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We show that the main features of the pattern of fermion masses and mixing can be expressed in
terms of simple relations among weak-basis invariants. In the quark sector, we identify the weak-basis
invariants which signal the observed alignment of the up and down quark mass matrices in flavour
space. In the lepton sector, we indicate how a set of conditions on weak-basis invariants can lead to
the observed pattern of leptonic mixing, including the recent measurement of Ue3 by the Daya Bay
Collaboration. We also show the usefulness of these invariants in the study of specific ansätze for the
flavour structure of fermion mass matrices.
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1. Introduction

In the past few years there has been a remarkable progress in
the determination of fermion masses and mixing [1], involving ad-
vances both in theory and experiment. In the quark sector, input
from experiment includes the knowledge of |V us|, |V cb|, |V ub/V cb|,
|Vtd|, |Vts|, together with the measurement of the rephasing in-
variant angles β and γ . In the framework of the Standard Model
(SM), these results constrain the location of the vertex of the uni-
tarity triangle to a small region. The measurement of the angle
γ is especially important since it provides clear evidence that the
Cabibbo–Kobayashi–Maskawa (CKM) matrix [2] is complex, even if
one allows for the presence of New Physics beyond the SM [3].
In the leptonic sector, non-vanishing neutrino masses and mixing
have been established [4]. However, there are still important open
questions like the nature of the neutrino mass spectrum (normal
hierarchy, inverted hierarchy or quasi degenerate), the determina-
tion of whether neutrinos are Majorana or Dirac particles, as well
as the search for leptonic CP violation. In this respect, the recent
evidence in favour of a non-vanishing value of Ue3 provides the
hope of discovering leptonic CP violation in neutrino oscillations. It
is well known that having a non-vanishing Ue3 is a necessary re-
quirement in order to have leptonic Dirac-type CP violation, which
is detectable in neutrino oscillations.

In spite of these developments, one does not have yet a stan-
dard theory of flavour. One may adopt a bottom-up approach and
try to discover a symmetry principle from the observed pattern of
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fermion masses and mixing. One of the difficulties that one en-
counters in following this approach, stems from the fact that there
is a large redundancy in the Yukawa couplings Yu , Yd which gen-
erate the quark masses Mu , Md . One can make weak-basis (WB)
transformations which change Mu , Md , but do not alter their phys-
ical content. The above considerations also apply to flavour models
which postulate the existence of so-called “texture-zeros”. It is
clear that these zeros only exist in a particular WB.

The above redundancy in Yukawa couplings and fermion mass
matrices motivates the use of WB invariants, i.e. functions of quark
masses which do not change when one preforms a WB transfor-
mation. These WB invariants are very useful in the analysis of
CP violation [5], where they have been derived from first princi-
ples [6] and have been applied to both the quark [7] and lepton [8]
sectors, including leptogenesis, as well as to the Higgs sector [9].

In this Letter we show that the main features of the pattern of
fermion masses and mixing can be expressed in terms of simple
relations involving only WB invariants. We introduce the concept
of “alignment”, which can be understood in the following way. For
definiteness, let us consider the quark sector, where small flavour
mixing is indicated by experiment. Small mixing implies that there
is a WB where both Mu and Md are close to the diagonal form.
However, experiment shows more than that, it tells us that the
quark mass matrices are aligned in flavour space, meaning that
there is a basis where Md = diag(md,ms,mb) and Mu is close to
diag(mu,mc,mt) and not to diag(mt,mc,mu), for example. Obvi-
ously, only the relative ordering of the eigenvalues of Mu , Md is
physically meaningful, since by making a WB transformation, one
can change simultaneously the eigenvalue ordering in Mu , Md .

At this point, it is worth recalling that in the context of the SM,
the Yukawa couplings leading to Mu and Md are entirely indepen-
dent, there is no “dialogue” between Yu and Yd . Therefore, in the
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context of the SM, or its minimal supersymmetric extension, align-
ment is in no way more “natural” than misalignment. Quite on the
contrary, if one considers the manifold of matrices Mu , Md leading
to “small mixing” as previously defined, the probability of having
alignment is only 1/6.

In this Letter we will show how WB invariants can distinguish
not only between small mixing and large mixing, but also between
alignment and misalignment.

The Letter is organized as follows. In the next section, we con-
sider the quark sector, where we illustrate the usefulness of WB
invariants for two and three generations. In Section 3, we apply
WB invariants to the study of some ansätze for quark mass matri-
ces, while in Section 4 we briefly study the lepton sector, showing
in particular how the observed pattern of leptonic mixing can be
obtained through a set of conditions on WB invariants. Our con-
clusions are contained in Section 5.

2. The quark sector

2.1. Two quark generations

For simplicity and in order to explain the concept of alignment
and its connection to weak-basis invariants, we consider first the
case of two generations. The three important features of quark
masses and mixing are:

(i) Hierarchical quark masses,
(ii) Small mixing,

(iii) Alignment.

We consider separately each one of these features, emphasiz-
ing that they are logically independent, at least in the context of
the SM. We shall identify how each one of these features can be
expressed in terms of weak-basis invariants.

(i) Hierarchical masses.
For two generations, the fact that quark masses are hierarchical

can be expressed in terms of invariants as,

r1 ≡ Det[H]
( 1

2 Tr[H])2
� 1 (2.1)

where H ≡ MM† denotes either Hd or Hu . The case of exact de-
generacy corresponds to r = 1.

(ii) Small mixing.
It can be readily verified that the following relation holds

Tr
([Hu, Hd]2) = −1

2

(
�d

12

)2(
�u

12

)2
sin2(2θ) (2.2)

where �d
12 = m2

d − m2
s , �u

12 = m2
c − m2

u and θ denotes the Cabibbo
angle. Let us consider the following invariant ratio

r2 ≡ |Tr([Hu, Hd]2)|
1
2 (Tr[Hd])2(Tr[Hu])2

(2.3)

Assuming that quark masses are hierarchical, which can be guar-
anteed through the invariant condition of Eq. (2.1), it is clear from
Eq. (2.2), that

r2 ≈ sin2(2θ) (2.4)

Therefore small mixing can be achieved through the invariant con-
dition

r2 � 1 (2.5)

Maximal mixing corresponds to θ = 45◦ , i.e.

r2 = 1 (2.6)
(iii) Alignment.
Small mixing means that there is a weak-basis where both Hd

and Hu are close to the diagonal form. As mentioned before, this is
not sufficient to have “alignment”, since it does not guarantee the
same “ordering” in both Hd and Hu . Alignment means, of course,
that in a WB where Hd is close to diag(m2

d,m2
s ), Hu is close to

diag(m2
u,m2

c ) and not diag(m2
c ,m2

u). As previously emphasized, one
can change the ordering simultaneously in the up and down sec-
tors through a WB transformation. Only the relative ordering in
the up and down quark sectors is physically meaningful. In the
case of two generations, assuming hierarchical quark masses and
small mixing, one has alignment if for the following invariant

I1 ≡ Tr[Hu]Tr[Hd] − Tr[Hu Hd]
Tr[Hu]Tr[Hd]

= sin2(θ) +
(

(md/ms)
2

(1 + (md/ms)2)
+ (mu/mc)

2

(1 + (mu/mc)2)

− 2(md/ms)
2(mu/mc)

2

(1 + (md/ms)2)(1 + (mu/mc)2)

)
cos(2θ) (2.7)

the following condition is satisfied:

I1 � 1 (2.8)

On the contrary, assuming again hierarchical quark masses and
small mixing, misalignment implies:

I1 ≈ 1 (2.9)

2.2. Three quark generations

2.2.1. Hierarchy of quark masses
The hierarchy of quark masses in both the up and down quark

sectors, namely

m2
1 � m2

2 � m2
3 (2.10)

can be translated into invariant conditions. We introduce the Her-
mitian quark mass matrices H ≡ MM† and the corresponding
invariants det(H), Tr[H] together with the third invariant χ [H]
which stands for χ [H] ≡ m2

1m2
2 + m2

1m2
3 + m2

2m2
3. Note that for a

Hermitian 3 × 3 matrix H , one has

χ [H] = 1

2

((
Tr[H])2 − Tr

[
H2]) (2.11)

The following invariant condition

R1 ≡ χ [H]
Tr[H]2

� 1 (2.12)

implies that one of the eigenvalues of H is much larger that the
other two. Finally, it can be readily verified that the condition

R2 ≡ Tr[H]Det[H]
(χ [H])2

� 1 (2.13)

together with Eq. (2.12) implies that of the two smaller eigenval-
ues, one of them is much smaller than the other one, i.e. m2

1 � m2
2.

2.2.2. Invariants and the pattern of mixing
Previously [10], invariants were used to study specific ansätze

where the quark mass matrices were written in a Hermitian ba-
sis. Here, we consider WB invariants which can be applied in an
arbitrary basis, not necessarily Hermitian.

It is convenient to introduce the following dimensionless matri-
ces with unit trace, Tr[hu,d] = 1:
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hu = Hu

Tr[Hu] ; hd = Hd

Tr[Hd] (2.14)

and their difference:

A ≡ hd − hu (2.15)

By construction, one has Tr[A] = 0, which in turn implies

χ [A] = −1

2
Tr

[
A2] (2.16)

There is a relation between χ(A) and I1, defined in Eq. (2.7). In-
deed, from Eqs. (2.7), (2.14), one obtains

I1 = 1 − Tr[huhd] (2.17)

while Eqs. (2.15), (2.16) lead to

χ [A] = Tr[huhd] − 1

2
Tr

[
h2

u

] − 1

2
Tr

[
h2

d

]
(2.18)

From Eqs. (2.17), (2.18), one therefore gets

χ [A] = 1 − I1 − 1

2
Tr

[
h2

u

] − 1

2
Tr

[
h2

d

]
(2.19)

Assuming hierarchy of the quark masses, which can be imple-
mented through the invariants of Eqs. (2.12), (2.13), one obtains

Tr
[
h2

d

] = 1 − 2

(
ms

mb

)2

+ O

((
ms

mb

)4)
Tr

[
h2

u

] = 1 − 2

(
mc

mt

)2

+ O

((
mc

mt

)4)
(2.20)

On the other hand, an explicit evaluation of I1 for three genera-
tions in terms of |V ij| and quark mass ratios gives

I1 = |V 23|2 + |V 13|2 +
(

ms

mb

)2

+
(

mc

mt

)2

+ O

((
ms

mb

)4)
(2.21)

Using Eqs. (2.19), (2.20), (2.21), one finally gets:

∣∣χ [A]∣∣ = |V 23|2 + |V 13|2 + O

((
ms

mb

)4)
(2.22)

The usefulness of χ [A] is clear from Eq. (2.22): it gives to an ex-
cellent approximation the value of |V 23|2 + |V 13|2.

At this stage, it is worth recalling that one of the main features
of quark mixing is the fact that the 3rd generation almost decou-
ples from the other two. The deviation of exact decoupling is given
by the size of |V 23|2 + |V 13|2. The experimental measurement of
|V 23| and |V 13| shows that:

{|V 23|2 + |V 13|2
}exp = O

((
ms

mb

)2)
(2.23)

This input from experiment, can be written in terms of a simple
relation among WB invariants

χ [A] = O

(
χ [Hd]

(Tr[Hd])2

)
= O

(
χ [hd]

)
(2.24)

It is worth emphasizing that, for three generations, χ [A] is also
a measure of the alignment of the down and up quark mass matri-
ces. Working in a WB where the up quarks are diagonal, one can,
without loss of generality, order the up quarks in such a way that
Hu = diag(m2

u,m2
c ,m2

t ). In the context of small mixing, alignment
means that, in the above basis, Hd is close to diag(m2
d,m2

s ,m2
b).

In this case, χ [A] is small. In fact, if we take the limit mt → ∞,
mb → ∞, one has hu = diag(0,0,1), hd = diag(0,0,1) and A van-
ishes, so χ [A] = 0. On the other hand, if there is small mixing,
but no alignment, in the WB where Hu = diag(m2

u,m2
c ,m2

t ), one
may have that Hd is close to diag(m2

b,m2
s ,m2

d). In this case, χ [A] is
large. Indeed in the limit mt → ∞, mb → ∞, one has, for this case,
hu = diag(0,0,1) but hd = diag(1,0,0), which leads to |χ [A]| = 1,
signalling total misalignment.

Next, we address the question of how to use invariants to con-
strain separately |V 23|2 and |V 13|2. This is a more difficult task,
involving more complicated invariants, as it was to be expected. In
order to constrain |V 13|, let us consider the following WB invari-
ant:

I2 ≡ 1 − Tr[Hu]Tr[Hu Hd] − Tr[H2
u Hd]

χ [Hu]Tr[Hd] (2.25)

This invariant can be readily calculated and one obtains in the chi-
ral limit, i.e. when mu,md = 0:

I2 =
|V 13|2 + m2

s

m2
b
|V 12|2

1 + m2
s

m2
b

(2.26)

It is clear from Eq. (2.26) that if we constrain I2 to be of order λ6,
λ denoting the Cabibbo angle, then |V 13| is at most of order λ3.
It can be shown that this conclusion holds when one does not
assume the chiral limit. Indeed, an exact calculation gives:

I2 = 1

[1 + ( ms
mb

)2 + (
md
mb

)2][1 + (mu
mc

)2 + (mu
mt

)2]

·
(

|V 13|2 +
(

mu

mc

)2

|V 23|2 +
(

mu

mt

)2

|V 33|2

+
(

ms

mb

)2[
|V 12|2 +

(
mu

mc

)2

|V 22|2 +
(

mu

mt

)2

|V 32|2
]

+
(

md

mb

)2[
|V 11|2 +

(
mu

mc

)2

|V 21|2 +
(

mu

mt

)2

|V 31|2
])

(2.27)

From Eq. (2.27), and given the quark mass hierarchy, one concludes
that putting I2 ≈ λ6 constrains |V 13| to be at most of order λ3.
Then, from Eq. (2.22), it follows that setting χ [A] ≈ λ4 constrains
|V 23| to be of order λ2, as indicated by experiment. We have thus
shown how to fix separately |V 23| and |V 13| through WB invari-
ants.

In order to constrain |V 12|, it is convenient to use WB invariants
involving H−1

u,d . Let us define

Â = ĥd − ĥu (2.28)

where

ĥu = H−1
u

Tr[H−1
u ] ; ĥd = H−1

d

Tr[H−1
d ] (2.29)

We have assumed that none of the quark masses vanish, as indi-
cated by experiment and theory. In the weak-basis where the up
quark mass matrix is diagonal, we have

ĥu = 1

(1 + m2
u

m2
c

+ m2
u

m2
t
)

diag

(
1,

m2
u

m2
c
,

m2
u

m2
t

)

ĥd = 1

(1 + m2
d

m2 + m2
d

m2 )

V · diag

(
1,

m2
d

m2
s
,

m2
d

m2
b

)
· V † (2.30)
s b
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Note the eigenvalues of ĥu,d , denoted by μ̂i , satisfy an inverted
hierarchy: μ̂1 	 μ̂2 	 μ̂3. We evaluate now χ [ Â], obtaining:∣∣χ( Â)

∣∣ = |V 12|2 + |V 13|2 − 2

(
md

ms

)2

|V 12|2 + O
(
λ8) (2.31)

If one constrains χ [ Â] to be of order λ2, one necessarily has
|V 12| ∼= λ, taking into account that |V 13|2 was already constrained
to be of order λ6.

In order to complete the determination of V CKM through WB
invariants, we have to address the question of CP violation. It has
been shown [6] from first principles that the vanishing of the fol-
lowing WB invariant is a necessary condition for CP invariance in
the SM, for an arbitrary number of generations:

ICP ≡ Tr
([Hu, Hd]3) (2.32)

For three generations ICP = 0 is a necessary and sufficient condi-
tion for CP invariance. In terms of physical quantities, one has

ICP = G Im
[
V 12 V 23 V ∗

13 V ∗
22

]
(2.33)

where G = 6i(m2
b − m2

s )(m
2
b − m2

d)(m2
s − m2

d)(m2
t − m2

c )(m
2
t −

m2
u)(m2

c − m2
u). If we now set 1

G ICP to be of order λ6, and take
into account that Im[V 12 V 23 V ∗

13 V ∗
22] = |V 12||V 23||V 13||V 22| sin(φ),

(with φ = arg[V 12 V 23 V ∗
13 V ∗

22]), then we conclude that this con-
strains sin(φ) to be of order one.

We have thus shown, without going through any process of
diagonalization of the quark mass matrices, how a set of WB in-
variants can completely fix the pattern of mixing and strength
of CP violation present in V CKM . Indeed, by constraining χ [A] in
Eq. (2.22) to be of order λ4, I2 in Eq. (2.27) to be of order λ6 and
1
G ICP in Eq. (2.33) of order λ6, we guarantee that |V 23| is of or-
der λ2, |V 13| of order λ3 and that the CP violation angle sin(φ) is
of order one.

3. Applying invariants to various ansätze

3.1. General remark

Next, we show the usefulness of the WB invariants introduced
in the previous section and apply these invariants to some specific
ansätze.

First, we derive some general results which apply to any flavour
model where both the up and down Hermitian squared quark mass
matrices with trace normalized to unity are equal to some fixed
matrix �o of order one plus some small perturbation denoted by
(εA)u,d:

hd = �o + εd Ad; hu = �o + εu Au (3.34)

An example could be the case where �o stands for the so-called
democratic matrix, where all elements are equal, but our re-
sults apply to a broader class of flavour matrices. It is clear that
Eq. (3.34) is a sufficient condition to obtain alignment, since it fol-
lows from Eq. (3.34), that A = hd − hu = εd Ad − εu Au is small. Let
us consider now those ansätze where the following further condi-
tions are satisfied

|εu| � |εd|; Tr[A]u,d = 0; (
Tr[�o]

)2 = Tr
[
�2

o

]
Tr[Au,d�o] � O (ε)u,d (3.35)

The motivation for these conditions is clear: |εu | � |εd| follows
from the up and down quark hierarchies, Tr[A]u,d = 0 from the
normalization condition Tr[hu,d] = 1, and since we are dealing
with hierarchical mass matrices in whatever weak-basis, we im-
pose just as in the democratic case (Tr[�o])2 = Tr[�2

o]. Finally,
Tr[Au,d�o] � O (ε)u,d is satisfied in many “Fritzsch-like” models, in
the Raimond–Roberts–Ross class of models, in USY models [11–13]
and in many other “realistic” models.

It follows from Eq. (3.35), that to a good approximation A ≈
εd Ad and one obtains∣∣χ(A)

∣∣ = ε2
d

∣∣χ[
A2

d

]∣∣ = 1

2
ε2

d Tr
[

A2
d

] = O
(
ε2

d

)
(3.36)

Furthermore, using the conditions of Eq. (3.35) and computing
χ(hd), one gets∣∣χ(hd)

∣∣ = 1

2

∣∣(Tr[�o]
)2 − Tr

[
�2

o

]
− εd Tr[Ad�o + �o Ad] − ε2

d Tr
[

A2
d

]∣∣
= O

(
ε2

d

)
(3.37)

Therefore, one finds∣∣χ(A)
∣∣ = O

(∣∣χ(hd)
∣∣) = O

((
ms

mb

)2)
(3.38)

Note that Eq. (3.38) coincides with Eq. (2.24) and therefore, for
the whole class of ansätze satisfying the generic conditions of
Eqs. (3.34), (3.35), one has the correct prediction

|V 23|2 + |V 13|2 = O

((
ms

mb

)2)
(3.39)

This is a remarkable result. Using WB invariants, one can show
that a whole class of ansätze for Mu , Md satisfying the generic of
Eq. (3.35), satisfies Eq. (3.39), which is one of the experimentally
observed salient features of V CKM .

3.2. The USY ansatz

We now apply our invariants to the hypothesis of Universality
of Strength of Yukawa (USY) couplings [11–13], where all Yukawa
couplings have equal moduli, the flavour dependence being all
contained in their phases. For definiteness, let us consider the case
where Mu,d have the symmetric form:

Mu,d = cu,d

( 1 1 ei(α−β)

1 1 ei(α)

ei(α−β) ei(α) ei(α)

)
u,d

(3.40)

Computing the invariants of the associated hu,d ,

Det[h] = 42

93
sin4

(
β

2

)
χ [h] = 4

92

[
sin2

(
α

2

)
+ 4 sin2

(
β

2

)
+ sin2

(
α − 2β

2

)
+ 2 sin2

(
α − β

2

)]
(3.41)

we find that in leading order the parameters αu,d and βu,d are
small,

|αd| = 9

2

ms

mb
; |βd| = 3

√
3
√

mdms

mb

|αu| = 9

2

mc

mt
; |βu| = 3

√
3
√

mumc

mt
(3.42)

and that the hu,d computed from Eq. (3.40) have the form:

hu,d = �

3
+ (εA)u,d; � =

(1 1 1
1 1 1
1 1 1

)
(3.43)
u,d
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where � is the democratic mass matrix and (εA)u,d are matrices
of order αu,d and βu,d . Up to second order in the largest parame-
ter α, we find

(εA)u,d = 1

9

( 0 −iβ −2iα − α2

iβ 0 −2iα − α2 + iβ
2iα − α2 2iα − α2 − iβ 0

)
u,d

(3.44)

The form of hu,d corresponds to our general conditions in Eqs.
(3.34), (3.35) and we find that |χ(A)| is indeed small. Thus, the
USY scenario implies alignment. Furthermore, we find that in lead-
ing order∣∣χ(A)

∣∣ = ∣∣χ(εd Ad)
∣∣ (3.45)

and that∣∣χ(εd Ad)
∣∣ = 2

∣∣χ(hd)
∣∣ (3.46)

Therefore, combining with Eq. (2.22), we obtain in leading order

|V 23|2 + |V 13|2 = 2

(
ms

mb

)2

(3.47)

In addition, one obtains for the invariant I2 associated with
|V 13| of Eq. (2.25) and in the limit mu = 0 the exact result

I2 = 2

9
sin2

(
βd

2

)
(3.48)

which combined with Eqs. (2.26), (3.42) leads in leading order to
the following expression:

m2
s

m2
b

|V 12|2 + |V 13|2 = 3

2

mdms

m2
b

(3.49)

The results, expressed in Eqs. (3.47), (3.49) are in agreement with
the results which were obtained for this ansatz [13], where in
leading order, it was found that |V 23| =

√
2 ms

mb
.

With respect to |V 12| and the second invariant in Eq. (2.31), we

compute ĥu = H−1
u

Tr[H−1
u ] , ĥd = H−1

d

Tr[H−1
d ] and find in leading order

ĥu,d = 1

2

( 1 −1 0
−1 1 0
0 0 0

)
+ 1

2

(
β

α

)
u,d

( 1 0 −1
0 −1 1

−1 1 0

)
= �o + ε̂u,d Âu,d (3.50)

which then leads to

∣∣χ( Â)
∣∣ = ∣∣χ(̂εd Âd)

∣∣ = 3

4

(
βd

αd

)2

(3.51)

Combining with Eqs. (3.42), (2.31) and with the results already ob-
tained for Eqs. (3.47), (3.49), we find in leading order

|V 12|2 = md

ms
(3.52)

which corresponds exactly to what was known for this USY ansatz.
Finally, putting together Eqs. (3.47), (3.49), (3.52) one obtains

the correct USY approximate expression for |V 13| = 1√
√

mdms .

2 mb
3.3. Asymmetry in the NNI weak-basis

It has been shown [14], that starting with arbitrary quark mass
matrices M◦

u , M◦
d , in the framework of the SM, it is possible to

make a WB transformation such that Mu , Md acquire the Nearest
Neighbour Interaction (NNI) form:

Mu = cu

( 0 au 0
âu 0 bu

0 b̂u 1

)
; Md = cd K ·

( 0 ad 0
âd 0 bd
0 b̂d 1

)
(3.53)

where all au,d , âu,d , bu,d , b̂u,d , cu,d are real and the matrix K =
diag(1, eiφ1 , eiφ2). In the limit that âu,d = au,d and b̂u,d = bu,d , one
obtains the Fritzsch ansatz [15], which has been eliminated by
experiment, namely by the large value of the top quark and the
observed value of |V cb|.

In the following, we use our invariants to find out the mini-
mal asymmetry which is required in Mu , Md , when written in the
NNI basis, in order to conform with experiment. Let us define the
asymmetries

εu ≡ b̂u − bu

b̂u + bu
; εd ≡ b̂d − bd

b̂d + bd
(3.54)

and the total asymmetry

ε =
√

ε2
u + ε2

d (3.55)

Note that alignment and hierarchy of the quark mass matri-
ces are guaranteed in Eq. (3.53) by taking (a,b)u,d , (̂a, b̂)u,d much
smaller than 1. Computing the invariants associated to hu and hd
as in Eq. (2.14), and taking into account the hierarchy of the quark
mass matrices, one obtains in good approximation

|a|2 |̂a|2 = |m1m2|
m2

3

; |b|2 |̂b|2 =
(

m2

m3

)2

(3.56)

Then, combining Eqs. (3.54), (3.56) we obtain:

b2
u = mc

mt

(
1 − εu

1 + εu

)
; b2

d = ms

mb

(
1 − εd

1 + εd

)
(3.57)

Now, computing χ(A) as in Eq. (2.15) with hu and hd obtained
from the NNI form in Eq. (3.53), and using Eq. (3.56), we get an
expression which relates the experimental value for |V cb| and the
|χ(A)| as in Eq. (2.22) in terms of the parameters of the NNI form.
We find in leading order

b2
d − 2bubd cos(φ) + b2

u − b4
d = |V cb|2 + 2

(
ms

mb

)2

(3.58)

where φ = φ1 − φ2 is a complex phase resulting from the diago-
nal matrix K in Eq. (3.53). This expression is obtained taking into

account that (a, â) = O (
√|m1m2|

m3
) and that (b, b̂) = O (

√
|m2

m3
|) as im-

plied by Eqs. (3.56), (3.57).
From Eqs. (3.57), (3.58) we find that there is a connection be-

tween the required asymmetries εu, εd of the up and down quark
sectors in order to conform to experiment. This connection can be
understood as follows. Take the case when φ = 0 and εd = 0, then

from the second relation in Eq. (3.57) it follows that bd =
√

ms
mb

,

but then the expression of Eq. (3.58) forces also bu =
√

ms
mb

in

leading order, and therefore, from the first relation in Eq. (3.57),
one gets εu ≈ −1 + 2(mc

mt
)/( ms

mb
). Therefore, when the asymme-

try in the down sector is small, the required asymmetry in the
up sector is large, and vice versa. It can be readily verified that
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Fig. 1. Total required asymmetry ε as a function of the down quark mass matrix
asymmetry εd . The full line is for the values of ms = 60 MeV, φ = 0, the tiny
dashed line for values of ms = 100 MeV, φ = 0 and large dashed line for values
of ms = 80 MeV, φ = 0.35. For all curves, we took the values for mb = 3.0 GeV,
mc = 680 MeV, mt = 181 GeV and |V cb| = 0.037 at M Z .

when φ �= 0, this result also holds. Indeed, by eliminating from
Eqs. (3.57), (3.58) both bu and bd one finds εu as a function of εd
and φ

εu = εu(εd, φ) (3.59)

and one then computes the total asymmetry ε in Eq. (3.55). This
total asymmetry can thus be written as a function of εd and φ.
One finds that it increases for all values of φ �= 0, and it has a
minimum for a certain value of εd (and φ = 0).

We have plotted the total asymmetry ε in Fig. 1 as a func-
tion of εd for typical values of mc

mt
, ms

mb
and |V cb| at M Z . As can be

seen from the plot, the minimal required total asymmetry is about
ε = 0.2, which indicates clearly that ansätze, written in the NNI
basis, require quark mass matrices with a considerable amount of
asymmetry in order to conform to experiment. This finding agrees
with the result previously obtained [16] by explicitly diagonalizing
the quark mass matrices written in the NNI basis.

4. Leptons

4.1. Lepton masses

The hierarchy of lepton masses may also be expressed in terms
of invariants of Hl, Hν . For the charged leptons one may use es-
sentially the same invariants as the quarks. For the neutrinos, the
invariant

R1 ≡ 4χ [Hν ]
Tr[Hν ]2

(4.60)

may distinguish normal hierarchy corresponding to R1 � 1 from
inverted hierarchy (R1 = 1) and degeneracy (R1 = 4

3 ). The invariant

R2 ≡ 3 Tr[Hν ]Det[Hν ]
(χ [Hν ])2

(4.61)

may also be used to distinguish inverted hierarchy when R2 is
small from degeneracy when R2 = 1. Furthermore, for normal hi-
erarchy, it can distinguish the cases when one of the two smaller
masses is much smaller then the other one, R2 � 1, or the case
when these two small masses are of the same order. In this case
R2 is of order one. Thus, we have

Normal1 Normal2 Inverted Degenerate
R1 � 1 R1 � 1 R1 = 1 R1 = 4

3

R2 � 1 R2 = O (1) R2 � 1 R2 = 1

(4.62)

4.2. Leptonic mixing and CP violation

Next, we show how the leptonic mixing and CP violation can
be fixed by a set of WB invariants. For definiteness, let us consider
the case of strong normal hierarchy of neutrino masses:

m2
1 � m2

2,m2
3 (4.63)

which in turn implies:

m2
2 ≈ �m2

solar; m2
3 ≈ �m2

atm (4.64)

Let us now consider the following invariant:

Iν ≡ 1 − Tr[Hl]Tr[Hl H2
ν ] − Tr[H2

l H2
ν ]

χ [Hl]Tr[H2
ν ] (4.65)

In the limit me/mτ = 0, one obtains the exact result:

Iν = |V 13|2 + (
m2
m3

)4|V 12|2 + (
m1
m3

)4|V 11|2
1 + (m2

m3
)4 + (m1

m3
)4

(4.66)

Recently, the Daya Bay Collaboration [17] has made a measurement
of |V 13| ≡ |Ue3|, leading to the result:

sin2(2θ13) = 0.092 ± 0.016 (stat) ± 0.005 (syst) (4.67)

where, the standard parametrization has been used, with |V 13| =
sin(θ13). Given the measured value of |V 13| and taking into ac-
count Eqs. (4.64), (4.66), it is clear that one fixes |V 13|2 to an ex-
cellent approximation by constraining Iν to satisfy the constraint:

Iν = |V 13|2exp (4.68)

Let us now consider the invariant:

I ′ν ≡ 1 − Tr[Hν ]Tr[Hν Hl] − Tr[H2
ν Hl]

χ [Hν ]Tr[Hl] (4.69)

In the limit m1/m3 = 0, one obtains:

I ′ν =
|V 31|2 + m2

μ

m2
τ
|V 21|2 + m2

e

m2
τ
|V 11|2

1 + m2
μ

m2
τ

+ m2
e

m2
τ

(4.70)

Given the experimental value of |V 31|2, together with Eq. (4.70), it
is clear that one fixes the values of |V 31|2 to an excellent approxi-
mation by constraining I ′ν to satisfy:

I ′ν = |V 31|2exp (4.71)

So far, we have shown how one can obtain the correct value
of |V 13|2, |V 31|2 by constraining WB invariants to satisfy the rela-
tions of Eqs. (4.68), (4.71). Note that this procedure can be applied
to any flavour model and does not involve any diagonalization of
lepton mass matrices. In order to constrain |V 23|2 +|V 13|2, one can
use the leptonic equivalent of Eqs. (2.21), (2.22), which lead to:

∣∣χ [Aν ]∣∣ = |V 23|2 + |V 13|2 + O

((
m2

)4)
(4.72)
m3
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It is clear that using Eq. (4.72) and the fact that |V 13|2 was already
fixed, one can then fix the value of |V 23|2 by constraining χ [Aν ].
From the knowledge of |V 13|, |V 23|, |V 31| one can fix the mixing
angles sin(θ13), sin(θ23), sin(θ12). In order to fix the strength of
Dirac CP violation, one can use the equivalent of Eqs. (2.32), (2.33)
for the leptonic sector.

We have thus shown how to obtain the observed pattern of
leptonic mixing through a set of invariant conditions.

5. Conclusions

We pointed out that the use of weak-basis invariants can avoid
the well known redundancy of free parameters in the flavour
structure of mass matrices. These invariants are especially use-
ful when one opts for a bottom-up approach to the study of the
flavour structure of Yukawa couplings and fermion mass matrices.
In particular, we have shown that the pattern of fermion mixing
both in the quark and lepton sectors can be expressed in terms
of relations only involving weak-basis invariants. We have also
pointed out that the observed alignment of the up and down quark
mass matrices in flavour space can also be guaranteed through
a weak-basis invariant condition. It was emphasized that in the
context of the SM, the above alignment in no way follows auto-
matically from the Yukawa couplings structure, since Yu and Yd
are independent. On the other hand, this alignment may arise nat-
urally, e.g. in left–right symmetric theories or in S O (10), where Yu

and Yd may be approximately proportional to each other. Finally,
we have included in our analysis the recent Daya Bay result which
provided a measurement of Ue3 [17]. This important result has had
an impact on the construction of viable lepton flavour models [18].

In summary, WB invariants may play an important rôle in a
systematic search for patterns of fermion mass matrices consistent
with experiment and may thus help to uncover a possible flavour
symmetry chosen by nature.
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