Results: The pEVR rate and ETVR rate (50.0%, 15/30; 90.0%, 27/30) of patients with genotype 1 in the coinfection group were significantly higher than those (16.0%, 4/25; 56.0%, 14/25) in the HCV mono-infection group (χ² = 6.971, P = 0.008; χ² = 8.307, P = 0.004). The relapse rate (55.6%, 15/27) of patients with genotype 1 in the coinfection group was significantly higher than that (21.4%, 3/14) in the HCV mono-infection group (44.0%, 11/25) (χ² = 0.090, P = 0.765). The reactivation rate of HBV DNA (33.3%, 9/27) with HCV SVR was significantly higher than that of patients without SVR (8.7%, 2/23) (χ² = 4.393, P = 0.036).

Conclusions: Compared with HCV-monoinfected patients, pEVR, ETVR and relapse rates of patients with genotype 1 in the coinfection group were high, while they shared similar SVR rates.

PP-096 Inhibition of the expression of CD147 by MicroRNA and influence on the biological activities of tumor in hepatic carcinoma cells

J. Tan1, M. Zhou1, A.-R. Hu1. *, Ningbo Infectious Diseases Hospital, Ningbo University School of Medicine, China

Objective: Gene CD147 is overexpressed in many kinds of carcinomas. It stimulates the surrounding fibroblasts of cancer cells to express matrix metalloproteinases and to induce invasive and metastatic activities of tumors. Our study was to test these biological activities after CD147 was down-regulated by microRNA in hepatitis carcinoma cells HepG2 and discuss the influences of this treatment.

Methods: The plasmids pSilencer 4.1-CMV neo/CD147 siRNA Sequence 1 and 2 (P < 0.05) were constructed and then they were stably transfected into hepatic carcinoma cells HepG2. The expression of CD147 was detected by RT-PCR and Western blotting. Afterwards, the method of MTT and Transwell were used to analyze the proliferation and invasion of tumor respectively. The experiment of nude mice was performed to observe the tumor growth.

Results: The expression of CD147 mRNA and protein could be inhibited by pSilencer 4.1-CMV neo/CD147 siRNA Sequence 1 and 2 (P < 0.05). Compared with the control group, the proliferation of the two groups was reduced 46.14 ± 2.62% vs 43.21 ± 3.42%, 51.13 ± 6.72% vs 51.15 ± 6.65% and 50.27 ± 3.06% vs 49.21 ± 2.13% (P < 0.05), respectively, at 24h, 48h and 72h; the ability of invasion was decreased 52.01 ± 1.42% and 53.16 ± 5.01% (P < 0.05), respectively. After cancer cells were transplanted into nude mice the tumor volume of siRNA groups were smaller than the controls (P < 0.01).

Conclusion: The expression of CD147 could be down-regulated effectively by siRNA plasmids and the invasion, proliferation and the ability of forming tumor could be inhibited evidently after this treatment in hepatic carcinoma cells HepG2.

PP-097 Screening of hepatocyte proteins binding with C-terminally truncated surface antigen middle protein of hepatitis B virus (MHBS) by yeast two-hybrid system

Z.Q. Li1 *, S. Zhang1, Y. Zhu1, J. Cheng2. 1261 Hospital of PLA, Beijing 100094, China, 2Institute of Infectious Diseases in Ditan hospital, Beijing 100011, China

Objective: To screen and clone the genes of hepatocyte protein interacting with hepatitis B virus (HBV) MHBS in hepatocytes by yeast two-hybrid system and to explore the effects of MHBS protein in the development of hepatocellular carcinoma (HCC).

Methods: The MHBS gene was amplified by polymerase chain reaction (PCR) method, and was cloned into pGEM-T vector. After the target region was sequenced, and the constructed yeast expression vector pGBK7-MHBS was transformed into yeast cells AH109 and the constructed plasmid was used to screen the MHBS gene. After the target region was sequenced, and the constructed yeast expression vector pGBK7-MHBS was transformed into yeast cells AH109, 66 clones grew in the selective SC/-trp-leu-his-ade medium, and only 52 clones passed through xα-gal activity detection and segregation analysis. Seven positive colonies that interacted with MHBS protein were obtained and sequenced; namely, two Homo sapiens ADP-ribosylation factor 1, cDNA clone of Fetal liver of Homo sapiens, Homo sapiens ALDOB gene, C3, Homo sapiens BAC clone, somatedin B.

Conclusion: Seven proteins is expressed that can interact with MHBS in hepatic carcinoma cells by yeast two-hybrid system. These results brought some new clues for studying the biological functions of MHBS protein.

PP-098 Screening of hepatocyte proteins binding with surface antigen middle protein of hepatitis B virus (MHBS) by yeast two-hybrid system

Z.Q. Li1, *, S. Zhang1, Y. Zhu1, J. Cheng2. 1261 Hospital of PLA, Beijing 100094, China, 2Institute of Infectious Diseases in Ditan hospital, Beijing 100011, China

Objective: The effect of MHBS protein is not clear. To screen and identify the proteins which interact with hepatitis B virus (HBV) MHBS protein in hepatocytes by yeast two-hybrid system and to explore the effects of MHBS protein in the development of hepatocellular carcinoma (HCC).

Methods: The MHBS gene was amplified by polymerase chain reaction (PCR) method, and was cloned into pGEM-T vector. After the target region was sequenced, and the constructed yeast expression vector pGBK7-MHBS was transformed into yeast cells AH109 and the constructed plasmid was used to screen the MHBS gene. After the target region was sequenced, and the constructed yeast expression vector pGBK7-MHBS was transformed into yeast cells AH109, 66 clones grew in the selective SC/-trp-leu-his-ade medium, and only 52 clones passed through xα-gal activity detection and segregation analysis. Seven positive colonies that interacted with MHBS protein were obtained and sequenced; namely, two Homo sapiens ADP-ribosylation factor 1, cDNA clone of Fetal liver of Homo sapiens, Homo sapiens ALDOB gene, C3, Homo sapiens BAC clone, somatedin B.

Conclusion: Seven proteins is expressed that can interact with MHBS in hepatic carcinoma cells by yeast two-hybrid system. These results brought some new clues for studying the biological functions of MHBS protein.