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We point out that Bose enhancement in a hadronic wave function generically leads to correlations 
between produced particles. We show explicitly, by calculating the projectile density matrix in the Color 
Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in 
the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, 
the so-called ridge correlations.
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1. Introduction

The ridge structure observed in high multiplicity p-p [1] and 
p-Pb [2] collisions at the Large Hadron Collider (LHC) triggered an 
intense activity aimed at understanding the possible physical ori-
gin of correlations between emitted particles. Two basic ideas have 
been put forward in this context (see others in [3]).

According to one idea, the origin of the correlations is the same 
as in similar ridge correlations observed earlier in heavy ion col-
lisions at the Relativistic Heavy Ion Collider [4] and the LHC [5]. 
Namely, the angular collimation is due to flow effects in the fi-
nal state [6]. The qualitative features of the high multiplicity p-p
and p-Pb data, including the dependence on masses of produced 
particles, are well described by the hydrodynamic-based models. It 
is nevertheless challenging to explain how the spatially small sys-
tem produced in the final state in p-p collisions can sustain the 
collective behavior necessary for local equilibration.

The second suggestion is that the final state correlations carry 
the imprint of the partonic correlations that exist in the initial 
state. Three different variants of such initial state effects have been 
discussed in the literature: local anisotropy of target fields [7], spa-
tial variation of partonic density [8] and finally the “glasma graph” 
contributions to particle production [9] within the Color Glass Con-
densate (CGC) approach to high-energy hadronic scattering. While 
the physical origin of the first two effects is quite clear, the physics 
behind glasma graphs has not been elucidated in the literature. On 
the other hand, numerical calculations based on the glasma graph 
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approach have been very successful in reproducing the systematics 
of ridge correlations [10]. It is therefore important to understand 
the physics that underlies these numerical results.

The purpose of this Letter is to point out that there exists a 
general quantum mechanical mechanism that leads to positive cor-
relations of emitted particles with similar quantum numbers. It is 
operative when the wave function of an incoming hadron is domi-
nated by bosons (gluons), and is due to Bose enhancement in this 
wave function. In the next section, after recalling the basic deriva-
tion, we will show that this is precisely the physical mechanism 
that underlies the glasma graph calculation of hadron production 
in p-p and p-A collisions. The mechanism itself is however more 
general, and has been widely used for identical mesons in heavy-
ion collisions, see e.g. [11]. Analogously, for fermions in the initial 
state one expects the opposite effect, namely Pauli blocking. In the 
final section, after discussing our results, we briefly address the 
question of which final state observables could be sensitive to the 
initial state Pauli blocking.

To avoid confusion, we stress that by Bose enhancement we 
do not mean the Hanbury–Brown–Twiss (HBT) correlations be-
tween emitted particles, which arise due to emission from a large 
source comprised of many incoherent emitters. We rather mean 
the effect of Bose statistics that enhances the probability to find 
two identical bosons with the same transverse momentum in the 
incoming projectile wave function before the collision. Although this 
initial state enhancement is for two incoming bosons with identi-
cal transverse momentum, the momenta of the two are modified 
differently by the interaction with the target. Thus after scattering 
the two bosons emerge in the final state with different momenta. 
The correlation between the directions of the two momenta is nev-
ertheless preserved in some range of kinematics, see later.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Glasma graphs for two gluon inclusive production before averaging over the projectile color charge density ρ . Black blobs denote vertices which involve two momenta, 
e.g. δi j − pik j

1/p2, and dashed lines the cuts. For details see the text.
2. Gluon production and Bose enhancement

2.1. Basics of Bose enhancement

The prototypical textbook calculation of Bose enhancement pro-
ceeds as follows [12]. Consider a state with fixed occupation num-
bers of N species of bosons at different momenta, |{ni(p)}〉 ≡∏

i,p
1√

ni(p)! (a
†
i (p)/

√
V )ni(p)|0〉, i = 1, . . . , N , with a finite volume 

V and periodic boundary conditions so that momenta are discrete. 
The state is translationally invariant with mean particle density

n ≡ 〈{ni(p)}|a†i(x)ai(x)|{ni(p)}〉 =
∑
i,p

ni(p). (1)

Hereafter we take 
∑

p ≈ ∫
d3 p/(2π)3. The 2-particle correlator in 

coordinate space is

D(x, y) ≡ 〈{n(p)}|a†i(x)a† j(y)ai(x)a j(y)|{n(p)}〉. (2)

This is calculated by going to momentum space, where the opera-
tor averages are simple:

〈{n(p)}|a†i(p)a† j(q)ai(l)a j(m)|{n(p)}〉
= 〈{n(p)}|δ(p − l)δ(q − m)a†i(p)ai(p)a† j(q)a j(q)

+ δ(p − m)δ(q − l)a†i(p)a j(p)a† j(q)ai(q)|{n(p)}〉
≈ δ(p − l)δ(q − m)

∑
i

ni(p)
∑

j

n j(q)

+ δ(p − m)δ(q − l)
∑

i

ni(p)ni(q), (3)

where we have neglected the terms where all momenta are equal, 
which are suppressed by a phase space factor. Using this, the result 
for D(x, y) reads

D(x, y) = n2 +
∑

i

∣∣∣∣
∫

d3 p

(2π)3
eip(x−y)ni(p)

∣∣∣∣
2

. (4)

The last term expresses the Bose enhancement. It vanishes when 
the points are very far away, and gives O(1/N) enhancement when 
the points coincide. The O(1/N) suppression of the second term 
relative to the first one is due to the fact that the second term 
contains a single sum over the species index. The physics is that 
only bosons of the same species are correlated with each other. 
Technically the origin of this additional contribution is the “wrong 
contraction” term in eq. (3).

The Bose enhancement is a generic phenomenon, and is not 
tied specifically to the state with fixed number of particles. An 
overwhelming majority of pure states or quantum density matrices 
exhibit Bose enhancement at some degree. There is however one 
type of states that do not exhibit such behavior, notably classical-
like coherent states. Consider a coherent state

|b(x)〉 ≡ exp{i

∫
d3x bi(x)(ai(x) + a†i(x))} |0〉. (5)

A trivial calculation in this state gives

〈b(x)|a†i(x)ai(x)|b(x)〉 = bi(x)bi(x),

〈b(x)|a†i(x)a† j(y)ai(x)a j(y)|b(x)〉 = bi(x)bi(x)b j(y)b j(y), (6)

so D(x, y) = n(x)n(y). Thus, in order to exhibit Bose enhancement, 
a state has to be nonclassical.

2.2. Gluon production via glasma graphs

As stated above, we want to demonstrate that the angular col-
limation arising from the glasma graph calculation owes its ex-
istence to the Bose enhancement in the projectile wave function. 
Following [10,13], we consider the calculation of inclusive two par-
ticle production and assume local parton–hadron duality, namely 
that at a given momentum the number of produced hadrons is 
proportional to the number of produced gluons.

The graphs that contribute to this observable can be conve-
niently represented in terms of averages of gluon creation and 
annihilation operators in the incoming projectile wave function 
(see the appendix and [13]). They come in three varieties, see 
Fig. 1. Type A graphs give the contribution whereby two gluons 
from the incoming projectile wave function scatter independently 
on the target. The incoming gluons have transverse momenta k1
and k2 respectively. While propagating through the target the first 
particle picks up transverse momentum p −k1 and the second par-
ticle picks up transverse momentum q − k2, so that the outgoing 
particles have momenta p and q. Types B and C graphs from the 
projectile point of view are “interference graphs”, in the sense that 
the final state gluon with momentum p comes from the projec-
tile gluons with different momenta in the amplitude and complex 
conjugate amplitude. Types B and C diagrams contain leading con-
tributions that can be reinterpreted as Type A but with gluons 
originating from the target rather than from the projectile, and 
additionally subleading contributions, including those that lead to 
HBT correlations [14]. This is explained in detail in the Appendix A. 
Therefore, in the following we will only discuss those of Type A, 
keeping in mind this complementary interpretation of the leading 
pieces of Types B and C.

The Type A contribution to double inclusive gluon production 
can be written as
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C

∫
k1,k2

〈in|a†i
a (k1)a

† j
b (k2)a

k
a(k1)a

l
b(k2)|in〉

×
[
δik − ki

1kk
1

p2

][
δ jl − k j

2kl
2

q2

]
N(p − k1)N(q − k2), (7)

where |in〉 is the wave function of the incoming projectile, C is a 
constant, N(p − k) is the probability that the incoming gluon with 
transverse momentum k acquires transverse momentum p after 
scattering and, hereafter, we use the notation 

∫
k ≡ ∫ d2k

(2π)2 . This 
scattering probability is of course determined by the distribution 
of target fields (within the glasma graph calculation, the scattering 
of the two gluons is independent). We have also assumed that the 
target wave function is translationally invariant, so that the mo-
mentum transfer is the same to the gluon in the amplitude and 
complex conjugate amplitude. The last assumption does not allow 
one to discuss the correlation mechanisms proposed in [7,8] within 
this framework.

Also note that we have not indicated the rapidity variable on 
the gluon creation and annihilation operators. Within the glasma 
graph calculation the gluon production is rapidity independent. Ra-
pidity dependence becomes significant only when the rapidity dif-
ference between the observed hadrons becomes large, �η ∼ 1/αs . 
The origin of this independence is that the CGC hadronic wave 
function is approximately boost-invariant. In fact, only the rapidity 
independent mode of the gluon field is large in the wave func-
tion of the fast hadron, and only the creation operators of this one 
rapidity mode are relevant to the discussion of correlations.

Thus, the creation and annihilation operators entering the 
above equation are the original gluon operators integrated over 
rapidity,

ai
a(k) ≡ 1√

Y

∫
|η<Y /2|

dη

2π
ai

a(η,k). (8)

Here the rapidity interval Y /2 is arbitrary, but large enough to con-
tain the rapidities of both observed gluons. The operators defined 
this way satisfy the standard commutation relations in the trans-
verse momentum space:

[ai
a(k),a† j

b (p)] = (2π)2δabδ
i jδ(2)(k − p). (9)

The integral over momenta k1, k2 in eq. (8) contains a contri-
bution from the region k1 = k2. If the wave function |in〉 exhibits 
Bose enhancement, there is enhanced probability that the two 
gluons have equal momenta. This excess in the initial state will 
then translate into final state correlations. Note that this effect is 
suppressed by the squared number of colors 1/N2

c , since Bose en-
hancement is only operational for bosons with identical quantum 
numbers.

We thus have to understand what is the nature of the projectile 
state |in〉, and in particular we need to calculate

D(k1,k2) ≡ 〈in
∣∣a†i

a (k1)a
† j
b (k2)a

k
a(k1)a

l
b(k2)

∣∣in〉. (10)

Averaging over the projectile state in the standard CGC ap-
proach involves two elements. One needs to calculate the average 
over the soft degrees of freedom, as well as that over the valence 
color charge density. Conventionally this is done in the spirit of the 
Born–Oppenheimer approximation, namely first one averages over 
the soft gluon degrees of freedom at fixed valence color charge 
density ρ , and subsequently averages over the valence density dis-
tribution.

The wave function of the soft fields for fixed valence color 
charge density for a dilute projectile is a simple coherent state
|in〉ρ = exp

⎧⎨
⎩i

∫
k

bi
a(k)

[
a†i

a (k) + ai
a(−k)

]⎫⎬
⎭ |0〉, (11)

with the Weizsäcker–Williams field bi
a(k) = gρa(k) iki

k2 .
The averaging over the soft degrees of freedom leads to the 

well known expression for the observable in terms of the charge 
density:

D(k1,k2)ρ = bi
a(k1)b

j
b(k2)b

k
a(−k1)b

l
b(−k2). (12)

Since at fixed ρ , the soft gluon state is a coherent state, this ex-
pression does not seem to exhibit Bose enhancement. This is how-
ever misleading, since averaging over ρ is part of the quantum 
averaging over the initial state wave function |in〉. It is therefore 
instructive to reverse the conventional order of averaging, and av-
erage over the valence degrees of freedom first. The result of such 
a procedure is a density matrix on the soft gluon Hilbert space. 
The subsequent averaging over this density matrix is a direct way 
to find out whether the projectile wave function exhibits Bose en-
hancement.

2.3. The soft gluon density matrix

The soft gluon density matrix of course depends on the weight 
for the valence color charge density. For illustrative purposes we 
choose the same Gaussian weight used in the glasma graph calcu-
lation, the McLerran–Venugopalan model [15],

〈· · ·〉ρ = N
∫

D[ρ] · · · e
− ∫

k
1

2μ2(k)
ρa(k)ρa(−k)

, (13)

where N is the normalization factor.
Thus the density matrix of the soft gluons is given by

ρ̂ = N
∫

D[ρ] e
− ∫

k
1

2μ2(k)
ρa(k)ρa(−k)

× ei
∫

q bi
b(q)φi

b(−q)|0〉〈0| e−i
∫

p b j
c (p)φ

j
c (−p) (14)

where we have defined φi
a(k) = ai

a(k) + a†i
a (−k). The integral over 

ρ can be performed with the result

ρ̂ = e
− ∫

k
g2μ2(k)

2k4 kik j φi
b(k) φ

j
b(−k)

×
{ +∞∑

n=0

1

n!

⎡
⎣ n∏

m=1

∫
pm

g2μ2(pm)

p4
m

pim
m φ

im
am (pm)

⎤
⎦ |0〉

× 〈0|
[

n∏
m=1

p jm
m φ

jm
am (−pm)

]}

× e
− ∫

k′ g2μ2(k′)
2k′4 k′ i′k′ j′

φi′
c (k′) φ

j′
c (−k′)

. (15)

The interesting correlator is given by

D(k1,k2) = tr[ρ̂a†i
a (k1)a

† j
b (k2)a

k
a(k1)a

l
b(k2)]. (16)

It is a matter of straightforward algebra to show that

tr[ρ̂a†i
a (k)a j

b(p)] = (2π)2δab δ(2)(k − p) g2μ2(p)
pi p j

p4
,

tr[ρ̂ai
a(k)a j

b(p)] = tr[ρ̂a†i
a (k)a† j

b (p)]

= −(2π)2δab δ(2)(k + p) g2μ2(p)
pi p j

p4
(17)

and then find
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D(k1,k2) = S2(N2
c − 1)2 ki

1kk
1k j

2kl
2

k2
1k2

2

g4μ2(k1)μ
2(k2)

k2
1k2

2

×
{

1 + 1

S(N2
c − 1)

[
δ(2)(k1 − k2) + δ(2)(k1 + k2)

]}
.

(18)

In order to get eq. (18), we have made substitutions of the type 
(2π)2δ(2)(k1 − k1) → S , where S is the transverse area of the 
projectile. This regularization amounts to taking into account the 
discreteness of the transverse momentum spectrum of confined 
gluons.

3. Discussion

The first term in eq. (18) is the “classical” term equal to the 
square of the number of particles. The second term is the typical 
Bose enhancement term, suppressed with respect to the first “clas-
sical” term by the total number of degrees of freedom (color and 
area). The third term is specific to the density matrix at hand and, 
as explained in [7], appears due to reality of the gluon field scatter-
ing amplitude. This establishes our point that the soft glue density 
matrix exhibits Bose enhancement, so that the likelihood of finding 
two gluons with the same transverse momentum is higher than 
average. Note that this effect is naturally subleading in Nc as the 
enhancement is only effective if both gluons are in the same color 
state.

As a typical Bose enhancement contribution, the second term 
in eq. (18) is nonvanishing only when the momenta of the two 
gluons are equal. Note however that k1 and k2 are not the mo-
menta of observed gluons, but rather the momenta of gluons in 
the wave function of the incoming projectile. The two gluons then 
scatter on the target and acquire momenta p and q with the prob-
ability N(p − k1)N(q − k2), as indicated in eq. (8). Nevertheless 
it is clear that in favorable kinematics the initial state correla-
tion of eq. (18) also appears as a correlation between the final 
state particles. Consider for example a situation where the incom-
ing projectile wave function has an intrinsic saturation momentum 
Q s , and the momenta p and q are chosen to be of the same or-
der as Q s i.e. p2 ∼ q2 ∼ Q 2

s . In such a situation the production 
amplitude is dominated by the contribution from |k1|, |k2| ∼ Q s , 
since the gluon density of the projectile is dominated by those glu-
ons close to saturation momentum. The delta function in the Bose 
enhancement term in eq. (18) is then smeared when convoluted 
with the scattering probability N(p − k1)N(q − k2), but positive 
angular correlations between the directions of �p and �q clearly sur-
vive. Thus the initial correlation is transmitted to the final state, 
provided fragmentation and final state effects in p-p and p-A col-
lisions are small. On the other hand, when |p|, |q| 
 Q s , the initial 
correlation is smeared out by the large momentum transfer from 
the target, and the correlation in the final state should disappear. 
These qualitative features are of course borne out by the numerical 
calculations of [10].

One interesting question naturally follows on from the above 
discussion. Fermions in the initial state wave function surely ex-
perience Pauli blocking. One therefore may expect negative corre-
lation between final state hadrons that originate from quarks or 
antiquarks in the initial state. Such correlation should exhibit an-
ticollimation rather than collimation, and therefore a valley rather 
than a ridge at �φ = 0. Whether such a valley extends to large 
relative rapidities between the observed particles is a question 
that should be explored. Quark–antiquark pairs are present in the 
hadronic wave function within the CGC approach at the next to 
leading order in αs via splitting of gluons. Since the gluonic wave 
function is boost invariant, the same is true for the quark and anti-
quark distribution. However, the main question here is whether the 
fluctuations around some “mean field” are not too large to mask 
the correlations in rapidity event by event. Another way of saying 
it, is to recall that in our discussion of gluons only a single rapid-
ity independent mode of the quantum gluon field was large in the 
CGC wave function. As a result any correlation extended over large 
intervals in rapidity. Whether a similar effect dominates the quark 
wave function has to be investigated. Work on these questions is 
ongoing [16].

Perhaps an even more pressing question to understand is 
whether such valleys can be observed experimentally, given that 
the quark contribution is suppressed by αs relative to that of 
gluons. Here we see two possible avenues. One point is that, as 
opposed to gluon contribution to correlations, the quark contribu-
tion is not symmetric under �φ → −�φ. It thus can generate a 
nonvanishing v3 coefficient within the CGC approach. Such mech-
anism will be quite different from the one explored in [17] based 
on the idea of local anisotropy suggested in [7]. Another possi-
bility is to trigger on final states which predominantly arise from 
quarks. For example it may be interesting to study correlations be-
tween two D-mesons (or B-mesons), since open charm (or beauty) 
should have a relatively larger component coming from fragmen-
tation of quarks, rather than that of gluons [16].
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Appendix A

Here we explain in more detail the meaning of Fig. 1. The 
diagrams are depicted before averaging over the projectile wave 
function. It is however straightforward to identify the correspon-
dence between the diagrams in Fig. 1 and the glasma graphs of 
[13]. The two possible nontrivial Wick contractions between a’s 
and a†’s in the diagram of Type A generate the graphs 7a and 
7b of [13]. The contractions 〈a†(k1)a(k3)〉〈a†(k2)a(k4)〉 in Types B 
and C generate the glasma graphs (not explicitly drawn in [13]) 
which have the target and projectile charge densities interchanged. 
They can be interpreted as Type A but with gluons originating 
from the target rather than from the projectile. The contraction 
〈a†(k1)a(k4)〉〈a†(k2)a(k3)〉 in Type B and 〈a†(k1)a†(k2)〉〈a(k3)a(k4)〉
in Type C diagrams generate diagram 8c and 8b of [13] respec-
tively, whose contribution is proportional to δ(2)(p ∓ q). As dis-
cussed in [14], these diagrams are of the type that lead to HBT 
correlations if the translational invariance approximation is re-
laxed. Finally the contraction 〈a†(k1)a†(k2)〉〈a(k3)a(k4)〉 in Type B 
and 〈a†(k1)a(k4)〉〈a†(k2)a(k3)〉 in Type C give the diagram 8a of 
[13]. The contribution of this diagram, as discussed in [13], is sup-
pressed at high momenta. Although diagrams 8a, 8b and 8c were 
included in the numerical calculations of [10] for completeness, 
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they are subleading at high momentum and do not contribute sig-
nificantly to ridge correlations. We will therefore disregard these 
contributions in the following.

Recall that we are calculating

〈out|a†i
a (p)a† j

b (k)ai
a(p)a j

b(k)|out〉 =
∫

DρW [ρ]

× 〈in|ρ Ŝ†e
i
∫

k bi
a(k)

[
a†i

a (k)+ai
a(−k)

]
a†i

a (p)a† j
b (q)ai

a(p)a j
b(q)

× e
−i

∫
k bi

a(k)
[
a†i

a (k)+ai
a(−k)

]
Ŝ|in〉ρ . (19)

We now transform the creation and annihilation operators by the 

sequence of unitary transformations e
−i

∫
k bi

a(k)
[
a†i

a (k)+ai
a(−k)

]
Ŝ . The 

first transformation shifts the creation and annihilation operators 
by the Weizsacker–Williams field bi

a(k), while the second one color 
rotates the gluon operators as well as the color charge density 
operators locally in the transverse space. In coordinate space rep-
resentation,

Ŝ†e
i
∫

k bi
a(k)

[
a†i

a (k)+ai
a(−k)

]
a†i

a (x)e
−i

∫
k bi

a(k)
[
a†i

a (k)+ai
a(−k)

]
Ŝ

= Sab(x)a†i
b (x) − g

∂ i

∂2
(x − y)Sab(y)ρb(y) . (20)

We now use the fact that when acting on the state |in〉ρ , the 
charge density operator and the gluon creation (and annihilation) 
operators are identical in the sense that 

[
∂ ia†i

a (x) − ρa(x)
]
|in〉ρ = 0. 

We can thus write in momentum space

Ŝ†e
i
∫

k bi
a(k)

[
a†i

a (k)+ai
a(−k)

]
a†i

a (p)e
−i

∫
k bi

a(k)
[
a†i

a (k)+ai
a(−k)

]
Ŝ

× |in〉ρ =
∫
k1

Sab(p − k1)

[
δi j − pik j

1

p2

]
a† j

b (k1)|in〉ρ . (21)

Introducing the notation

Sij
ab(p,k) = Sab(p − k)

[
δi j − pik j

p2

]
, (22)

we can now write the two gluon inclusive cross section in terms 
of the expectation value in the initial projectile state as∫
{ki}

〈Sii1
aa1(p,k1)S ji2

ba2
(q,k2)Sii3

aa3(−p,−k3)S ji4
ba4

(−q,−k4)〉

× 〈in|a†i1
a1 (k1)a

†i2
a2 (k2)a

i3
a3(k3)a

i4
a4(k4)|in〉. (23)

The next step is to average over the target fields. Within the 
glasma graph model one assumes that the averages of the S-matri-
ces are translationally invariant, pairwise factorize, and the color 
structure of the averages is the same as in the dilute limit:
〈Sab(p)Scd(k)〉 = f abe f cde N(p)δ(p + k). (24)

In this approximation the averaging over the target fields can be 
performed. This averaging leads to graphs of three distinct topolo-
gies depicted in Fig. 1. The blobs denote the appropriate vertices, 
as in eq. (22). For example, the two distinct blobs in the Type A 

diagram are δi j − pik j
1

p2 and δi j − qik j
2

q2 .
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