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Abstract

We develop the study of premonoidal categories. Speci*cally, we reconcile premonoidal cate-
gories with the usual study of categories with algebraic structure by adding a little extra structure.
We further give a notion of closedness for a premonoidal category with such extra structure,
and show that every premonoidal category fully embeds into a closed one. c© 2002 Elsevier
Science B.V. All rights reserved.

1. Introduction

The notion of premonoidal category was introduced in [1, 16] in order to give a
uni*ed account of what have been called notions of computation, as introduced by
Eugenio Moggi in [10]. The idea of a premonoidal category is that it is a mild gener-
alisation of the concept of monoidal category: a premonoidal category is essentially a
monoidal category except that the tensor need only be a functor of two variables and
not necessarily be bifunctorial in the precise sense of Mac Lane’s book [9], i.e., given
maps f : x→y and f′ : x′ →y′, the evident two maps from x⊗ x′ to y⊗y′ may di:er.

A simple example of a premonoidal category arises in analysing side-e:ects: one
may model a programme from A to B by a function from S ⊗ [A] to S ⊗ [B], where S
is the set of states and [A] and [B] denote types of values. Given another programme,
to be modelled by a function from S ⊗ [A′] to S ⊗ [B′], one obtains two di:erent
functions from S ⊗ [A]⊗ [A′] to S ⊗ [B]⊗ [B′], either of which could model the com-
posite of the programmes, dependent upon the order in which they are performed. One
cannot describe such behaviour in a monoidal category of denotations of types and
programmes owing to the presence of bifunctoriality in the monoidal operation. A sim-
ilar situation arises in modelling nondeterminism by trees [1]. More generally, for any

1 This work is supported by EPSRC grant GR=J84205: Frameworks for programming language semantics
and logic.

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00340 -6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82707778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


304 J. Power / Theoretical Computer Science 278 (2002) 303–321

strong monad T on a symmetric monoidal category, the Kleisli category for the monad
acquires a premonoidal structure (see [16]), and indeed strong monads can be charac-
terized in such terms. So one drops the bifunctoriality requirement in the de*nition of
monoidal category to obtain a premonoidal category: we recall details of the de*nition
in Section 4.
Not all premonoidal categories arise directly from monads. For instance, the notion

of ⊗¬-category [17, 19, 20] has been developed over recent years to model higher
order structure with control, in particular continuations. A ⊗¬-category is de*ned
to be a symmetric premonoidal category C to model contexts, together with a functor
¬ :Cop →C to model a continuation-type constructor, subject to axioms (see Section 4).
For instance, it models ML-style continuations; and it has been used to refute long-
standing conjectures about continuations [19]. Premonoidal categories have also been
used to provide a semantic universe of call-by-value computation and to prove a full
abstraction result in terms of game semantics [5]. There, the premonoidal category CBV
is de*ned to be the category of cbv-types and innocent strategies, not as the Kleisli
category for a monad (see Section 4). In general, if one starts with a simple type
theory and a call-by-value operational semantics, then takes the fully abstract model,
one obtains a premonoidal category [15].
In this paper, we further develop the concept of premonoidal category. There were

two problems left outstanding in the original papers. First, there was no analysis of the
concept of closedness for a premonoidal category. One has well understood notions
of cartesian closed category and closed monoidal category; so similarly, in order to
model higher-order types, one seeks a de*nition and analysis of the concept of closed
premonoidal category. Second, in de*ning the notion of premonoidal category, the hope
was that it would lie alongside other basic category theoretic structures, such as those
of monoidal category, cartesian category, or distributive category, and could be used
much as those concepts are. However, there was no substantial analysis that uni*es the
concept of premonoidal category with those other concepts. An answer to the second
question helps us to answer the *rst, so we will address them in reverse order.
In giving a uni*ed account of categories with structure, a fundamental fact linking

the three examples cited above is that each of them may be seen as a 2-category of
algebras for a *nitary 2-monad on the 2-category Cat. For instance, there is a *ni-
tary 2-monad on Cat for which the 2-category of algebras is the 2-category of small
monoidal categories and strict monoidal functors. There has been a string of papers
developing categories with such algebraic structure; an account directed towards com-
puter scientists is in [12]. However, as we explain in Section 4, there seems to be
no natural functor from the category of small premonoidal categories and strict pre-
monoidal functors to Cat that presents the former as the 2-category of algebras for a
*nitary 2-monad on Cat. However, we can take a mild and natural generalisation of
the 2-category Cat, and demonstrate that a mild extension of the category of small
premonoidal categories is *nitarily monadic over it: that is the substance of Section 5.
All *nitary 2-monads on Cat extend too, so this considerably strengthens the relation-
ship between premonoidal categories and other apparently similar category theoretic
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structures. This requires considerable category theory: some basic work on enriched
categories in Section 2, together with the study of algebraic structure on 2-categories
in Section 3.
As mentioned above, the algebraic structure of premonoidal categories helps us to

de*ne the notion of closed premonoidal category, which we investigate in Section 6.
It seems has been used [6, 20, 19] for the study of higher-order types with a call by
value evaluation strategy. We give some examples and prove an embedding result.

2. Enriched categories

For a cartesian closed locally small category V , one may speak of V -categories,
V -functors and V -natural transformations, yielding the 2-category V -Cat of small
V -categories. The idea of a V -category C is that it has a set of objects, just as an
ordinary category does; but rather than having hom-sets, for each pair of objects x
and y of C, it has a hom-object C(x; y) of V ; the cartesian structure of V suIces
to de*ne composition of a V -category. A V -category is sometimes called a category
enriched over V , and the canonical reference, albeit in somewhat greater generality
than that here, is Kelly’s book [7]. For more examples and analysis directed towards
a computing readership, see Robinson’s paper [18]. One may see enriched categories
in use in Fiore’s book [3].
The archetypal example is given by V = Set, in which case a V -category is precisely

a locally small category, and a small V -category is precisely a small category. Another
important example, which we use heavily here, is that of V =Cat. Then, a small
V -category is precisely a small 2-category.
Every V -category C has an underlying ordinary category C0: an object of C0 is an

object of C, and an arrow from x to y in C0 is an arrow in V from the unit of V to
C(x; y). In general, not every ordinary category may be seen as the underlying ordinary
category of a V -category, but sometimes, there may be many ways of enriching an
ordinary category with the structure given by V . In particular, the category V always
enriches to a V -category with hom-objects given by the exponentials [x; y] in V [7].

If V is complete, as it will be in all examples of interest to us, then V -Cat is
complete as a 2-category, and if V is also cocomplete, then V -Cat is cocomplete as a
2-category too.
In this paper, we use ordinary categories, i.e., categories enriched over Set, and

2-categories, i.e., categories enriched over Cat; but our leading two examples of carte-
sian closed categories over which we wish to enrich are as follows.

Example 1. Consider V = [→; Set], the functor category, an object of which is a func-
tion, and an arrow a commutative square in the category Set. A small V -category
amounts to a pair of small categories C and D together with an identity on objects
functor j :C→D. We will call C the domain category of the pair, and D the codomain
category. A V -functor amounts to a commutative square of functors. A V -natural
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transformation is a natural transformation between the codomain categories but with
each component in the domain category.

The category [→; Set] is complete and cocomplete, with limits and colimits given
pointwise, so [→; Set]-Cat is complete and cocomplete. In fact, [→; Set]-Cat is a locally
*nitely presentable 2-category. Observe that there is a diagonal functor � :Cat→ [→;
Set]-Cat, and it is fully faithful with left and right adjoint, thus exhibiting Cat as a full
reKective and coreKective sub-2-category of [→; Set]-Cat. It follows that any *nitary
2-monad on Cat extends to a *nitary 2-monad on [→; Set]-Cat with the same
2-category of algebras. Note that the underlying ordinary category of a [→; Set]-
category is its domain category.

Example 2. Consider V = Subset, an object of which is a set together with a sub-
set, and an arrow a function that respects the subset structure. A small V -category
amounts to a small category D together with a subcategory C with the same objects.
We will denote the inclusion by j :C→D, and again call C the domain category and
D the codomain category. A V -functor amounts to a functor that respects the subcat-
egory structure, and a V -natural transformation is a natural transformation with each
component in the subcategory.

The category Subset is complete and cocomplete, with limits given pointwise and
colimits a little more complex: *rst take colimits pointwise, then factor the resulting
function into a quotient followed by a subset. Again, it follows that Subset-Cat is
complete and cocomplete. It is also a locally *nitely presentable 2-category; there
is a diagonal functor � :Cat→ Subset-Cat with left and right adjoint, exhibiting Cat
as a full reKective and coreKective subcategory of Subset-Cat. Thus, every *nitary
2-monad on Cat extends to a *nitary 2-monad on Subset-Cat with the same 2-category
of algebras. (See Section 3 for the signi*cance of *nitary monads.) The underlying
ordinary category of a Subset-category is the domain category.
Although not explicitly studied before, these structures have appeared in computer

science, for instance in giving models, called elementary control structures, of Milner’s
action calculi [11, 13]. To recall the de*nition of elementary control structure, let M
denote the free category with strictly associative *nite products on a set P. Assume we
have a set of controls K , each with arity information, the idea being that a control takes
any parametrised family of arrows to a parametrised arrow, and the arity information
spells out the possible domains and codomains: details appear in [13].

De�nition 3. An elementary control structure consists of a strict symmetric monoidal
locally preordered category D and an identity on objects strict symmetric monoidal
functor j :M →D0, where D0 is the underlying ordinary category of D, such that each
projection �2 : k×m→m is maximal in D(k×m;m), together with, for each control K
with associated arity information ((m1; n1); : : : ; (mr; nr)) �→ (m; n) and each k, a function
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D0(k × m1; n1) × · · ·× D0(k × mr; nr)→D0(k × m; n), natural with respect to maps
f : k → k ′ in M .

If we forget the preorder, then this de*nition is a special case of the structure we
consider here and in later sections, together with controls. The naturality condition
on controls may be expressed in the form that the given family of functions forms a
natural transformation between two functors from M to Set. Note that the functor from
M into D0 is not assumed to have an adjoint. So we have

Example 4. Given an elementary control structure, the functor j :M →D0 is a [→;
Set]-category. It need not be a Subset-category, and it need not have a right adjoint.

For another example, Honda and Yoshida [5] have given a fully abstract model for
call-by-value PCF in terms of games as follows. They de*ne a notion of cbv-type to be
a special kind of sorting. They then de*ne the notion of an innocent strategy, " :A→B,
where A and B are cbv-types. They de*ne a composition for innocent strategies, prove
that it satis*es the axioms for a category, and call an innocent strategy " total if
"; #= ⊥ implies #= ⊥. The total innocent strategies form a subcategory of the category
of innocent strategies. Thus we have

Example 5. Let CBV denote the category of cbv-types and innocent strategies, and
let CBVt denote the category of total innocent strategies. Let j :CBVt →CBV be the
inclusion. It is therefore a Subset-category, hence also a [→; Set]-category. Moreover,
it has a right adjoint.

Finally, Thielecke [20] de*ned a ⊗¬-category to be a symmetric premonoidal cat-
egory (which we shall de*ne in Section 4) C together with a functor ¬ :Cop →C
satisfying coherence conditions with respect to the premonoidal structure, and such
that ¬ is self-adjoint on the left. As we shall see, for any premonoidal category C, one
has a subcategory Z(C) containing all the objects of C, called the centre of C. The
centre was fundamental to Thielecke’s analysis of e:ect-free terms in [19]. We have

Example 6. For any ⊗¬-category C, the inclusion of Z(C) into C is a Subset-
category, so also a [→; Set]-category. It follows from the axioms that j has a right
adjoint.

3. Algebraic structure

In this section, we will de*ne algebraic structure on the 2-categories Cat and our
leading examples, Examples 1 and 2. One can de*ne algebraic structure on any locally
*nitely presentable 2-category, but we would need to introduce the concept of tensor
in a 2-category to do so. In the cases of primary interest to us, Examples 1 and 2 and
Cat, we can avoid introducing tensors. So we avoid them. In what follows, we let C
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denote any of these three 2-categories, with � de*ned as in our two examples, and if
C =Cat, take � to be the identity 2-functor. Finally, we refer to *nitely presentable
objects. In order to understand this paper, one does not need a precise understanding of
*nitely presentable objects: all one needs to know is that in each of our three examples,
they include all *nite objects of the 2-category being considered. The only reason we
mention *nitely presentable objects here is in order to give an accurate statement of
the converse of the theorem; but we do not use the converse. For a gentler account of
algebraic structure, see Robinson’s paper [18].
Let obCf denote the discrete 2-category on the set of (isomorphism classes of)

*nitely presentable objects in C. Then a signature on C consist of a 2-functor S : obCf

→C. For each c∈ obCf , S(c) is called the object of basic operations of arity c.
From S, we construct F(S) :Cf →C as follows: set

S0 = J; the inclusion of Cf in C;

Sn+1 = J +
∑

d∈obCf

NC(d; Sn(−))× S(d);

and de*ne

"0 : S0 → S1 to be inj : J → J +
∑

d∈obCf

NC(d; S0(−))× S(d);

"n = J +
∑

d∈obCf

NC(d; "n−1(−))× S(d) : Sn → Sn+1;

F(S) = colimn¡! Sn:

In many cases of interest, each "n is a monomorphism, so F(S) is the union of {Sn}n¡!.
For each c, we call F(S)(c) the object of derived c-ary operations.
A signature is typically accompanied by equations between derived operations. So

we de*ne the equations of an algebraic theory with signature S to consist of a 2-
functor E : obCf →C together with 2-natural transformations #1; #2 :E→F(S)(K(−)),
where K : obCf →Cf is the inclusion.
Algebraic structure on C consists of a signature S, together with equations (E; #1; #2).

We will generally denote algebraic structure by (S; E), suppressing #1 and #2.
We now de*ne the algebras for a given algebraic structure. Given a signature S, an

S-algebra consists of an object A of C together with a map -c :C(c; A)→C(S(c); A)
for each c. So, an S-algebra consists of a carrier A and an interpretation of the ba-
sic operations of the signature. This interpretation extends canonically to the derived
operations, giving an F(S)(K(−))-algebra, as follows:

-0 : C(c; A) → C(S0(c); A) is the identity;

to give -n+1 :C(c; A)→C(Sn+1(c); A), using the fact that C(−; A) preserves colimits, is
to give a map C(c; A)→C(c; A), which we will make the identity, and for each d in
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obCf , a map

C(c; A) → [C(d; Sn(c)); C(S(d); A)];

or equivalently, C(c; A)× C(d; Sn(c))→C(S(d); A), which is given inductively by

C(c; A)× C(d; Sn(c))
-n×id→ C(Sn(c); A)× C(d; Sn(c))

comp→ C(d; A) -→C(S(d); A):

Given signature S and equations E, an (S; E)-algebra is an S-algebra that satis*es the
equations, i.e., an S-algebra (A; -) such that both legs of

C(c; A)
-!→C(F(S)(Kc); A)

C(#1c;A)
�

C(#2c;A)
C(E(c); A)

agree.
Given (S; E)-algebras (A; -) and (B; .), we de*ne the hom-category
(S; E)-Alg((A; -); (B; .)) to be the equaliser in Cat of

C(A; B)
{C(c;−)}c∈ obCf−−−−−−−−−−−−−−→

∏

c

[C(c; A); C(c; B)]

{C(S(c);−)}c∈obCf

�

�
∏
c

[C(c;A);.c]

∏

c

[C(S(c); A); C(S(c); B)] −−−−−−−−→∏
c

[-c;C(S(c);B)]

∏

c

[C(c; A); C(S(c); B)]:

(1)

This agrees with our usual universal algebraic understanding of the notion of homo-
morphism of algebras, internalising it to Cat. (S; E)-Alg can then be made into a
2-category in which composition is induced by that in C. An arrow in (S; E)-Alg is an
arrow f :A→B in C such that for all *nitely presentable c; f-c(−)= .c(f−) :C(c; A)
→C(S(c); B), i.e., an arrow in C that commutes with all basic c-ary operations for
all c.
The special case of the main result of [8] that is central to our work is

Theorem 7. A 2-category is equivalent to (S; E)-Alg for algebraic structure (S; E) on
C if and only if there is a 4nitary 2-monad T on C such that the 2-category is
equivalent to T -Alg.

Example 8. We shall see how the category of small categories with binary products is
given by algebraic structure on Cat. So let C =Cat. Let 2 denote the discrete category
on two objects; let → denote the arrow category; let Cone denote the category given
by two objects together with a cone over them; and let Doublecone denote Cone
together with a cone over it, i.e., a pair of objects, two cones over the pair of objects,
and an intermediary map from the vertex of one of the cones to the vertex of the
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other, commuting with the projections. Now de*ne S : obCatf →Cat by S(2)=Cone,
S(Cone)=Doublecone, and for all other c; S(c) is the empty category.
An S-algebra is a small category A together with a functor / : [2; A]→ [Cone; A]

and a functor  : [Cone; A]→ [Doublecone; A]. The functor / is to take a pair of ob-
jects to its limiting cone, and the functor  is to take a cone to itself, the limiting
cone, and the unique comparison map. So we add equations as follows: we may add
equations factoring through S1(2) and S1(Cone), respectively, so that /(x) :Cone→A
restricts along the inclusion 2→Cone to x, and so that  sends a cone " :Y → x to a
commutative diagram of the form

Y
"−→ x

2"↘ ↗/(x)

X

Finally, we add an equation factoring through S2(2) so that, for each x : 2→A, we
have 2/(x) = idX .
Putting this together, we put E(2)=Cone+ → ; E(Cone)=Cone+Cone, and E(c)

to be the empty category for all other c, and we de*ne #1 and #2 to force the equations
as described above: on most components, the #’s factor through S1(c), but for one of
them, we need to factor through S2(c).
It then follows that for any x : 2→A, /(x) is a limiting cone: given any cone

" :Y → x, the diagram  (") provides a comparison map; and given any comparison
map f :Y →X , functoriality of  applied to the arrow

Y
"−−−−−→ x

f

�

�
idx

X −−−−−→
/(x)

x

in [Cone; A] shows that

Y
2"−−−−−→ X

f

�

�
idX

X −−−−−→
2/(x)=idX

X

commutes, so f= 2".
So an (S; E)-algebra is precisely a category with assigned binary products. Observe

that an (S; E)-algebra map is a functor that sends assigned binary products to assigned
binary products.
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It is routine to extend the above example to describe small categories with *nite
products, and a dual gives small categories with *nite coproducts; one can also describe
small monoidal categories and symmetric monoidal categories. We should like to show
that small premonoidal categories can be described in these terms, but as we explain
in the next section, they cannot: thus our need to extend from Cat to [→;Set]-Cat or
Subset-Cat.
We shall see that we need to pass from Cat to a variant in order to incorporate

premonoidal categories into the study of categories with algebraic structure. But in
addition to that, passing from Cat to [→;Set]-Cat is helpful in analysing the structure
of elementary control structures as in Example 4. Recall that in an elementary control
structure j :M →D0, the category M has strictly associative *nite products, D0 is strict
symmetric monoidal, and j is a strict symmetric monoidal functor, and that constitutes
the type structure of the de*nition. We can, therefore, de*ne the type structure in the
de*nition of elementary control structure by observing that we have

Example 9. The 2-category of small [→;Set]-categories j :C → D for which C has
strictly associative *nite products, D is strict symmetric monoidal, and j is strict sym-
metric monoidal, is given by algebraic structure on [→;Set]-Cat.

4. Premonoidal categories

In this section, we recall the de*nitions of premonoidal category and symmetric
premonoidal category, and outline how mild variants of them may be seen as algebraic
structures on [→;Set]-Cat and Subset-Cat (see [16] for the de*nitions in fuller form
and for examples).

De�nition 10. A binoidal category is a category C together with, for each object x
of C, functors hx :C→C and kx :C→C such that for each pair (x; y) of objects of
C; hxy= kyx. The joint value is denoted x⊗y.

De�nition 11. An arrow f : x→y in a binoidal category is central if for every arrow
g : u→ v, the two composites from x⊗ u to y⊗ v, one given by kv(f) ·hx(g), the other
given by hy(g) · ku(f), are equal, and dually for the two composites from u⊗ x to
v⊗y.

It follows from the de*nition that, in the presence of natural associativity of ⊗,
which will be part of the de*nition of premonoidal category, if f : x→y is central and
z is any object of C, then hz(f) : z⊗ x→ z⊗y and kz(f) : x⊗ z→y⊗ z are central.

De�nition 12. Given a binoidal category C, a natural transformation 8 : g⇒ h :B→C
is called central if every component of 8 is central.
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De�nition 13. A premonoidal category is a binoidal category C together with an object
I of C, and central natural isomorphisms a with components (x⊗y)⊗ z→ x⊗ (y⊗ z),
l with components x→ x⊗ I , and r with components x→ I ⊗ x, subject to two equa-
tions: the pentagon expressing coherence of a, and the triangle expressing coherence
of l and r with respect to a.

Observe that every monoidal category is a premonoidal category. So, trivially we
may extend our study of Example 4 by observing

Example 14. For any elementary control structure j :M →D0, the category D0 is a
premonoidal category.

For a more substantial example, extending Example 5, we have

Example 15. The category CBV is a premonoidal category. The easiest way to verify
that is by direct use of the de*nition of premonoidal category.

Finally, we may extend Example 6 to observe that, by de*nition,

Example 16. Every ⊗¬-category is a premonoidal category.

Having de*ned the notion of premonoidal category, we can immediately make a
subsidiary de*nition of fundamental importance, that of the centre of a premonoidal
category. It is needed to characterize strong monads and their various conditions in
this setting.

De�nition 17. Given a premonoidal category C, de*ne the centre of C to be the
subcategory of C consisting of all the objects of C and the central morphisms.

We denote the centre of a premonoidal category C by Z(C). As mentioned earlier,
in the presence of natural associativity, as we have in the de*nition of premonoidal
category, hz and kz preserve central maps. It immediately follows that we have

Proposition 18. The centre of a premonoidal category is a monoidal category.

The notion of the centre of a premonoidal category was vital in the development
of ⊗¬-categories as in Example 6 (see [17, 20, 19]). The central morphisms of a
premonoidal category provided a notion of e:ect-free term or value in the study of
continuation semantics. An analysis of centrality as de*ned here gave rise to the refu-
tation of several conjectures about control e:ects [19].
One of the central themes of this paper is to identify, as part of the structure, a

speci*ed subcategory of the centre of a premonoidal category; that allows us to prove
Theorem 22. But this is one case in which the consideration of all central maps, not
just some of them, is vital, because it is precisely the fact of centrality that has provided
the notion of e:ect-free term.
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For Example 15, CBVt lies in the centre of CBV .
We now turn to the de*nition of a symmetric premonoidal category.

De�nition 19. A symmetry for a premonoidal category is a central natural isomorphism
with components c : x⊗y→y⊗ x, satisfying the two conditions c2 = 1 and equality
of the evident two maps from (x⊗y)⊗ z to z⊗ (x⊗y). A symmetric premonoidal
category is a premonoidal category together with a symmetry.

All our leading examples of premonoidal categories are symmetric. We now de*ne
the notion of premonoidal functor. This generalises the notion of monoidal functor
(see [2]).

De�nition 20. A premonoidal functor (g; Og; ĝ) :C→D is a functor g :C→D that sends
central maps to central maps, together with central natural transformations with compo-
nents Og : ga⊗ gb→ g(a⊗ b) and ĝ : I → g(I), subject to the three equations expressing
coherence with a, l and r. A premonoidal functor is called strong or strict when Og
and ĝ are isomorphisms or identities, respectively.

One may similarly generalise the de*nition of symmetric monoidal functor to sym-
metric premonoidal functor. Small premonoidal categories and premonoidal functors
form a category. It is routine to de*ne premonoidal natural transformations too, and
prove that, together with premonoidal categories and functors, they yield a 2-category.
We will denote the 2-category of small premonoidal categories, strict premonoidal
functors, and premonoidal natural transformations by Premons.
To see why the forgetful functor U :Premons →Cat does not present the former as

being of the form (S; E)-Alg for algebraic structure on Cat, we appeal to Theorem 7:
if it did, then it would be the forgetful functor from a category of algebras T -Alg to
Cat. So it would have equalisers given as in Cat. However, every monoid may be
seen as a one object premonoidal category. So consider

Example 21. Let {a; b}∗ be the free (noncommutative) monoid on two elements, and
consider the two maps from {a; b}∗ to itself given by the identity map and by the map
sending a to itself and b to the unit. These are both strict premonoidal functors. Their
equaliser in Cat is given by {a}∗, the free monoid on the element a. However, the
centre of {a}∗ is itself, as every element of {a}∗ commutes with every other element.
But the inclusion of {a}∗ into {a; b}∗ does not preserve centrality, as the centre of
{a; b}∗ is merely the unit. Hence, the inclusion is not a strict premonoidal functor, and
hence the equalizer does not lift.

One might wonder whether the functor from Premoncats to Cat that sends a pre-
monoidal category to its centre may be monadic; but again, it is not: all monadic
functors are conservative, i.e., reKect isomorphisms, and this one is not, because a
strict premonoidal functor that restricts to an isomorphism between centres need not
be an isomorphism, as for instance in the second map in Example 21.
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So it seems impossible to treat premonoidal structure as algebraic structure on Cat,
and we need something more subtle to reconcile premonoidal structure with our usual
account of structured categories. As indicated earlier, we turn to algebraic structure on
[→;Set]-Cat and Subset-Cat to do so. That is the content of the next section.

5. Premonoidal categories as Subset-categories with algebraic structure

There is little di:erence between Subset-categories and [→;Set]-categories, and it is
not clear yet which provide the better setting for our analysis. Trivially, every Subset-
category is a [→;Set]-category, but not conversely. Two of our leading examples,
Examples 5 and 6, are Subset-categories, but Example 4 is not. Moggi *rst opted for
something equivalent to a special case of Subset-categories in de*ning a computational
model (which he de*ned to be a monad satisfying the mono requirement), and later
moved towards [→;Set]-categories, which provide the models for his computational
lambda calculus [10]. In terms of category theory, the latter are a little more general
and abstractly a little more natural; but the former are a little easier to handle concretely.
The results we present here hold for both, with essentially the same proofs. So we will
present them only for [→;Set]-categories to avoid clutter.
In order to obtain a coherence result for premonoidal categories, one needed to assert

that all structural isomorphisms were central. Then in order for small premonoidal
categories and premonoidal functors to form a category, one needed to assert that
premonoidal functors send central maps to central maps. So this gives us a hint that we
may be better not to attempt to treat a premonoidal category as a single category with
algebraic structure, but rather to consider a category, together with another category
and an identity on objects functor between them, and consider algebraic structure on
that. To give a pair of categories and an identity on objects functor between them is
precisely to give a [→;Set]-category. Thus we are led to consider [→;Set]-categories
with algebraic structure.
When one does that, everything falls into place remarkably well. For instance, re-

call from Section 2 that to give a [→;Set]-functor is to give a commutative square
of functors, and that is the condition required of a premonoidal functor with respect
to its centre. Moreover, to give a [→;Set]-natural transformation is to give a natural
transformation between the functors between the codomain categories, but with compo-
nents in the domain category, and that condition corresponds to that of central natural
transformations. In fact, we have

Theorem 22. There is algebraic structure on [→;Set]-Cat for which an algebra is
a small premonoidal category D together with a monoidal category C and a strict
premonoidal identity on objects functor j :C→D.

Proof. Let → denote the [→;Set]-category with two objects, with one arrow from the
*rst to the second in the codomain category, and with the domain category discrete.
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Let →c denote the [→;Set]-category with two objects and an arrow from one to the
other in the codomain category and the domain category. Let 1 denote the discrete
[→;Set]-category with one object.
Let j :C→D be an arbitrary small [→;Set]-category. Then the category [→;Set]

-Cat(1; j) is isomorphic to C. Also, an object of the category [→;Set]-Cat(→ ; j) is
an arrow of D, and an arrow is a pair of arrows in C that together with the domain
and codomain, form a commutative square in D. The category [→;Set]-Cat(→c; j) is
the full subcategory of [→;Set]-Cat(→ ; j) given by the arrows of C.

So if we put

• S(1 + → ) =→,
• S(→ + 1) =→, and
• S(c) = 0 for all other c,

then an S-algebra would consist of a [→;Set]-category j :C→D, together with the
data for functors hx :D→D and kx :D→D for each object x, with a little more data
and naturality conditions that may be used force each map in C to be sent by j to a
central map. One can extend S by operations and equations to force the above data
to give D the structure of a binoidal category: one needs to ensure that the object
functions of the two functors are well de*ned and agree as required by the binoidal
de*nition, and that composition and identities are preserved. In doing so, J :C→D is
forced to factor through Z(D). Then one can routinely add operations and equations
to give the coherent structural isomorphisms a, l, and r, making D premonoidal.

By Theorem 22, the 2-category given by

• an object is a small premonoidal category D together with a monoidal category C
and a strict premonoidal identity on objects functor j :C→D,

• an arrow is commutative square in Cat that strictly respects the tensor product and
structural isomorphisms,

• a 2-cell is a natural transformation between the functors between the codomain
categories, with components in the domain category, strictly respecting the tensor
product and the structural isomorphisms.

[→; Set]-Cat. We denote this 2-category by [→; Set]-Premons and call it the 2-category
of premonoidal [→; Set]-categories and strict premonoidal [→; Set]-functors. Note that
an arrow need not be a strict premonoidal functor in general, as we do not assert that
the functor preserves centrality: we merely assert that it respects the domain category
structure. So if there is a central map of the domain [→; Set]-category that is not in
the image of the domain category, we do not assert that it need be sent to a central
map. However, it is routine to verify that by forcing the domain category to be the
centre, we do have

Proposition 23. The 2-category of strict premonoidal categories; Premons; embeds
fully into [→; Set]-Premons.
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One can account for symmetry in this setting similarly. Moreover, as mentioned in
Section 2, one can extend any algebraic structure on Cat to algebraic structure on
[→; Set]-Cat: you just apply a diagonal to the ordinary structured category to obtain a
corresponding structured [→; Set]-category.
These results suggest that one might consider [→; Set]-categories as worthy of sub-

stantial investigation as a way of organizing many of the structures involved with se-
mantics of computation. Since [→; Set] is a locally *nitely presentable cartesian closed
category, one immediately may use the results of enriched category theory. For instance,
[→; Set] may itself be treated as a [→; Set]-category, and plays much the same role as
that of Set in ordinary category theory, so one can speak of presheaves, free cocomple-
tions, etcetera. Moreover, [→; Set]-Cat is a locally *nitely presentable 2-category, so
one immediately has access to the whole body of literature about 2-monads, as outlined
in [12], and in particular the treatment of functors that preserve structure only up to
coherent isomorphism, as in [2]. In particular, this gives us the lax and strong notions
of structure preservation for algebraic structure, and they agree, modulo the embedding,
with the de*nitions of premonoidal functor and strong premonoidal functor.
More speci*c to our concerns here, [→; Set]-Cat may be treated as an ordinary

category rather than a 2-category, and one may consider algebraic structure on it as an
ordinary category. If we do that, then it follows from Example 9 that we have

Example 24. The category of small [→; Set]-categories j :C→D for which C has
(strictly associative) *nite products, D is (strict) symmetric monoidal, and j is strict
symmetric monoidal, is given by algebraic structure on [→; Set]-Cat. For the non-
strict case, the proof is given by extending that of Theorem 22: take the structure for
Theorem 22, extend the de*nition of S to provide central diagonal and terminal maps
for each object and a central symmetry map for each pair of objects, then add equations
for the coherence, and add more equations to make D monoidal rather than premonoidal
and for all the necessary naturality (cf. [8]). For the strict case, the algebraic structure
required for a strict version of Theorem 22 is considerably simpli*ed, just as algebraic
structure for strict monoidal categories is simple relative to that for monoidal categories
[8]. If one consistently accounts for that, then the proof again extends routinely.

So this accounts for all the type structure in the de*nition of elementary control
structures. Since Example 5 is an example of a speci*c category rather than an example
of a class of categories with structure, we cannot make a similar statement about it.
But we can extend Example 6 to yield

Example 25. The category of small premonoidal [→; Set]-categories j :C→D together
with an endofunctor ¬ :Dop→C satisfying all the axioms of ⊗¬-categories except for
the demand that D comprise all the central maps, is given by algebraic structure on
[→; Set]-Cat. A proof of this again extends that of Theorem 22. Extend S to provide
the data for the endofunctor ¬ :Dop→C, then add equations for functoriality and for
all the axioms, all of which are equational in the precise sense of this section.
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6. Closed premonoidal categories

We now seek an account of closedness for a premonoidal [→; Set]-category. There
are two de*nitions that immediately generalise the de*nition of closed monoidal cate-
gory. One of them just extends the usual bijection in the de*nition of monoidal category
to a premonoidal category, with appropriate coherence. We do not yet see its value
in modelling higher order structure, so do not investigate it here. The other is equiv-
alent to that used by Moggi in [10], generalising the partial exponential one uses in
modelling partial functions. We investigate that in this section.

De�nition 26. A premonoidal [→; Set]-category j :C→D is closed if for every object
x, the functor j(−)⊗ x :C→D has a right adjoint.

Proposition 27. Let j :C→D be a premonoidal [→; Set]-category such that C is
closed monoidal. Then j is closed if and only if j has a right adjoint.

Proof. Assuming j is closed, take x to be the unit to see that j has a right adjoint.
For the converse, compose the right adjoint with the closed structure of C.

For a class of examples of closed symmetric premonoidal [→; Set]-categories, we
appeal to the main result of [16]. Given a monad T on a category C, we denote the
Kleisli category by KT . Observe that the canonical functor from C to KT is the identity
on objects.
Extending our leading examples,

Example 28. In general, an elementary control structure does not yield a closed pre-
monoidal category. However, those elementary control structures that are closed form
a natural class to analyse, as has been done in Hasegawa’s thesis [5].

Example 29. The inclusion of CBVt into CBV is a closed symmetric premonoidal
category.

Example 30. It follows from the axioms for a ⊗¬-category that the inclusion of the
centre of a ⊗¬-category into the whole of the ⊗¬-category is a closed symmetric
premonoidal category.

Returning to the general development of this section,

Theorem 31. Let C be a symmetric monoidal category with T a monad on it. Then;
to give a strength for T is to give a symmetric premonoidal structure on KT that
makes j a strict symmetric premonoidal functor.

Proposition 27 and Theorem 31 together imply
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Corollary 32. Let C be a closed symmetric monoidal category. Then; to give a closed
symmetric premonoidal [→; Set]-category with domain C is to give a strong monad
on C.

Considering Examples 29 and 30 in light of Corollary 32, one might ask whether
one really needs the notions developed here, or whether one could use strong monads
instead. However, in the literature [20], a ⊗¬-category was de4ned to be a premonoidal
category with extra structure, and its use directly reKected its de*nition, with the pre-
monoidal structure used to model contexts in a call-by-value ;-calculus with control.
From the extra structure, one can deduce that the underlying premonoidal category of
a ⊗¬-category is closed. But that does not imply that one can reasonably rede*ne the
notion of ⊗¬-category in terms of strong monads: you still have to *nd a way to
express the full strength of the extra structure and its axioms, and those axioms refer
directly to the premonoidal structure, and one must do this without redundancy. It is
not clear that that is possible, and even if it were, it would not be in the spirit of
providing direct models of languages with control as Thielecke sought [20].
The main result of this section shows how to generate and explicitly describe a

closed premonoidal [→; Set]-category from an arbitrary small premonoidal [→; Set]-
category. This generalises the result [4] and explicit construction of Brian Day, that
shows that every small monoidal category embeds into a closed monoidal category.
The result and proof here extends without any diIculty to a version for symmetric
premonoidal Subset-categories too.

Theorem 33. Every premonoidal [→; Set]-category fully embeds into a closed pre-
monoidal [→; Set]-category.

Proof. Take the free cocompletions of C and D, yielding [Cop; Set]→ [Dop; Set] with a
right adjoint. We will de*ne C′ to be [Cop; Set] and de*ne D′ and j′ by the (bijective
on objects, fully faithful) factorization of this functor. Then, j′ automatically has a
right adjoint, and C′ is automatically closed monoidal. The only remaining problem is
to get a premonoidal structure on D′ so that j′ factors through Z(D).

Given any object x of D, then by the universal property, x⊗− :C→D lifts to C′,
and has a right adjoint there. Moreover, for any arrow g : x→ x′ in D, g yields a
natural transformation g⊗− : x⊗−=¿x′ ⊗− :C→D, and hence by universality (the
two-dimensional property), a natural transformation g⊗− on C′. This construction of
a natural transformation is functorial, yielding −⊗F :D→ [Dop; Set] for each F in C′.
By universality again, this lifts to [Dop; Set] and hence to D′. This de*nes −⊗F on
D′ for any object F of D′. It is by de*nition a functor. By symmetry, we also have
F ⊗−. It follows from the universal constructions that it extends the tensor on C′. It
remains to show that j′ factors through Z(D′).
It suIces to show that for any f :F →F ′ in C′; f⊗− is natural on D′. To do

that, by the universal property, it suIces to see that f⊗− is natural on D, but that
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holds by de*nition of F ⊗ g for any g in D (the dual is given above) as it is de*ned
to be natural with respect to F .

Note that the construction gives us a little more than in the statement of the theorem:
our construction has C′ closed monoidal.
Corollary 32, Theorem 33, and De*nition 3 suggest a new structure to consider

to model notions of computation: a premonoidal [→; Set]-category j :C→D with C
cartesian, together with, for a given set of controls K with arity information ((m1; n1);
: : : ; (mr; nr)) �→ (m; n), a corresponding set of natural transformations D(j(−)×m1; n1)
× · · · ×D(j(−)×mr; nr)→D(j(−)×m; n).
Using naturality, it is routine to extend Theorem 33 to conclude

Corollary 34. Every structure as above fully embeds into a closed premonoidal [→;
Set]-category j′ :C′ →D′ with C′ cartesian; together with; for each control K with ar-
ity information ((m1; n1); : : : ; (mr; nr)) �→ (m; n); an arrow in C′ of the form (m1⇒n1)×
· · · × (mr ⇒ nr)→ (m⇒ n); where m⇒ n is de4ned by the exponential of j′; i.e.;
[m; R(n)]; where R is the right adjoint of j′.

Proof. That C′ is cartesian closed follows from its construction in Theorem 33. For the
controls, D is a full subcategory of D′, so the control natural transformations may be re-
expressed as natural transformations of the form D′(j′y(−)×m1; n1)× · · · ×D′(j′y(−)
×mr; nr)→D′(j′y(−)×m; n), where y is the Yoneda embedding of C into C′ = [Cop;
Set]. But j′ has a right adjoint R, and representable functors preserve *nite products, so
this in turn is equivalent to giving a natural transformation of the form C′(y(−); (m1 ⇒
R(n1))× · · · ×(mr ⇒R(nr)))→C′(y(−); m⇒ n), which can be proved equivalent, ei-
ther by calculation using the Yoneda lemma or by reference to the fact that C is dense
in C′, to giving an arrow as stated.

There are plenty of examples of these structures. The structures of Corollary 34
amount to strong monads together with some operators, giving operator algebras. Cate-
gories such as Set and the category of !-cpo’s provide commonly used base categories,
and premonoidal categories arise in nondeterminism for example, for instance in [1],
where the operators are particularly vivid.
Recalling the work of the previous section, we note

Example 35. The category of small closed premonoidal categories is given by unen-
riched algebraic structure on [→; Set]-Cat. For a proof, consider the proof that the
category of small monoidal closed categories is given by algebraic structure on Cat,
and modify the proof for closedness to premonoidal categories by extending the con-
struction of Theorem 22.

Finally in this section, we mention that if C is closed symmetric monoidal, in par-
ticular, cartesian closed, to give a strength to a monad on C is to give an enrichment;
but typically, as in Poset and the category of !-cpo’s with least element, there is at
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most one enrichment of any monad. So there is often at most one closed symmetric
premonoidal structure on a [→; Set]-category that extends the structure of the domain
category. So proving that a category has one closed symmetric premonoidal structure
is a strong statement: there may well be no others.

7. Applications and future work

The work herein is part of a larger project to give a modular account of denotational
semantics. It was proposed that strong monads would provide such an account, but it
was shown in [14] that there must be a more primitive structure that gives rise to
monads. The proposal in [14] was to consider a category C with algebraic structure,
precisely as de*ned herein, together with a construction from that algebraic structure
of another category D and an identity on objects functor j :C→D, i.e., a [→; Set]-
category. That was supported by a theorem showing when one such structure was
modular with respect to another.
There is more work to do in that direction. The notion of algebraic structure was

made precise in [14], as was the idea of how to lift one structure along another; but it
was not made precise what constructions of [→; Set]-categories were allowable. More-
over, the analysis was done for structure on Cat, so excluded premonoidal structure
as arises for instance in modelling continuations or state. So we should like to com-
bine the work of that paper with this one in order to provide modular denotational
semantics.
Moreover, the results of [14] were restricted to covariant structures, thus excluding

higher order structure. This paper gives a de*nitive notion of closed premonoidal cat-
egory, so provides a basis on which to analyse closed structures and to incorporate
them into the proposed modular semantics.
The structures developed herein, namely Subset-categories and [→; Set]-categories

with algebraic structure, form part of that structure, addressing the question of how to
model contexts. These structures have already been used in modelling continuations.
There is current work by Alan Je:rey using them for circuit design, and by Carsten
Fuhrman, using them to model other controls, and by Paul Levy as a semantic en-
vironment in which to study the CPS-calculus [20]. The results here give a criterion
for deciding what added structures are mathematically respectable in addressing the
particular concerns these researchers face.
Finally, in [17], [→; Set]-categories have been characterized in terms of *brations

with structure, and that characterization has been and continues to be used to give
further analysis of continuations, shedding light on the complex axioms associated
with the de*nition of ⊗¬-category, speci*cally a parametric aspect of the axioms.
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