
ELSBVIER

DISCRETE
APPLIED

Discrete Applied Mathematics 54 (1994) 37-53

MATHEMATICS

A lower bound for tree resolution*

David J. McClurkin

ijepartment of C?omputer &ience, ihiversity of‘ .Toronto, Ybronto, Ontario, Canada, MSS IA4

Received 15 January 1991; revised 18 December 1992

Abstract

In this article, highly expanding degree-3 bipartite graphs are generated randomly. Every
graph gives rise to a contradictory set of clauses, and these particular graphs provide us with
a highly interconnected set of 3SAT clauses. If n is the number of nodes in each side of the graph,
then there are 3n variables and 8n clauses. We use this set to prove a lower bound for tree
resolution. The lower bound obtained is 2(2’3’“” where 3, z 0.3166. Letting N = 3n be the
number of variables, this bound is zz 2.070355N. This is contrasted with the best-known upper
bound for 3SAT, from the algorithm in Monien and Speckenmeyer (1985), which is z 2.6”43N
where again N is the number of variables. Exponential lower bounds have been proved for
stronger forms of resolution, but with significantly smaller constants.

1. Introduction

The problem of determining whether a given set of propositional logic clauses is

satisfiable (SAT) is an important one in Computer Science. SAT was first proved by

Cook [7] to be NP-complete, thus showing that it is representative of the difficulties

of solving other problems in NP. In spite of the lack of a proof that P # NP, it seems

unlikely that a polynomial-time algorithm for SAT exists. Recent research has been

directed at providing exponential-time algorithms where the exponential-time con-

stants are as small as possible. Such algorithms are not feasible in the technical sense

because of their asymptotic exponential-time behavior. However, even exponential-

time algorithms may be “feasible”, in the sense that if the problems we are interested in

are not too large, and the exponential-time constants are small enough, then the

problems may be solved in a reasonable amount of time on a powerful computer. So it

is important to look at what constants are possible.

To study whether satisfiability or tautology can be practically determined, we must

study proof systems that correspond in some way to actual computation, i.e., systems

*A somewhat expanded version of this result was submitted as a MSc. thesis at the University of Toronto.

0166-218X/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved
““__ _. ,, _. ^._^ _,-_ ^ _^ .lAU1 Ulbb-il8X(Y3)tUUb3-j

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82707744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

38 D.J. ,%fcCIurkin / Discrete Applied Mathematics 54 (1994) 37-53

which do not exploit nondeterminism as a computational resource. This rules out

many systems like Frege systems because of their very nondeterministic nature. Tree

resolution is important because the nondeterminism is limited, and because it corres-

ponds in a very natural way to several algorithms for determining satisfiability or

tautology, in particular the Davis-Putnam procedure. In fact, the fastest algorithms

for SAT known at this time are equivalent to tree resolution, in the sense that they can

be represented as algorithms which search for a resolution proof in tree form. Tree

resolution has long been known to require exponential size proofs, but it is important

to find as good a lower bound as possible to bound the behavior of this class of

algorithms.

In this article, we first show, following [14], how each connected graph gives rise to

an inconsistent family of clauses. We then state and prove Tseitin’s theorem which

shows the equivalence between tree resolution refutations of that set and edge deletion

processes on the graph. Next, we randomly generate a family of highly expanding
nrl,,hr Gnoll,, ,xr,a chnw thc,t memhovo nf +h;c fe,m;l.r VP~II:VP o 1ntm.c. /au..nnnm+;~l oimc.\ 6Luy”u. I “AU”J, *.u .tl,I” 1. CllcIC IIIUI.I”~LD “I L111D KullllJ Ltiyiuuti a ,algb \b*p”lk~lrlal-Ju&,

edge deletion process, proving that a resolution refutation of the associated family of

clauses must be large as well.

2. Definitions

We begin with formal definitions of the terminology used in this article.

Definition 2.1. A literal is either a variable or its negation, where the negation of

a variable p is denoted by p.

Definition 2.2. A clause is a disjunction of literals. The disjunction is implicitly

assumed, so the clause p v 4 v r, for example, is simply written pqr. The empty, or

contradictory, clause is written 4.

We now describe in detail the resolution proof system. The input to resolution is

a set of clauses and the goal is to determine whether all clauses can be simultaneously

satisfied by some truth value assignment (t.v.a.) to the variables. There is only one

derivation rule for resolution: if there is a clause A containing a variable p, and

another clause B containing its negation p, then these 2 clauses may be resolved

together, producing a third clause C, called the “resolvent”, which is the disjunction of

all literals in A together with those in B, except for p and p (any literals appearing

identically in both A and B are simply merged, so that they occur only once in C).

Clearly, this rule is sound, i.e., if there is a t.v.a. which simultaneously satisfies both

A and B, then it must also satisfy C. The rule is also complete (see [14]), so if the

original set of clauses is inconsistent, then we can eventually get the empty, or

contradictory clause, 4.

D.J. M&h-kin / Discrete Applied Marhemalics 54 11994) 37-53 39

Fig. 1. A tree resolution refutation of the set {ab, tibd, abd, bc, bc}

There are severai varieties of resoiution for which resuits have been proved. The

weakest is tree resolution, with which this article is concerned. In tree resolution, the

proof is actually a binary tree, so each clause is either in the input set or is the

resolvent of its left and right children. There is no overlap between the left and right

subtrees of any node, so if a clause is used more than once, it must be reproved each

time it is used (see Fig. 1).

The complexity measure of a resolution proof tree is simply the number of nodes in

the tree. Equivalently, we count the number of leaf nodes, since the total number of

nodes is 2(number of leaf nodes) - 1. In [14], a 2kx” lower bound is proved, but vast

improvements have been made since then.

A stronger system is unrestricted resolution. Here the proof is a sequence of clauses,

each of which is either in the input set, or is the resolvent of 2 clauses appearing earlier

in the sequence. In [12] a 2’~‘” lower bound is proved using pigeon-hole clauses. Ref.

[151 contains a 2’” lower bound proof using Tseitin’s graph clauses. Moreover, in [6]

it is proved that almost all random clauses satisfy a generalization of Urquhart’s

criteria, and thus require exponential-sized proofs. All of these proofs yield very tiny

constants.

An unrestricted resolution proof can be thought of as a directed acyclic graph

(DAG), where each node is adjacent to all of its resolvents. This reflects the fact that if

a clause is used many times, it does not have to be reproved each time it is used.

Tseitin defines the notion of “regularity” as follows: a resolution DAG is regular if

on each path from the root to a leaf node, no variable is eliminated more than once.

This is equivalent to saying: once a variable is eliminated it is never reintroduced by

a subsequent resolution. In [lo] a 2’” lower bound is proved for regular resolution.

The regularity condition can be applied to tree resolution proofs. However, every

tree resolution proof can be transformed into a regular tree resolution proof with no

increase in size (see [14]). So, without loss of generality, we can (and shall) assume that

the optimal tree resolution proof for a set of clauses is regular.

There is an even more powerful resolution system called extended resolution in

which new variables can be introduced to stand for the disjunction of other variables.

No nonpolynomial lower bound has been proved for extended resolution.

40 D.J. McClurkin 1 Discrete Applied Mathematics 54 (1994) 37-53

The stronger forms of resolution have a nondeterministic aspect to them which does

not seem to correspond to any sort of deterministic algorithm. Tree resolution, on the

other hand, is of much interest because it corresponds more closely to algorithms for

determining the satisfiability of sets of clauses, the most famous of which is the

Davis-Putnam procedure.
There are actually two very different algorithms known as the Davis-Putnam

procedure. The one that corresponds to tree resolution, and the one to which we are

referring whenever we use that terminology, works as follows: A variable p in the input

set is selected and set to 0 (false). This transforms the set of clauses by removing p from

all clauses containing p, and removing all clauses containing J?. It is then recursively

determined whether the resulting set of clauses is satisfiable. If the answer is no, then

the algorithm backtracks to the point where p was set to 0, and tries setting it to

1 instead, again recursively determining whether the resulting set of clauses is statisfiable.

It is not hard to see that the Davis-Putnam procedure is equivalent to a depth-first

traversal of a resolution proof tree. Much effort has been devoted to studying the

Davis-Putnam procedure in terms of its computational complexity, mainly in the

area of probabilistic analysis and average time complexity. Ref. [ll] shows that for

certain probability distributions, the procedure has polynomial average time behav-

ior. Ref. [9] shows that all of the distributions in the above are, in a sense, unreason-

able, and shows that for a family of reasonable distributions, the procedure requires

exponential time with probability 1.

The algorithm in [13] is similar to the Davis-Putnam procedure, except that they

check for monotonicity, i.e., variables which occur only positively or negatively. They

discard clauses containing such variables because they are all trivially satisfiable by

simply setting that variable appropriately. From the tree resolution perspective, no

such clause can appear in a resolution proof tree, because it would introduce

a variable that could never be subsequently eliminated. Hence, their algorithm also

corresponds to a search strategy for tree resolution.

3. Tseitin’s theorem

This section contains a greatly simplified proof of the result in [14]. We first

describe Tseitin’s technique for obtaining an unsatisfiable set of clauses from a graph.

Let G be a connected graph (or multigraph), and label each vertex u EG by

a “charge” E(U) E (0, l} so that Cvec E(U) E 1 (mod 2) (such a graph is said to have an

“odd labelling”, see Fig. 2). Assign to each edge in G a unique literal, i.e., either

a variable or its negation. Denote by C(v) the set of clauses which represents the

statement that CiXi E E(V) (mod 2) where the sum is taken over all literals Xi incident

with v. The exact requirement on C(v) is that C(v) contain all clauses C involving

literals incident with u such that the number of complemented literals in C is opposite

in parity to E(V). Notice that 1 C(v) 1 = 26(“)- 1 where 6(v) is the degree of vertex v. Let

C(G) = U”&(u).

D.J. McClurkin / Discrete Applied Mathematics 54 (1994) 37-53 41

Fig. 2. A graph G with an odd labelling and the associated set of clauses. Solid nodes arc labelled 1; the rest

are labelled 0.

Summing these equivalences over all u E G, each literal in G occurs exactly twice, so

LHS E 0, while the graph has an odd labelling, and so RHS E 1. The consequence of

this contradiction is that the set of clauses C(G) is inconsistent and therefore has a tree

resolution refutation. We shall now prove Tseitin’s theorem which describes the

equivalence between regular proof trees of C(G) and edge deletion processes for G.

Definition 3.1. If A is a clause which does not contain the literal p, then A - p is the

same clause with the literal p removed if it occurs.

Definition 3.2. If r is a set of clauses, then r/p is the result of deleting p from clauses in

r containing p, and deleting all clauses containing p. Thus, T/p = (A - p: A EI-,

F$A).

Definition 3.3. If r is a set of clauses, then r p A means that there is a size k tree

resolution proof of the clause A from clauses in r.

Lemma 3.4. If C(G)T P A then there is some connected component of G, G’, such that

C(G’)T P A.

Proof (as in [16], by induction on the proof tree of A). If A EC(G) then the connected

component is simply the component containing the vertex associated with A; other-

wise, A is the resolvant of Bp and CF. By induction, Bp and Cp are provable from

connected components of G. Also, each of these components must contain a vertex

incident with the edge labelled p. Therefore, the components are not disjoint, since

they are connected at least by the edge p. 0

Definition 3.5. Transferring the charge at an edge e means replacing the associated

literal p with its complement p, and complementing the charges at the two nodes

incident with e.

Lemma 3.6. If G’ is obtained from G by transferring the charge at an edge e, then

C(G’) = C(G).

42 D.J. McClurkin / Discrele Applied Mathematics 54 (1994) 37-53

Proof. This is clear since any clause A ECU must satisfy that the number of

complemented literals in A is opposite in parity to &c(u). By replacing p with jj and

reversing the charge at p’s two endpoints, any such clause A will again satisfy this

requirement, and thus A EZ~.(U). By symmetry we have C,(V) = C,(u). 0

Corollary 3.7. If G is a connected graph then any two odd labellings of G are equivalent,

in the sense that the associated sets of clauses yield isomorphic tree resolution refuta-

tions.

Proof. Since G is connected, there is a path between any pair of nodes in G. We can

thus repeatedly transfer the charge along the path between two nodes, effectively

complementing only the charges at the endpoints of the path. Since two odd labellings

of G differ by an even number of charges, we can transform one labelling into the other

by iterating the above process a finite number of times. 0

Lemma 3.8. ZJ r F-A where p E A, then T/p p A - p.

Proof (by induction on the proof tree). If A E r then A - p E T/p; otherwise, A is the

resolvent of Bq and Cq where r $ Bq and r F Cq. If p E B then by induction

T/p k Bq - p; if p $ B then no clause containing p occurs in the proof tree for Bq

because of the regularity condition, so T/p k Bq - p = Bq. Similarly, r/p F’ Cq - p.

Therefore, we can resolve Bq - p and Cq - p to obtain BC - p = A - p. 0

Lemma 3.9. If p is the literal labelling edge e and r E C(G) then r/p s C(G - e).

Proof. Suppose that C ET/~. Then C = A - p for some clause A E r, where either

p occurs positively in A or does not occur at all in A. If p E A then A E C(v) where v is

one of the two vertices in G incident with the edge e. Since A contains 1 - E(U) negated

variables, and p occurs positively, A - p also contains 1 - E(U) negated variables;

hence, A - p = C EC._.(V). If p does not occur in A then AEC~(U) for some vertex

v not incident with the edge e. Then C,_,(V) = Zc(n) and thus C = A - p =

A EC(G - e). q

Definition 3.10. If r is an inconsistent set of clauses, then V(T) is the number of leaves

in the optimal tree refutation of r. If G is a graph, then V(G) denotes the size of the

optimal tree refutation of C(G). This definition is permitted because, as we have seen,

the actual labelling of the graph is irrelevant.

Theorem 3.11 (Tseitin’s theorem). Let G be a connected graph. Then

if G is a single vertex,

otherwise,

D.J. McClurkin / Discrete Applied Mathematics 54 (1994) 37-53 43

where V(G) is given by

g(G) =
I + g(G,) if e ruptures G,
2q(G,) otherwise,

where G’ = G - e, and in the case that deleting e ruptures G, G, and G2 are the two
connected components of G’.

Proof (by induction on the number of edges in the graph G). If G consists of a single

vertex with no edges, then C(G) = {@}, and V(G) = 1.
NT-... ^..--^^- rl-r r 1__ ^_^ ^I _^__ _1__” * ,+ X-‘ir\ ^_ .L, I,,+ nt-.. ;.. l l.” IYUW, SupI-‘““‘: L‘ML v l,?i5 “IIC; “I 111”11; c;ug;r;s. qJ $?L[“,, S” L11G la>L 3L6P 111 LIIC,

refutation is a resolution of, say, p and ~7 where p is the literal labelling edge e. There

are two cases to consider.

Case 1: Deleting e from G ruptures it into 2 components, G1 and GZ, where G1 has

an odd labelling and Gz has an even labelling. We have C,p p and C,p@ where

C, , C2 s C(G). p is the literal labelling edge e, so by Lemma 3.8, C,/pp 4. However,

Cl/p E C(G - e) = C(G,) u C(G,), and so C(G,) P$J since it is provable from

a single connected component of G’ and G1 is the only component with an odd

labelling.

Now, construct G* from G by transferring the charge at e. C(G*) = Z‘(G), but this

time Gz has an odd labelling and G1 an even labelling. C2 t’p and, proceding as above.

we conclude that C(G,) t+.

Thus, the complexity of Q?(G) 3 %(G,) + %?(G2). Notice now that if Cl/pF 4 with

m < k + 1, then this proof makes use of some clause .A E C,/p where A $C,, but

Ap E Cl (for otherwise T(G)B$J contradicting the optimality of the proof tree for

C(G)). There is an isomorphic proof tree C1 F p formed by adjoining p to the clauses

A in the refutation C,/pF’ $J for which Ap E Cl. Thus, we have the equality,

V(G) = %(G,) + %(G,).

Case 2: Deleting e from G produces a connected graph G’. The proof here is the

same as case 1, except that G remains connected after the edge e is deleted, and so

V(T) = 2%‘(G’). cl

Definition 3.12. A deletion process on a graph G is a binary tree T whose nodes are

connected subgraphs of G such that the root of T is G itself, and each node H in

T which is not a single node has an edge e E H associated with it such that if deleting

e ruptures H then the two children of H are the two connected components of H - e,
and if deleting e does not rupture H then both children of H arc H - e. The leaves of

T are single nodes of G.

By Tseitin’s theorem, when studying the size of resolution proof trees for families of

graph-based clauses, it is sufficient to consider deletion processes on the graph. If the

last step in a refutation is resolving the variables p and ~7 together, then there is an

isomorphic edge deletion process in which the edge labelled p is deleted first. Since this

44 D.J. McClurkin / Discrete Applied Mathematics 54 (1994) 37-53

rule can be applied recursively, it follows that the size of the optimal proof tree is equal

to the size of the smallest edge deletion process.

4. Generating expanders

In this section we show the existence of a family of highly expanding graphs, using

the techniques of random graphs. The proof is very technical and may be skipped;

only the statement of Theorem 4.5 is used in the lower bound proof in the following

section.

Notation 4.1. If G is a bipartite graph, then GL and GR are the sets of vertices in the left

and right sides of G, respectively. If H is a subgraph of G then HL = H n GL and

HR = H n GR.

Definition 4.2. If G is a graph and X is a subset of the vertices of G, then the

neighbourhood set of X, M(X), is the set of all vertices of G adjacent to some node in

X. In the case that G is bipartite and X c GL or X c GR, X and J(X) do not

intersect, although this is not true in general.

Definition 4.3. A bipartite graph G, where 1 GL 1 = 1 GR 1 = n, is a A-expander if whenever

X c GL or X c GR and 1x1 d n/2 then IJV(X)I > (1 + 2)1X1.

Definition 4.4. A bipartite graph G, where 1 GLI = I GR 1 = n, is a strong I-expander (see

[2]) if whenever X g GL or X E GR then IJlr(X)J > (1 + A(1 - ~9) 1x1 where

1x1 = cIn.

This definition captures the notion that small sets expand more than large ones. We

shall sometimes refer to the expanders in Definition 4.3 as regular expanders when it is

important to distinguish them from strong expanders. Notice that every strong

i-expander is a regular L/2-expander; however, the converse is not true.

We now prove the existence of a family of strong expanders, which have the

additional property that very small subsets have an expansion factor close to 2, which

is required in the final stages of the lower bound proof in the next section. The

expansion factor is 2 - 6 where 6 is specified in the next section. We actually prove

that such a family must exist for each 6 > 0, although we are interested only in the

particular 6 of Section 5.

Theorem 4.5. Fix 6 > 0. There exists a family of strong A-expanders with expansion
constant A = 0.3166, which in addition satisjies the following property (P):

There exists E > 0 such that ifX c G with 1x1 d en, then IN(X)1 2 (2 - S)lXl.

D.J. McClurkin / Discrete Applied Mathemcrtic\ 54 I I!1941 $7 F{ 45

Proof (following the method in [3]). Let G be a random bipartite graph on n + n

nodes with 3n edges, defined by choosing 3 random matchings from CL to CR’. We

shall prove that with nonzero probability, G is a strong i-expander.

We must show that with nonzero probability, all subsets X c CL or X g G, have

the property that IN(3 (1 + A(1 - c())IXI, where CI = [Xl/n. Equivalently, we

show that the probability is less than 4 that there is a subset X s CL and U g CR with

1x1 = k and IUl < (1 + A(1 - k/n))k such that IN(X)1 s U. The proof that all

subsets of CR expand is symmetric.

Define P(k) = the probability that there is a set of size k which does not expand by

a factor of 8, where b(k) = 1 + A(1 - k/n) for large subsets of G and /l(k) = 2 - 6 for

small subsets. In what follows, we shall simply write b rather than /l(k) to simplify the

formulas, but it should be emphasized that /I is not constant; it is a function of k. Then,
rl~ - ,.
rne probabiiity that G is not a strong A-expander is no greater than 2x:= 1 Y(k).

For a given k, the number of choices of X and U as defined above are (;) and

(rsk;_ i), respectively. For given X and U, the probability that, for a given one of the

three random matchings. N(X) & U is

For small values of k we use the approximations

0 (;)<(yji and h<(z); for a < b.

i

Since the approximation for (9) is both an increasing function of a, and an increasing

function of i for small i, we have

P(k)< (3”(zyk(;)3k

= [/&?1+/(!5)‘“1”.

’ Note that in general this gives a multigraph, but all definitions and theorems regarding graph-based
clauses hold for multigraphs as well as graphs.

46 D.J. McClurkin 1 Discrete Applied Mathematics 54 (1994) 37-53

If k 6 en then the expression is

If /I = 2 - 6 then the quantity inside the parentheses is constant, and there is some

E > 0 for which this constant is < 1. The expression is exponential in n and thus is

< 1/(2n) for sufficiently large n. This takes care of the additional property (P).

Next we must approximate P(k) for k >(l - ~)n. As above, we wish to show that

the probability is less than 1/(2n) that there are sets X c GL and U c Gs, 1x1 = k,

IUI =r(l +,I(1 -k/n))kl-1, such that M(X) G U. Equivalently, we show that the

probability is < 1/(2n) that there are sets 0 C GR and x C GL,

Ial = n-[(l +A(1 -k/n))kl+l, 1x1 = rt-k, such that .N(@cx.

Since k >(I - .s)n,

IDI = n -r(l +A(1 -k/n))kl+l

= Ln - (1 +A(1 -k/n))k]+l

<Ln-anJ+l

_
and so j ii j < En. Appiying the resuit of the preceding proof of property (F), -we itnow

that the probability that \ N(u) (< (2 - 6)(ii (is less than l/Qn) for arbitrarily small 6:

(2 - S)lUl > (2 -6)[n -(I +/I(1 -k/n))k]

= (2 -6)(1 -ik/n)(l -k/n)n

> (1 -k/n)n

=n-k.

Thus, the probability that such u and X exist is < 1/(2n).
l.?:..,.,,.. . .._ _..“, ,,,,,,;m,e, Dl,,, F,,. PM /I, ((1 I‘lllillly, we 1,1l,l>L aP~l”nUUaLc, 1 \n, ,“I C,C -IL _{I -s)n. IIence .I_ Ul.“.. UTP rhnw that

nP(k) <t for such k and for n sufficiently large. Using Stirling’s formula, we write

n
log k =

0
n log n - k log k - (n - k) log (a - k) + 0(log n).

Noting also that

D.J. McClurkin 1 Discrele Applied Marhemarics 54 (1994) 37-53 47

we can write, as before,

nP(k)-n(;)(rpk;_ ,) crp;; ‘1 3
k

=exp{-nlogn+2j?klogpk-klogk-(n-pk)log(n-bk)

- 3(/?k - k)log(pk - k) + 2(n - k)log(n - k) + O(log n)}

Substituting a = k/n and simplifying, we have

Z exp{ - n log n + 2/&m log@r - cm log an - (n - /&i)!og(n - Jk~fl)

- 3(/Lcm - cm)log@n - cm) + 2(n - ctn)log(n - cm) + O(log n)},

= exp{n log n[- 1 + 2j3a - o! -(1 - /?cr) - 3(/%x - CC) + 2(1 - a)]

+ 2/hz log &Y - m log tl - (n - &~n) log(1 - BE)

- 3(/h - crn)log(/?cr - a) + 2(n - Xn)log(l - a) + O(log n)}.

The first line of this expression is zero, and we are left with

= exp{n[2@ log /?c4 - c(log c(- (1 - pa) log (1 - PM)

- 3(pcr - CC) log (/?E - a) + 2(1 - M) log (1 - a)] + O(log n)}

The entropy function H(x) = -x log x -(1 - x) log(1 - x), so we can write this as

= exp{n[H(@) - 2H(a) + 3pa log /? - 3a(fi - l)log(fi - 1)]

+ O(log n)>.

One can show that H(l/P) = log p - (1 - l/p) log(/? - 1) and so we conclude that the

expression is

= exp{n[H(/?a) - 2H(a) + 3/MZ(l/j9] + O(log n)}.

Letting F(a) = H(pcr) - 2H(cr) + 3paH (l/p) , ‘t . I IS sufficient to prove that F(a) ~0,

and is bounded away from 0, for the required values of /?. Recall that

P(E) = 1 + A(1 - E) where 1 =0.3166.

It can be verified numerically that F(a) < 0 for 0 < c(< 1. F is continuous on the

closed interval [E, 1 -E], so it is bound away from 0. Therefore, xi=, P(k) < $ for

sufficiently large n, so there exists a family of strong I-expanders.

It can be checked that F has a root if ;1 z 0.3167, and so the best possible value of

1 using these methods lies between 0.3166 and 0.3167.

48 D.J. McClurkin / Discrete Applied Mathematics 54 (1994) 37-53

It is worth noting that this method can be used to generate regular expanders by

finding a constant value of /3 such that F(a) ~0 for 0 < a d i. It can be verified by

taking derivatives that F is a convex function, and so its maximum value occurs at an

endpoint. One can also verify that F(3) 3 F(E), and so it suffices to simply set CI = $.

The maximum p for which F(i) < 0 is approximately 1.162835, and thus we can

conclude that there is a regular expander with expansion factor 2 = 0.162835.

5. Lower bound for tree resolution

Central to the lower bound proof is the idea that there are graphs with the property

that they have relatively few edges but nevertheless require large edge deletion

processes. Intuitively, the best strategy for an edge deletion process is to cut the graph

roughly into half, to reduce the subsequent amount of duplicated work. Expanders

should therefore have this property because they are difficult to cut into half; if X c G

where lXLl = lXRl = n/2 then IN(X IN(2 (1 + A)n/2, and thus the number

of edges required to disconnect X from G is at least An/2 + %n/2 = An.

Strong expanders should require even more work, because after bisecting the

original graph, the resulting components retain much of their original expansion.

However, a problem arises because there is nothing guaranteeing that the optimal

strategy is to bisect the graph exactly. The problem is to express the notion that if little

work is done early (by cutting the graph into unequally sized components) then much

work must be done later (the larger component will retain most of its original

expansion).

There are several lower bounds for resolution which use expanders (see [ll, 153).

Something like the 3 - $ rule is invariably used: in an edge deletion process, there will

be some subgraph H of size m where ($)n < m < (t)n. A bound is then placed on the

number of edges kj that must be deleted to disconnect H from G; and lower bound is

expressed in terms of k. Obviously, this is sound reasoning, but unfortunately it loses

much information. If m = (i)n th en much more work has been done than simply

deleting edges between H and H. Also, it does not account for the work that must

subsequently be done within H to complete the edge deletion process.

What follows is an inductive proof that takes all of that into account.

Lemma 5.1. Zf G is a graph, then an optimal deletion process for G will have the

following property: if H is ruptured into HI and H2 then any edge e deleted from an

ancestor of I-I will not be contained entirely within either HI or Hz.

Proof. Suppose that a deletion process does not have the property. So there is some

subgraph H which is ruptured into HI and Hz, and an edge e deleted from some

ancestor of H which lies entirely in HI or Hz. We can rearrange the deletion process

by postponing the deletion of this edge until after Hi is ruptured. This has the effect of

strictly decreasing the number of nodes in the tree. Cl

D.J. McClurkin 1 Discrete Applied Mathematics 54 (1994) 37-53 49

So, we can think of the deletion process as a recursive application of the following

rule: delete k edges from G, rupturing it into two connected components, G1 and G2,

where each of the k edges joins a vertex in G1 to a vertex in Gz.

Lemma 5.2. Let G be a d-regular strong l-expander, with d 2 3. If H s G where

1 HI = m = c((2n), then A(1 - a)m edges must be deletedfrom G to disconnect H from G.

Proof. Say that there are ml = c+n edges in HL, and m, = a,n edges in HR, and w.1.o.g.

CI(d c(,. HL has at least (1 +A(1 -aL))ml neighbours, and so HL has at least

(1 + i(1 - a,))ml -m, neighbours outside of HR. Let t be the number of edges between

HL and HR. Then

t < dm, - [(l + A(1 - aJ)rn[- m,]

= (d - l)ml - A(1 - czl)ml + m,.

Therefore, if k is the number of edges required to disconnect H from G, then

k = (dm, - t) + (dm, - t)

3 - (d - 2)ml + (d - 2)m, + 21.(1 - ccl)ml

= [2(d - 2)r + 2A(l - a + r)(cL - r)]n,

where CQ = ct - r and CI, = a + r for r > 0. Let

g(r) = 2(d - 2)r + 2A(l - M + r)(ct - r).

Differentiating with respect to r, we have

g’(r) = 2(d - 2) - 2;1 + 4ia - 4Ar.

Since d >, 3, A < 1 and r < CI, we have g’(r) >, 0 for all r. This implies that the minimum

value for g(r) occurs when r = 0, i.e., when CI~ = ~1,. Hence, we have

k 3 g(O)n = 2/1(1 - a)an = A(1 - a)m. 0

Lemma 5.3. Let G be a strong I-expander on 2n nodes. If H E G where 1 H 1 = a(2n) and

1 edges have been deleted from H in the process of disconnecting it from G, then

Proof (by induction on the size of H). Suppose that the optimal deletion strategy for

H is splitting it into HI and HZ, where k edges from HI to H2 must be deleted to

accomplish this. Let ml = IH, 1 = or,(2n) and m2 = 1 H,I = a,(2n). Of the 1 edges

deleted from H, I, of them come from HI and 1, come from Hz. So M = a, + ~1~ and

50 D.J. McClurkin 1 Discrere Applied Mathematics 54 (1994) 37-53

1 = Ii + 12. Ignoring the O(1) for now, we have

%(H) = 2k- 1 [W(H,) + %(H2)]

> 2k- 1[2A(‘-al/3)ciln-(ll+k)/2 + 2”” -az/3)azn-(h+k)/Z]

= 2~(1-a,/3)a,n-11/2+k/Z-l
f2 ~(1-~~/3)~~n-l2/2+k/Z-l

From Lemma 5.2 we know that k >, A(1 - cc&n, - I1 and k 2 A(1 - a&n2 - 12,

which gives

+2 A^(l-a~/3)a~n~/~/2+A(l-a~)a,n-1~/2-1

= 2lan-In(a:/3+a:)-l/2-1 + 22an-In(a:/3+a:)-I/Z-l.

It is easy to show that

a: T+“:= (6 + E2J2 2

3 + 5”‘(“2 - al)

and hence

g(H) 2 2 A(1 ~n/3)orn-2/31naz(a~-a~)-1/2- 1

+ 21(1-~/3)nn-2/31na~(a~-02)-1/2-1

= 2”” ~a/3)an-1/2~ 1[22/31naz(a,-a~) + 22/3hw(a1ra1)]

The last expression is always greater than 1. We must therefore bound the number of

times it can be less than 2, thereby eliminating the - 1 earlier in the exponent, and

giving us the O(1) as in the statement of the lemma.

As was noted in the proof of the existence of strong expanders, for each 6 > 0, there

is some constant E and a family of strong A-expanders for which all sets of size less than

En expand by a factor of 2 -6. We shall show that if a2 d E then the - 1 does not

appear in the expression. This implies that the number of times the - 1 is introduced

is bounded by l/s.

To show this, we examine the following three cases

Case 1: ~1~ = 1/(2n). Here, H2 is a single node and degree of each vertex in G is 3, so

k =3 -12. Hence,

g(H) 2 2 1(1~a/3)orn-1/2~1/2+ln/3(a*-a:)+3/2-I

> ~“(1 -a/3)anml/2

Case 2: ff2 = l/n. Here H2 is exactly two nodes, so k = 4 - 12:

V(H) 3 2 1(1-a/3)oln-l/2-l+dn/3(a2-af)+4/2-1

> 21(1-a/3)an-l/2

D.J. McClurkin / Discrete Applied Mathematics 54 (1994) 37-53 51

Case 3: 3/(2n) d CY~ d E. Then k >, (2 -6)a2n - 12:

V(H) 3 2
l(l-n/3)an-1/2~ia~n+in/3(a2-or~)+(2~d)azn/2-l

> 2L(l-a/3)an-1/2+(3/2)((2-6)/2-1)-l

> 2A(lba/3)an-I/2

The last line follows because i < f and so the expression (2 - 6)/2 - 2 can be made

larger than 5 by choosing 6 small enough, and from property (P) in Theorem 4.5 we

know that 6 can be chosen arbitrarily small. 0

Corollary 5.4. If G is a strong A-expander, then

Note that this lower bound is expressed in terms of the number of vertices in the

graph. We wish to express the bound in terms of the number of variables in the input

set. Substituting the best known value for A from the previous section, and noting that

the number of variables in the input set N = 3n, we have the following lower bound

for tree resolution:

2W3)W ~ 20.070355N

Some may feel that simply counting the number of variables in the set of input

clauses is an unreasonable way of measuring the size of the problem; the number of

clauses in the input set is a more realistic measure of the problem’s input size. If we let

M be the number of clauses in the input set, then M = 8n, and so we have the

following lower bound:

2"'2'3)M'8 ~ 20.026383M

Note that the above argument does not depend in any way on the degree of the

graph. However, as we now show, degree 3 graphs give the best lower bound. Degree

2 graphs provide sets of 2SAT clauses which are solvable in polynomial time (see [7]).

Increasing the degree of the graph will allow us graphs with a higher expansion factor,

and an apparently better lower bound. However, increasing the degree by one will

also double the number of clauses in the input set. Since increasing the degree by one

will not double the expansion factor, we know that degree 3 graphs will provide the

best lower bound in terms of the number of input clauses.

Let us for a moment compare this result with the lower bound for regular resolution

in [l 11. In the case d = 3, the best expansion factor known for a regular A-expander is

2 z 0.162835 (see the previous section; see also [S, 31). Galil’s bound is

> 21Nl96 ~ 20.001696198N

Of course, this is not a fair comparison because regular resolution is more powerful

than tree resolution.

52 D.J. McClurkin / Discrete Applied Mathematics 54 (1994) 37-53

6. Conclusions

The expanders generated in Section 4 are not the best possible; it is possible to

obtain even more highly expanding graphs, although the expansion factor will not be

of the simple form

IN(X)I 3 (1 + A(1 - a))lXl

for 1 X 1 = an. So it would be necessary to reformulate Lemma 5.3 to accommodate the

more complex form of the expansion factor. The best possible expansion factor would

come from solving the equation

F(U) = H(Ba) - 2H(a) + 3/?aH(l/b) = 0

for fi at each value of tl between E and 1. Of course, it would be too much to expect the

solution to be an analytic function /3(a). However, something greater than

B(E) = 1 + A(1 - CI) is possible. The optimal solution should then be approximately

where $(k) is given by the following recurrence:

If p(a) = 1 + (1 - a)2 then the above expression is exactly equal to the expression in

Corollary 5.1.

The lower bound obtained in this article is approximately 2°.070355N, where N is the

number of variables in the input set. The bound is on the size of a resolution proof

tree, but it also applies to a wide class of backtracking algorithms for solving SAT.

The best known upper bound for SAT is due to Monien and Speckenmeyer [131. They

solve 3SAT in time no greater than 2°.6943N using a backtracking algorithm which can

be shown to be identical to traversing a resolution tree.

It is believed by the author that providing a deterministic branching algorithm that

runs in a certain time bound is more difficult than showing the existence of tree

resolution proofs of a certain size, because when analyzing an algorithm, we measure

not only the number of resolutions, but also the other computational aspects of the

algorithm. In particular, we must measure the time spent computing the next variable

on which to branch. This problem has been studied extensively by the automatic

theorem proving community, and many heuristics for choosing the variable on which

to branch have been proposed.

The problem of deciding the best branching strategy is probably intractable, and

hence it is likely that no algorithm will ever come very close to the optimal lower

bound on the size of resolution proof trees. There is a trade-off: the better the

branching strategy we want, the more work the algorithm will have to do to find that

strategy. In other words, if a deterministic algorithm for solving SAT which effectively

D.J. McClurkin 1 Discrete Applied Mathematics 54 (1994) 37-53 53

generates a tree reso’ ,n proof spends only a polynomial amount of time choosing

the next variab’ 1 it will be worse than optimal because of its poor variable

selection heuristh akes the time to find the best variable at each stage, then again

it will not be optim wcause it spends so much time figuring out a good variable

strategy in addition t oing the resolution itself. The gap between this paper’s lower

bound and the upper bound in [131 can certainly be narrowed somewhat, but it would

be surprising if they were brought significantly closer together. The current state of

knowledge does not allow us to study this discrepancy quantitatively.

References

Ul

PI
c31

c41

c51

C61

171

C81

191

Cl01

Cl11

Cl21

Cl31

Cl41

Cl51

Cl61

M. Ajtai, The complexity of the pigeonhole principle, in: Proceedings 29th Annual Symposium on the

Foundations of Computer Science (1988) 3466355.

N. Alon, Eigenvalues and expanders, Combinatorics 6 (1986) 83-96.

L.A. Bassalygo, Asymptotically optimal switching circuits, Problems of Inform. Transmission 17

(1981) 206-211

S. Buss, Polynomial size proofs of the propositional pigeonhole principle, J. Symbolic Logic 52 (1987)

916-927.

F.R.K. Chung, On concentrators, superconcentrators, generalizers, and nonblocking networks, The

Bell System Tech. J. 58 (1979) 176551777.

V. Chvatal and E. Szemertdi, Many hard examples for resolution, ACM J. 35 (1988) 7599768.

S. Cook, The complexity of theorem proving procedures, Proceedings 3rd Annual Symposium on the

Theory of Computing, Shaker Heights, OH, May 3-7 (ACM, New York, 1971).

S. Cook and R. Reckhow, The relative efficiency of propositional proof systems, J. Symbolic Logic 44

(1977) 36650.

J. Franc0 and M. Paull, Probabilistic analysis of the Davis-Putnam procedure for solving the

satisfiability problem, Discrete Appl. Math. 5 (1983) 77787
Z. Galil, On the complexity of regular resolution and the DavissPutnam procedure, Theoret.

Comput. Sci. 4 (1977) 23-46.

A. Goldberg, P. Purdom and C. Brown, Average time analyses of simplified DavissPutnam proced-

ures, Inform. Process. Lett. 15 (1982) 72275.

A. Haken, The intractibility of resolution, Theoret. Comput. Sci. 39 (1985) 2977308.

B. Monien and E. Speckenmeyer, Solving satisfiability in less than 2” steps, Discrete Appl. Math.
1 (1985) 2877295.

G.S. Tseitin, On the complexity of derivation in propositional calculus, in: A.O. Slisenko, ed., Studies

in Constructive Mathematics and Mathematical Logic, Part II (translated from Russian) (Consultants

Bureau, New York, 1970) 115-125.

A. Urquhart, Hard examples for resolution, ACM J. 34 (1987) 2099219.

A. Vellino, The complexity of automated reasoning, Ph.D. Thesis, University of Toronto, Toronto,
Ontario, Canada (1989).

