(S(G)) \leq C_G(F(G)) \leq F(G) \leq S(G)$. Sei nun umgekehrt $C_G(S(G)) \leq S(G)$. Nach Hilfssatz 2 zentralisiert $C_G(F(G))$ mit F(G) auch $S(G)/C_{S(G)}(F(G))$, also auch S(G)/F(G). Daher ist $C_G(F(G))/C_G(S(G))$ abelsch. Zusammen mit der Voraussetzung folgt, daß $C_G(F(G))$ auflösbar ist. Wiederum nach [4, III, 4.2] liegt daher $C_G(F(G))$ in F(G).

Nun zeigen wir, daß die Klasse $\mathscr K$ aller Gruppen, deren Fittinggruppe ihren Zentralisator enthält, eine Fittingklasse ist. Sei dazu $G\in\mathscr K$ und $N\lhd G$. Wir setzen $C=C_N(F(N))$. Dann ist $[F(G),C]\leqslant F(G)\cap C=F(G)\cap N\cap C=F(N)\cap C\leqslant Z(C)$, also [F(G),C,C]=1. Daher ist $C/C_C(F(G))$ abelsch und C auflösbar. Daher liegt wie oben C in F(N). Seien nun N_1 und N_2 Normalteiler einer Gruppe H und $N_i\in\mathscr K$, i=1,2. Wir müssen zeigen, daß $C_{N_1N_2}(F(N_1N_2))\leqslant F(N_1N_2)$ ist. Wir können uns dabei auf den Fall $N_1N_2=H$ beschränken. Dann ist $F(N_1)F(N_2)\leqslant F(H)$, also $C_H(F(H))\leqslant C_H(F(N_i))$ und $C_H(F(H))\cap N_i\leqslant F(N_i)$ für i=1,2. Daher ist $C_{N_1}(F(H))C_{N_2}(F(H))\leqslant F(H)$. Wir brauchen nun nur zu zeigen, daß $C_H(F(H))/C_{N_1}(F(H))C_{N_2}(F(H))$ auflösbar ist, um aus der Auflösbarkeit von $C_H(F(H))$ dann die Behauptung zu erhalten. Nun ist aber $AB\cap BC\cap AC/(A\cap B)(A\cap C)(B\cap C)$ abelsch für je drei Normalteiler A, B, C einer Gruppe, siehe [6], Theorem [6]. Mit $A=N_1$, $B=N_2$ und $C=C_H(F(H))$ ist $N_1N_2\cap N_2C_H(F(H))\cap N_1C_H(F(H))/(N_1\cap N_2)$ C_{N_1}

(F(H)) $C_{N_2}(F(H))$ abelsch. Daher ist auch $(N_1 \cap N_2)C_H(F(H))/(N_1 \cap N_2)$ $C_{N_1}(F(H))C_{N_2}F(H)$ abelsch. Diese Faktorgruppe ist isomorph zu

$$\begin{split} C_H(F(H)/(C_H(F(H)) \cap (N_1 \cap N_2) \ C_{N_1}(F(H)) \ C_{N_2}(F(H))) \\ &= C_H(F(H))/((N_1 \cap N_2 \cap C_H(F(H))) \ C_{N_1}(F(H)) \ C_{N_2}(F(H))) \\ &= C_H(F(H))/C_{N_1}(F(H)) \ C_{N_2}(F(H)), \end{split}$$

und unsere Behauptung folgt.

Da bekanntlich in auflösbaren Gruppen die Fittinggruppe ihren Zentralisator enthält, ergibt sich nun Korollar 8 aus Satz 7.

LITERATUR

- J. Adney and Ti Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137-143.
- W. Gaschütz, Über die Φ-Untergruppe endlicher Gruppen, Math. Z. 58 (1953), 160–170.
- G. GLAUBERMAN, Fixed points in groups with operator groups, Math. Z. 84 (1964), 120-125.
- B. HUPPERT, "Endliche Gruppen," Vol. I, Springer, Berlin/Heidelberg/New York, 1967.
- 5. R. Laue, On outer automorphism groups, Math. Z., to appear.
- 6. O. ORE, Structures and group theory, I, Duke Math. J. 3 (1937), 149-173.
- P. Schmid, Über die Stabilitätsgruppen der Untergruppenreihen einer endlichen Gruppe, Math. Z. 123 (1971), 674-686.
- 8. P. Schmid, Nilpotente Gruppen und Stabilitätsgruppen, Math. Ann. 202 (1973), 57-69
- P. Schmid, Über den größten nilpotenten Normalteiler der Automorphismengruppe einer endlichen Gruppe, J. Algebra 25 (1973), 165–171.
- K. Shoda, Über die Automorphismen einer endlichen abelschen Gruppe, Math. Ann. 100 (1928), 674-686.