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a b s t r a c t

We show that the graph 2-sum of two frameworks is the underly-
ing framework for the 2-sum of the infinitesimal and generic rigid-
itymatroids of the frameworks. However, we show that, unlike the
cycle matroid of a graph, these rigidity matroids are not closed un-
der 2-sum decomposition.
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Given a graph G = (V , E), we consider an embedding p : V → Rd of the vertices into
d-dimensional Euclidean space. The graph G and the embedding pmay be used tomodel a framework,
G(p) of rigid rods connected to one another via ball joints. The vertices correspond to the joints, and
each edge is interpreted as a length constraint. If G(p) is a framework, then for each edge e = (v, w)
there is a linear constraint

(p(v) − p(w)) · p′(v) = (p(v) − p(w)) · p′(w) (1)

on the vertex velocities p′(v) which implies that the distance between v and w is infinitesimally
unaltered. This linear system induces a matroid, R(p), on E, in which a set of edges is independent if
and only if the corresponding set of linear constraints is independent. We call R(p) the infinitesimal
rigiditymatroid corresponding to p. Since all constraints of the form (1) are satisfied by the elements of
the d(d+1)/2-dimensional space of infinitesimal isometries, the rank of E is atmost d|V |−d(d+1)/2.
In the case rank(E) = d|V | − d(d + 1)/2, we say that E is infinitesimally rigid in dimension d.

In the framework of Fig. 1, the infinitesimal vertex motion indicated by the arrows on the left
extends to one of the trivial motions of the plane, in this case, an infinitesimal isometry induced by
a rotation about vertex 0. The motion indicated on the right is non-trivial, so this framework is not
infinitesimally rigid in dimension 2.

The linear constraints (1) may be encoded in |E| by d|V | matrix R(p) whose kernel corresponds to
the infinitesimalmotions p′(v)which do not violate (1) andwhose cokernel is the space of prestresses;
see [5,2,1].
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Fig. 1. A framework with a trivial infinitesimal motion, (a), and a non-trivial infinitesimal motion, (b).

For example, the rigidity matrix of the 2-dimensional framework pictured in Fig. 1 is given by
(p(1) − p(0)) (p(0) − p(1)) 0 0 0
(p(2) − p(0)) 0 (p(0) − p(2)) 0 0

0 (p(2) − p(1)) (p(1) − p(2)) 0 0
0 (p(3) − p(1)) 0 (p(1) − p(3)) 0
0 0 0 (p(4) − p(3)) (p(3) − p(4))
0 0 (p(4) − p(2)) 0 (p(2) − p(4))


whose rows correspond to the edges a, . . . , f and entries are 2-dimensional row vectors. Note that,
using this vector notation, the rigidity matrix for any framework on G in any dimension will have this
form.

The independence of the constraints depends on the embedding p, so a given graph may have
several different infinitesimal rigidity matroids R(p) in dimension d. If, however, the embedding is
generic, for example if the coordinates of the vertices are algebraically independent, then the matroid
is determined by the dimension and the graph G alone, and we say that it is the generic d-dimensional
rigidity matroid of G, Rd(G).

Note that every embedding of V into R1 is generic and G is rigid in dimension 1 if and only if G is
connected, so C(G) = R1(G), where C(G) is well known as the cycle matroid of G, [6].

A partition {E1, E2} of E is called a k-separator of a matroid M on E if |Ei| ≥ k and

rank(E1) + rank(E2) ≤ rank(E) + k − 1.

Tutte [10] calls M n-connected if there is no k-separator for k < n. With this definition every matroid
is 1-connected.

A matroid is 2-connected if there is no partition of E into two sets E1 and E2 such that |Ei| ≥ 1 and
rank(E1) + rank(E2) ≤ rank(E), i.e., if it is not the direct sum of its restrictions to the Ei’s. It is clear
that every matroid can be uniquely decomposed into a direct sum such that each of the summands
is 2-connected. Note that many authors call a matroid connected if it is 2-connected in the Tutte
sense. We choose to use Tutte’s 2-connectivity, so that 2-connectivity of the graph G is equivalent to
2-connectivity of its cycle matroid C(G).

It is well known, see for example [6] or [7], that a matroid is 2-connected if and only if for any
partition of the ground set into two sets, there is a cycle C intersecting both of them. In fact an even
stronger conclusion holds, namely a matroid is 2-connected if and only if any pair of its edges is
contained in a cycle.

The 2-sum, M1


2/e M2, of two matroids M1 and M2, both containing at least 3 elements and
having exactly one element e in common, where e is neither dependent (a loop) or a bridge (a coloop)
in either of the Mi, is a matroid on the union of the ground sets of M1 and M2 excluding e and the
cycles of M1


2/e M2 consist of cycles of Mi not containing e and of sets of the form (C1


C2) \ e

where Ci is a cycle of Mi containing e. A matroid is 3-connected if and only if it cannot be written as a
2-sum.

The 2-sum is also defined for 2-connected graphs, but here one cannot identify two edges without
specifying which pairs of endpoints are to be identified, in other words, without specifying an
orientation on the edges to be amalgamated; see Fig. 2. For 2-connected graphs, the cycle matroid
of the 2-sum of two graphs is identical with the 2-sum of their cycle matroids. We would like to show
that the same is true for the infinitesimal rigidity matroids.
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Fig. 2. The 2-sum of two r-cycles.

Theorem 1. Suppose we have two graphs G1 = (V1, E1) and G2 = (V2, E2) and edges ei = (xi, yi) ∈ Ei,
and a frameworkp in d-dimensional Euclidean space on the 2-sumG = G1


e1,e2

G2, sop : V1∪V2 → Rd.
Suppose also that p(V1) and p(V2) each contain at least d points in general position. If E1 and E2 are cycles
in the infinitesimal rigiditymatroid induced byp, then so are the edges E of G, E = (E1−{e1})∪(E2−{e2}).

Proof. If Ei is a cycle, then the cokernel of the rigidity matrix R(pi) is generated by a vector ωi, a
prestress, all of whose entries are non-zero. So, for each vertex v ∈ Vi, we have−

(v,w)∈Ei

ωi(v, w)(p(w) − p(v)) = 0. (2)

We may regard both ω1 and ω2 as prestresses on all of G + e, that is, G plus the edge of attachment
e = e1 = e2, by giving the value zero to the unassigned edges. So both ω1 and ω2 are prestresses on
G + e, as well as ω = ω1/ω1(e1) − ω2/ω2(e2). Since ω(e) = 0, ω is actually a prestress on Gwhich is
non-zero on all edges of G. Therefore, the edges E of Gwill be a cycle if ω generates all the prestresses
of G, that is, the space of prestresses is of rank 1.

Since p(Vi) contains at least d points in general position, its space of trivial motions is of dimension
d(d + 1)/2, and

d|Vi| = rank(R(Ei)) + mi + d(d + 1)/2.

The number mi defined by this equation is often referred to as the number of internal degrees of
freedom. Since Ei is a cycle, rank(R(Ei)) = |Ei| − 1, so

d|Vi| = |Ei| − 1 + mi + d(d + 1)/2.

We need to show that rank(R(E)) = |E| − 1.
We have |V | = |V1|+ |V2|−2, and |E| = |E1|+ |E2|−2, and we nowwant to compute the number

m of internal degrees of freedom of G. Since e is dependent on both E1 − e and E2 − e, the distance
between its endpoints must be fixed infinitesimally in G. So, without loss of generality, we may work
in the space of motions which fix both x and y, the endpoints of e. The trivial motions in this space
have dimension (d − 1)(d − 2)/2. The space of infinitesimal motions which fix all vertices in V2 has
dimension m1 + (d − 1)(d − 2)/2, and the space of infinitesimal motions which fix all vertices in
V1 has dimension m2 + (d − 1)(d − 2)/2. Every infinitesimal motion of G which fixes x and y is a
combination of these, so the dimension of infinitesimal motions of G is m1 + m2 + (d − 1)(d − 2).
Subtracting the (d − 1)(d − 2)/2 trivial motions fixing x and y we have that G has internal degree of
freedomm = m1 + m2 + (d − 1)(d − 2)/2, hence rank(E) = |E| − 1. �

Theorem 1 can be used to produce interesting examples of cycles in various rigidity matroids.
A famous example is the so-called double banana, the 2-sum of two K5’s. K5 is a cycle in the
3-dimensional generic rigidity matroid, so the double banana is a cycle as well. The double banana
has just enough edges to be rigid in 3-space and none of its edges is wasted by over-bracing a proper
subset of vertices. The edge removed in taking the 2-sum is in the closure of either banana, so in
dimension 3 and higher dimensions, there are novel ways to waste edges.

Theorem 1 implies the following.

Corollary 1. If the 2-sum of R(G1)


e R(G2) is defined, so e is neither a loop nor a coloop in either of the
matroids, then

R(G1)


e

R(G2) = R(G1 ⊕e G2).
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Fig. 3. Graph 2-sums only.

Fig. 4. Graph- and rigidity matroid 2-sum.

Fig. 5. A 2-sum tree.

Note that the graphic 2-summay be defined when the rigidity matroid 2-sum is not. This is shown
in Fig. 3 where (a) the 2-sum of the graphs is taken along coloops of the rigidity matroid, so the rank
of the rigidity matroid of the 2-sum graph is too small to be the 2-sum of the corresponding matroids,
or in (b) the 2-sum is taken along a coloop of the rigidity matroid of one of the summands. Here the
rank of the rigiditymatroid of the resulting framework is 13, as it should be, but the separator induced
by the summands is actually a 1-separator. The rigidity matroid of the 2-sum graph in Fig. 4 is indeed
the 2-sum of the rigidity matroids of the summands.

Theorem 1 allows us to build up frameworks with 2-connected rigidity matroids using merely the
2-sumof the underlying frameworks. A natural question to ask iswhether this process can be reversed,
as has been classically done for the cycle matroid.

Clearly the 2-sum of graphs is associative provided that the edges to be amalgamated are distinct,
and so it is convenient to represent the result of a succession of 2-sums as a tree in which the nodes of
the tree encode the graphs to be joined, and the edges of the tree encode the (oriented) edges of the
graphs to be amalgamated; see Fig. 5. If all the graphs corresponding to the nodes in the amalgamation
tree are 2-connected, then the graph which is the result of the joins encoded by the tree is also
2-connected. We consider the case when each of the graphs corresponding to the nodes in the tree is
a 3-block, that is, either 3-connected, a simple cycle with at least 3 edges, or a k-link which is graph
consisting solely of two vertices and k ≥ 3 parallel edges. If all the graphs corresponding to the nodes
are 3-blocks with the restriction that no adjacent nodes correspond to cycles, and no adjacent nodes
correspond to k-links, then the resulting 2-sum tree is called a 3-block tree; see Fig. 5. Tutte proved
the following deep theorem characterizing finite 2-connected graphs; see [9,4] (Fig. 6).

Theorem 2 ([9]). A 2-connected graph G is uniquely encoded by its 3-block tree.

This result has been generalized to matroids. Every 2-connected matroid has a unique encoding as
a 3-block tree in which the 3-blocks are 3-connected matroids, bonds (matroids in which every
2-element subset is a cycle) and polygons (matroids consisting of a single cycle), such that no two
bonds are adjacent, nor two polygons; see [3], Theorem 18.
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Fig. 6. The 3-block tree in Fig. 5 encodes this graph.

Fig. 7. A 2-separator of R2(G).

Fig. 8. 3-block decomposition of R(G), with 2-sums along x and y.

Note that in forming the 3-block decomposition of a matroid, each cycle must be considered
indecomposable since any non-trivial partition of the edge set forms a matroid 2-separation.

Given a graph G, the 3-block decomposition of C(G) only involves graphic matroids and the class
of graphic matroids is closed under 2-sum decomposition. In fact, given a graphic matroid C, one can
construct all the graphs G with C(G) = C from the 3-block tree of C by assigning orientations to the
amalgamated edges, and ordering the edges around each cycle [11,8].

By contrast, and despite Corollary 1, the class of rigidity matroids does not behave as well as the
class of graphs under 2-sum decomposition. The nodes of the tree in the Cunningham and Edmonds
generalization of Theorem 2 need not correspond to rigidity matroids, nor even graphic matroids.
The following example gives a rigidity matroid R(G) illustrating this phenomenon. Here the 3-block
decomposition of R(G) leads to a 2-separator {E1, E2}, which is not a 2-separator of the underlying
graph, since the edge sets intersect in more than two vertices; see Fig. 7.

More importantly, the 3-block decomposition of R2(G) may involve 3-blocks which are not the
infinitesimal rigidity matroid of any framework. See Fig. 8, in which the matroid R(G) from Fig. 7
has been decomposed into its 3-blocks, Bi. The matroids B1 and B2 are both cycles and the matroid
B3 is the 3-connected matroid in which every 3-element subset is a basis. The matroid B3 is not the
infinitesimal rigiditymatroid of any framework in any dimension, since the graphwould have to have
at least 4 vertices, so there would have to be at least one vertex of valence 2, and the edges at that
vertex could not be in the closure of the other three.
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