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a b s t r a c t

This work is concerned with the computation of two- and four-sided lid-driven square
cavity flows and also two-sided rectangular cavity flows with parallel wall motion by
the Lattice Boltzmann Method (LBM) to obtain multiple stable solutions. In the two-sided
square cavity two of the adjacent walls move with equal velocity and in the four-sided
square cavity all the four walls move in such a way that parallel walls move in opposite
directions with the same velocity; in the two-sided rectangular lid-driven cavity flow the
longer facingwallsmove in the same directionwith equal velocity. Conventional numerical
solutions show that the symmetric solutions exist for all Reynolds numbers for all the
geometries, whereas multiplicity of stable states exist only above certain critical Reynolds
numbers. Here we demonstrate that Lattice Boltzmann method can be effectively used to
capture multiple steady solutions for all the aforesaid geometries. The strategy employed
to obtain these solutions is also described.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The lid-driven cavity flow is not only technically important but also of great scientific interest because it displays
almost all fluid mechanical phenomena in the simplest of geometrical settings. The classical cavity problem has attracted
considerable attention because its flow configuration is relevant to many industrial applications and academic research
[1–3]. It is known that cavity flows arise in applications such as short-dwell coating, drug-reducing riblets in aerodynamics,
removal of species from structured surfaces, mixing and flow in drying devices. A number of experimental and numerical
studies have been conducted to investigate the flow field of a single-sided lid-driven cavity flow in the last several
decades. The features of the single-sided lid-driven cavity flow consist of a large primary eddy and secondary corner
eddies. Several flow characteristics like flow instability, corner eddies and transition to turbulence can be observed in this
system. Conventional numerical solutions reveal that in a single-sided cavity flow beyond the critical Reynolds number,
Hopf bifurcation takes place with the steady-flow solution becoming unstable. The single-sided lid-driven cavity flow
problem was extended to two-sided lid-driven cavity by Kuhlmann and other investigators [4–9] and they have done
several experiments on the two-sided lid-driven cavity with various spanwise aspect ratios. They numerically simulated
the rectangular cavity flow for parallel and antiparallel motion of two of the walls and showed that a plethora of vortex
patterns can be generated with different aspect ratios and directions of motion of the walls.

Many nonlinear systems give multiple steady solutions even though governing equations and boundary conditions are
the same. The concept of uniqueness of numerical solution associated with the so-called well-posed nature of the problem
is not applicable here as nonuniqueness of solution is an inherent property of these types of problems. An analogy can be
drawnwith the algebraic quadratic equation that has two solutions. As the governing equations for fluid floware nonlinear in
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nature, the possibility of theirmultiple solutions exists. In the case of lid-driven cavity flowsmultiple solutions are generally
observed only if the walls move in pairs. In the case of parallel motion of two facing walls, multiple solutions are seen to
exist only in cavities with aspect ratios other than one, i.e. in rectangular cavities. However, if the nonfacing walls of the
cavity move, multiple steady solutions are observed even in square cavities [10].

Albensoeder et al. [6] were among the first to investigate the nonlinear regime and findmultiple two-dimensional steady
states in rectangular two-sided lid-driven cavities. They have found five and seven flow states in parallel and antiparallel
motion respectively. Luo and Yang [11] numerically investigated flow bifurcation with and without heat transfer in a two-
sided lid-driven rectangular cavity. More recently, the multiplicity of flow states induced by the motion of two-sided non-
facing lid-driven square cavity flow and four-sided lid-driven cavity flow have been investigated by Wabha [10]. He found
the critical Reynolds numbers of 1073 for the two-sided non-facing lid-driven square cavity and 129 for the four-sided
lid-driven square cavity, beyond which it is possible for multiple steady states to exist.

So far conventional methods like Finite Volume Method (FVM), Finite Difference Method (FDM) etc. are being used to
capture the multiple solutions for cavity flows. It is known that the Lattice Boltzmann Method is an alternative way of fluid
simulation to conventional numericalmethods for theNavier–Stokes equation. In LBM the nonlinearity of the Navier–Stokes
equations is hidden in the quadratic velocity terms of the equilibrium distribution function. Therefore, LBM appears to have
the ability to capturemultiple solutions. However, so far no investigation is seen that uses LBM to capturemultiple solutions.
The present work is an attempt in that direction. This paper uses LBM to obtain multiple steady solutions in two- and four-
sided lid-driven square cavities that involvemovement of the nonfacingwalls. Generally, to obtainmultiple steady solutions
through conventional techniques one uses an iterative solution procedure with different initial conditions. Here we also
describe what strategy we employ to obtain multiple steady states through LBM.

This paper is organized in five sections. Section 2 describes LBMwith single-relaxation-time scheme, associated boundary
conditions and the two-dimensional nine-velocity lattice model. In Section 3 the credibility of the present LBM code is
established through a comparison exercise with the results of two other works. Section 4 gives the strategy employed to
capture the multiple-steady solutions and the results and discussion. Concluding remarks are made in Section 5.

2. Lattice Boltzmann Method and boundary conditions

In the last one and a half decade or so LBM has emerged as a new and effective approach of computational fluid dynamics
(CFD) and it has achieved considerable success in simulating fluid flows and heat transfer [12–19]. The LBGK model with
single relaxation time, which is a commonly used lattice Boltzmann method, is given by [15]

fi(x + ci1t, t +1t)− fi(x, t) = −
1
τ


fi(x, t)− f (0)i (x, t)


(1)

where fi is the particle distribution function, f (0)i (x, t) is the equilibriumdistribution function at x, t , ci is the particle velocity
along the ith direction and τ is the time relaxation parameter. TheD2Q9 square lattice used here has nine discrete velocities.
A square lattice is used, eachnode ofwhich has eight neighbours connected by eight links as shown in Fig. 1. Particles residing
on a node move to their nearest neighbours along these links in unit time step. The particle velocities are defined as

ci = 0, i = 0
ci = (cos(π/4(i − 1)), sin(π/4(i − 1))), i = 1, 2, 3, 4 (2)

ci =
√
2(cos(π/4(i − 1)), sin(π/4(i − 1))), i = 5, 6, 7, 8.

The macroscopic quantities such as density ρ and momentum density ρu are obtained as velocity moments of the
distribution function fi as follows:

ρ =

N−
i=0

fi, (3)

ρu =

N−
i=0

fici (4)

where N = 8. In the D2Q9 square lattice, a suitable equilibrium distribution function that has been proposed is [15]

f (0)i = wiρ

[
1 −

3
2
u2

]
, i = 0

f (0)i = wiρ

1 + 3(ci.u)+ 4.5(ci.u)2 − 1.5u2 , i = 1, 2, 3, 4 (5)

f (0)i = wiρ

1 + 3(ci.u)+ 4.5(ci.u)2 − 1.5u2 , i = 5, 6, 7, 8
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Fig. 1. Two-dimensional nine-velocity square lattice (D2Q9)model.

where the lattice weights are given by w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36. The relaxation time which fixes the rate
of approach to equilibrium is related to the viscosity by [15]

τ =
6υ + 1

2
(6)

where υ is the kinematic viscosity measured in lattice units. It is seen that τ = 0.5 is the critical value for ensuring a non-
negative kinematic viscosity. Numerical instability can occur for a τ close to this critical value. This situation takes place at
high Reynolds numbers. In this work Reynolds numbers up to 2000 in a lattice size of 201 × 201 are investigated.

Boundary conditions play a crucial role in LBM simulations. In this work bounce-back and equilibrium boundary
condition [15] are applied on the stationary and moving walls respectively. In the bounce-back scheme, the particle
distribution function at thewall lattice node is assigned to be the particle distribution function of its opposite direction. At the
lattice nodes on the moving walls, flow-variables are re-set to their pre-assumed values at the end of every streaming-step.
Initially, the equilibriumdistribution function that corresponds to the flow-variables is assumedas theunknowndistribution
function for all nodes at t = 0. A uniform fluid density ρ = 1.0 is imposed initially. The solution procedure of the above
LBM at each time step comprise streaming and collision steps, application of boundary conditions, calculation of particle
distribution function followed by calculation of macroscopic variables.

3. Establishing the credibility of the LBM code

It may be noted that for the single lid-driven cavity some experimental, numerical and theoretical results exist, by
reproducing which with LBM an insight about the appropriateness of the present boundary conditions can be gained. This
knowledge is then utilizedwhen applying the LBM to compute the two-sided and four-sided cavity flows. To lend credibility
to the present LBM code its results for the single lid-driven cavity flow is first compared with those of two other works. Both
of these numerically solves the two-dimensional Navier–Stokes equations in the stream function-vorticity form given by

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω (7)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1
Re


∂2ω

∂x2
+
∂2ω

∂y2


(8)

where ψ stands for stream function and ω stands for vorticity. In the first code, based on finite difference and developed
by the present authors, all space derivatives are centrally differenced and ADI method is used for time integration to the
steady state. The second work used for inter-code comparison is that of Ghia et al. [2]. To validate the present numerical
method, the LBM code is used to compute the single lid-driven flow in a square cavity on a 161 × 161 lattice. A lid velocity
of U = 0.1 is considered in this work. Fig. 2 depicts the streamline pattern at Re = 1000 obtained through LBM, which
closely resembles those given by Ghia et al. [2] and by our FDM-based ADI code. Fig. 3 shows the comparison of steady-state
u-velocity profile along a vertical line and v-velocity profile along a horizontal line passing through the geometric centre
of the cavity at Re = 1000. It is observed that the agreement between the present LBM results and those of the two works
used for comparison is excellent. Thus the present LBM code stands validated.
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Fig. 2. Streamline pattern for the single-sided lid-driven cavity flow at Re = 1000.
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Fig. 3. Code validation: u—velocity along vertical centreline and v—velocity along horizontal centreline for single lid-driven square-cavity (Re = 1000).

4. Results and discussions

As already mentioned, in this work the multiple steady-flow states in two-sided non-facing lid-driven square cavity and
four-sided lid-driven square cavity are first numerically captured using the Lattice Boltzmann Method. Unlike non-facing
lid-driven cavities, for the parallel motion of two facingwalls, the square cavity always gives a unique solution. However, for
rectangular cavities with parallel motion of two walls multiple stable solutions exist [6]. Thus the present study is extended
to two-dimensional rectangular cavity with parallel wall motion as well to capture multiple steady solutions. The method
used to obtain multiple steady solutions in the LBM framework is also described.

4.1. Strategy used to obtain multiple steady solutions through LBM

In the conventional techniques like finite volumemethod one uses time-marching or other iterative procedures to obtain
steady-flow solutions. Multiple solutions are obtained starting with different initial conditions that may be cleverly chosen
to suit a certain type of final solution. Sometimes the choice of the sweeping direction for line-implicit iterative solver also
determines the type of solution captured. In the Lattice Boltzmann Method, however, one deals with the time-evolution of
the particle distribution functions and their relation with the macroscopic flow parameters is not immediately apparent. To
capturemultiple solutions in the cavity flow for a certain Reynolds number by Lattice BoltzmannMethod, lid velocityU may
be changed remaining within the incompressible Mach number limit. For the same Reynolds number, altering the value of
the lid velocity, results in a change in the value of kinematic viscosity (see Eq. (6)) and hence a change in the relaxation
time. All the multiple solutions given in the next subsections for several Reynolds numbers are obtained using various lid



D. Arumuga Perumal, A.K. Dass / Computers and Mathematics with Applications 61 (2011) 3711–3721 3715

Table 1
Locations of the vortex centres for two-sided lid-driven square cavity flow. The letters LPV, RPV, LSV and RSV denote Left Primary Vortex, Right Primary
Vortex, Left Secondary Vortex and Right Secondary Vortex respectively.

Re LPV RPV LSV RSV
x y x y x y x y

100 0.190 0.321 0.680 0.810 0.813 0.066 0.934 0.186
500 0.250 0.320 0.680 0.750 0.657 0.160 0.840 0.335

1000 0.252 0.321 0.675 0.744 0.658 0.199 0.780 0.343
1071 0.253 0.326 0.675 0.744 0.655 0.199 0.800 0.343

Table 2
Locations of the vortex centres for two-sided square cavity flow at Re = 2000.

Solution LPV RPV LSV RSV
x y x y x y x y

Symmetry 0.254 0.326 0.675 0.746 0.655 0.199 0.799 0.344
Asymmetric (1) 0.353 0.426 0.781 0.827 0.862 0.421 0.895 0.583
Asymmetric (2) 0.178 0.226 0.575 0.653 0.421 0.106 0.583 0.143

u = U, v = 0

Right Primary
Vortex (RPV)

Right Secondary
Vortex (RSV)

Left
Secondary
Vortex (LSV)

Left Primary
Vortex (LPV)

u = 0, v = 0

u 
=

 0
, v

 =
 U

u 
=

 0
, v

 =
 0

Fig. 4. Geometry and boundary conditions of the two-sided lid-driven square cavity flow.

velocities, and hence various relaxation times. Excellent agreement is obtained between the LBM and previous studies based
on continuum approach.

4.2. Two-sided square cavity flow

The geometry and boundary conditions of the two-sided non-facing lid-driven square cavity flow is shown in Fig. 4. In
this problem, while the upper cavity wall moves towards the right, the left cavity wall moves in the downward direction
with an equal velocity. Fig. 5 depicts the streamlines of predicted flow patterns on a lattice size of 201 × 201 at Reynolds
numbers 100, 500, 1000 and 1071 for the two-sided non-facing lid-driven square cavity. The solution demonstrates that
symmetric solutions exist at all Reynolds numbers. The streamlines are diagonally symmetric for all the Reynolds numbers.
The symmetric state, where two separate primary vortices are formed apparently adjacent to each of the moving walls. It is
evident that for these relatively low Reynolds numbers two primary and two secondary vortices are formed. As the Reynolds
number increases the secondary vortices grow bigger. Additional asymmetric flow patterns can be obtained above the
critical Reynolds number of 1073 [10]. Herewe choose a post-critical Reynolds number of 2000 to demonstrate the existence
of multiple steady solutions. Fig. 6 depicts the streamline patterns for the two-sided non-facing lid-driven square cavity
flow at Re = 2000. It is known that when the inertial effects become important at higher Reynolds numbers additional flow
states arise in pairs that break the respective symmetry spontaneously. One symmetric state and two asymmetric states are
identified in this problem. Beyond the critical Reynolds number at least one solution satisfies the symmetry geometry. These
symmetric and asymmetric flow patterns agree well with those given byWabha [10]. In Table 1 we present the locations of
the left-primary, right-primary, left-secondary and right-secondary vortex centres for the pre-critical Re = 100, 500, 1000
and 1071. From this table and also from Fig. 5 all the vortex centres are seen to move towards the symmetry diagonal as
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(a) Re = 100. (b) Re = 500.

(c) Re = 1000. (d) Re = 1071.

Fig. 5. Streamline pattern for two-sided lid-driven cavity flow at (a) Re = 100 (b) Re = 500 (c) Re = 1000 and (d) Re = 1071 on a 201 × 201 lattice.

Reynolds number increases. In Table 2 is presented the locations of the vortex centres for the symmetric and asymmetric
solutions for the post-critical Re = 2000.

4.3. Four-sided square cavity flow

The geometry and boundary conditions of the four-sided lid-driven square cavity flow is shown in Fig. 7. In this problem,
the upper cavity wall moves towards the right, the lower wall moves towards the left, while the right wall moves upwards,
the left wall moves downwards with an equal velocity. Fig. 8 shows the streamlines of the predicted flow patterns on a
lattice size of 161× 161 for various Reynolds numbers ranging from low to critical (Re = 10, 100 and 127). The streamlines
are diagonally symmetric with respect to both the cavity diagonals for all these pre-critical Reynolds numbers. Additional
asymmetric flow patterns can be obtained above the critical Reynolds number of 129 [10]. To demonstrate the existence
of multiple steady solutions a post-critical Reynolds number of 300 is chosen. Fig. 9 shows the streamline patterns for the
four-sided lid-driven cavity flow at Re = 300. It is seen that when the inertial effects become important additional flow
states arise in pairs that break the respective symmetry spontaneously. One symmetric state and two asymmetric states are
identified for the four-sided lid-driven cavity flow at this Reynolds number. Beyond the critical Reynolds number at least
one solution satisfies the symmetry geometry. Our symmetric and asymmetric flow patterns compare well with those given
for the same problem by Wabha [10]. In Table 3, we present the locations of the left, right, top and bottom vortex centres
(Fig. 8) for Reynolds numbers 10, 100 and 127. As the Reynolds number increases the vortex centres are seen coming closer
to the diagonal joining the leading edges of the moving plates. The locations of the vortex centres for the symmetry solution
at the post-critical Re = 300 (Fig. 9(a)) for the left, right, top and bottom vortices are (0.196, 0.481), (0.807, 0.532), (0.527,
0.806) and (0.481, 0.196) respectively. For one of the asymmetric solutions (Fig. 9(b)) the locations for the left, centre and
right vortices are (0.123, 0.589), (0.498, 0.497) and (0.876, 0.409) respectively.
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b

c

a

Fig. 6. Multiplicity of flow states for the two-sided non-facing lid-driven cavity flow at Re = 2000 on a 201 × 201 lattice. Shown are the streamline
patterns of (a) symmetric solution, (b) asymmetric solution (1) and (c) asymmetric solution (2).

Table 3
Locations of the vortex centres for four-sided lid-driven square cavity flow. The letters LPV, RPV, TPV and BPV denote Left Primary Vortex, Right Primary
Vortex, Top Primary Vortex and Bottom Primary Vortex respectively.

Re LPV RPV TPV BPV
x y x y x y x y

10 0.150 0.490 0.849 0.510 0.510 0.850 0.490 0.149
100 0.160 0.450 0.840 0.550 0.550 0.840 0.450 0.160
127 0.170 0.450 0.830 0.550 0.548 0.830 0.449 0.168

4.4. Two-sided lid-driven rectangular cavity flow

The geometry and boundary conditions of the two-sided rectangular cavity with parallel wall motion is shown in Fig. 10.
In this problem, both the left and right walls moves in the upward direction with an equal velocity. The flow geometry
suggests that there is a flow pattern symmetric about the vertical centreline. This symmetric state exists for all Reynolds
numbers. Multiple stable solutions, however, exist only for the higher values of Reynolds number. For the present flow
configuration we demonstrate the existence of multiple solutions for a cavity aspect ratio of 0.75 and a Reynolds number
of 600. Fig. 11 shows the multiple streamline patterns obtained by LBM using a 224 × 256 lattice structure. For this flow
geometry fivemultiple stable solutions are obtained. Fig. 11(a) shows theweakly-stable symmetric solution, Fig. 11(b) shows
one of the twoweakly-stable asymmetric solutions and Fig. 11(c) showsone of the two strongly-stable asymmetric solutions.
These results compare very well with those given for the same problem by Albensoeder et al. [6]. The locations of the vortex
centres are not mentioned here as they keep changing with the cavity aspect ratio.

5. Conclusions

A single-relaxation-time model is used to carry out LBM computations to obtain multiple steady solutions for two- and
four-sided lid-driven square cavities and two-sided rectangular cavities. To establish the credibility of the developed code
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Fig. 7. Geometry and boundary conditions of the four-sided lid-driven square cavity flow.

(a) Re = 10. (b) Re = 100.

(c) Re = 127.

Fig. 8. Streamline patterns for the four-sided square cavity flow at (a) Re = 10 (b) Re = 100 and (c) Re = 127 on a 161 × 161 lattice.

it is first used to compute the flow in a standard two-dimensional single lid-driven square cavity to demonstrate that the
results closely agree with the results generated with a finite-difference-based code hand highly reliable existing results.
After having thus gained confidence in the code it is then used to compute the flow in the two- and four-sided configurations
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a b

c

Fig. 9. Multiplicity of flow states for the four-sided square cavity flow at Re = 300 on a 161 × 161 lattice. Shown are the streamline patterns of
(a) symmetric solution, (b) asymmetric solution (1) and (c) asymmetric solution (2).
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Fig. 10. Geometry and boundary conditions of the two-sided rectangular cavity flow.

mentioned above. These three flow configurations are fraught with interesting flow features in that they exhibit multiple
steady solutions. The strategy used to obtain the multiple solutions for each of these geometries is necessarily different
from the ones used in continuum-based techniques and this strategy is also described. Close comparison with existing
results establish the validity of themultiple solutions. It may be recalled that nonlinear problems are known at times to give
multiple solutions and the traditional mathematical concept of well-posedness does not apply here. For the first time the
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a b

c

Fig. 11. Multiplicity of flow states for the two-sided rectangular cavity flow with parallel wall motion at Re = 600 (based on the shorter side) and
aspect ratio of 0.875 on a 224 × 256 lattice. Shown are the streamline patterns of (a) symmetric solution, (b) weakly-stable asymmetric solution and
(c) strongly-stable asymmetric solution.

ability and accuracy of the Lattice BoltzmannMethod to obtain solutions to this peculiar class of problems is demonstrated.
With this added ability it can be concluded that LBM, as an alternative to the continuum-based methods, holds very good
promise in computational fluid dynamics.
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