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SUMMARY

Long non-coding RNAs (lncRNAs) constitute a signif-
icant portion of mammalian genome, yet the physio-
logical importance of lncRNAs is largely unknown.
Here, we identify a liver-enriched lncRNA in mouse
that we term liver-specific triglyceride regulator
(lncLSTR). Mice with a liver-specific depletion of
lncLSTR exhibit a marked reduction in plasma
triglyceride levels. We show that lncLSTR depletion
enhances apoC2 expression, leading to robust lipo-
protein lipase activation and increased plasma tri-
glyceride clearance. We further demonstrate that
the regulation of apoC2 expression occurs through
an FXR-mediated pathway. LncLSTR forms a molec-
ular complex with TDP-43 to regulate expression of
Cyp8b1, a key enzyme in the bile acid synthesis
pathway, and engenders an in vivo bile pool that
induces apoC2 expression through FXR. Finally, we
demonstrate that lncLSTR depletion can reduce
triglyceride levels in a hyperlipidemia mouse model.
Taken together, these data support a model in which
lncLSTR regulates a TDP-43/FXR/apoC2-dependent
pathway to maintain systemic lipid homeostasis.

INTRODUCTION

Mammalian genomes are populated with a large number of long

non-coding RNAs (lncRNAs) (Cabili et al., 2011; Guttman et al.,

2009; Luo et al., 2013), supporting the concept that the majority

of the genome is transcribed (Djebali et al., 2012). LncRNAs are

defined as transcripts that are over 200 nt long and lack any cod-

ing potential. Most annotated lncRNAs are transcribed fromRNA

polymerase II and often are capped, spliced, and poly-adeny-

lated (Cabili et al., 2011). The exact number of lncRNAs in ge-

nomes is currently unknown and is likely to grow and may equal

or even surpass the number of protein-coding genes. The sys-

temic identification of lncRNAs also prompts serious rethinking

about the potential nonconventional functions of mRNA. Evolu-

tion studies suggest that somemRNAsmight arise from lncRNAs
Ce
(Ulitsky and Bartel, 2013) and therefore might currently carry out

important non-coding functions as well. For example, HMGA2

was recently shown to function both as a protein-coding gene

and as a non-coding RNA (Kumar et al., 2014). If more mRNAs

were confirmed to have similar function, the actual pool of tran-

scripts with lncRNA-like functions might be even much larger

than the already documented sizable collections (Ulitsky and

Bartel, 2013). LncRNAs are in general less conserved than cod-

ing transcripts (Guttman et al., 2009) but have been clearly under

selective pressure and often exhibit tissue-specific expression

(Cabili et al., 2011), suggesting that they might carry out specific

functions. Studies performed in cultured cells have implicated

lncRNAs in diverse cellular processes ranging from chromatin

modification, RNA stability, to translational control (Batista and

Chang, 2013; Clark andMattick, 2011). A number of reports sup-

port a prevailing mechanism for lncRNA action where lncRNAs

interact with and organize histone writers, readers, andmodifiers

(Batista and Chang, 2013; Guttman et al., 2011) to regulate gene

transcription, although it remains to be determined whether the

majority of lncRNAs function through this mechanism.

The physiological significance of most lncRNAs at whole-

organism level is largely unknown, although emerging reports

indicate that lncRNAs could play critical roles in essential patho-

physiological processes. For example, an lncRNA close to the

interferon-l locus inmicewas demonstrated to regulatemicrobi-

al susceptibility in mice (Gomez et al., 2013). A recent study

showed that several lncRNA knockout mice exhibited develop-

mental defects (Sauvageau et al., 2013). Interestingly, significant

portions of disease-associated SNPs are distributed in non-

coding regions of the human genome (Hindorff et al., 2009),

suggesting that lncRNA mutations could be pathogenic. But

understanding their contribution to disease also requires careful

functional annotation of lncRNAs in animal and human physi-

ology. Of all physiological processes, nutrient sensing and

maintenance of metabolic homeostasis are among the most

fundamental for life. During fasting or starvation, the body coordi-

nates complex physiological responses to cope with altered

nutrient supplies, which are often accompanied by additional

changes in the immune and reproductive systems to further pro-

mote energy conservation. On the other hand, nutrient excess,

manifested clearly by human obesity, often has profound

negative impacts on the entire organism, including dyslipidemia,

insulin resistance, and tumorigenesis (Calle and Kaaks, 2004;
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Figure 1. Identification of a Liver-Enriched lncRNA Regulated by Metabolic State

(A–C) Graphic presentation of lncRNA transcripts that are enriched in liver (A), muscle (B), and adipose (C) tissues. The color depth represents the expression

levels of lncRNAs with red indicating higher expression.

(D) Expression levels of liver-enriched lncRNAs (lncLSTR indicated) in heart, kidney, liver, muscle, and white adipose tissue (WAT) of mice analyzed by quan-

titative real-time PCR.

(E) Expression levels of liver-enriched lncRNAs in the livers of mice (n = 4) fed ad libitum (Ad libitum), subject to a 24 hr fast (Fast) or a 24 hr fast followed by a 4 hr

refeeding (Refeed).

Error bars represent SEM, *p < 0.05.
Eckel et al., 2005). Since lncRNAsareamajor unexplored territory

of the mammalian genome, and defective energy metabolism is

connected to a wide range of pathological conditions, bridging

these two essential research areas could significantly contribute

to the advance of biology and also open new revenues to thera-

peutic intervention for diseases. In this study, we have identified

a metabolically regulated lncRNA in mouse we named liver-spe-

cific triglyceride regulator (lncLSTR), which plays an essential

physiological function in mammalian lipid homeostasis.

RESULTS

Identification of a Liver-Enriched lncRNA Implicated
in Metabolic Regulation
To identify lncRNAs that are potentially involved in systemic

metabolism, we first searched for lncRNAs that are enriched in
456 Cell Metabolism 21, 455–467, March 3, 2015 ª2015 Elsevier Inc.
key metabolic organs. By re-annotating the entire collection of

probe sets for one of most widely used Affymetrix gene chips,

Mouse Genome 430 2.0 Array, we found that 4,571 probes actu-

ally target lncRNAs documented in the Fantom 3 database (Liao

et al., 2011). Using a dataset of multi-tissue gene expressions

profiled with this Affymetrix chip, we identified over 30 lncRNAs

that are enriched in liver, muscle, and adipose tissues (Figures

1A–1C and S1A). We initially focused on lncRNAs in the liver,

the central nexus of energy metabolism. Among the 12 liver-en-

riched lncRNAs, three (lnc1–lnc3) exhibit liver-specific expres-

sions (Figure 1A), a pattern that was also confirmed by counting

reads of an independent RNA sequencing (RNA-seq) dataset of

multiple tissues (Figure S1B). Indeed, all three lncRNAs were

shown to be abundantly and predominately expressed in the

liver by analyzing our in-house samples (Figure 1D). We reason

that if an lncRNA regulates energy metabolism, its expression



level might fluctuate in response to changes in energy levels or

metabolic state. In mice subjected to fasting and refeeding,

expression levels for one of three liver-enriched lncRNAs (lnc3)

has a sharp decline after a 24 hr fast, and it is quickly recovered

upon refeeding (Figure 1E). We named this lncRNA liver-specific

triglyceride regulator (lncLSTR) based on its function character-

ized in this report. LncLSTR is an intergenic long non-coding

RNA localized in a region of the mouse genome that is syntenic

to human chromosome 1q25, yet a clear human homolog could

not be immediately identified using the BLAST algorithm (Figures

S1C and S6). LncLSTR is a cDNA that was initially characterized

in Fantom database (Kawai et al., 2001) and is capped, spliced,

and polyadenylated. We used three widely employed algorithms

to analyze the protein coding potential for lncLSTR, which all

indicate that lncLSTR lacks any coding capacity (Experimental

Procedures). In addition, none of the predicated short open

reading frames (ORFs) in lncLSTR match any known proteins

or functional protein motifs in current proteome databases,

further supporting that lncLSTR is a non-coding transcript.

Based on these observations, lncLSTR is a liver-enriched

lncRNA that is regulated by metabolic milieu in vivo, thereby

serving as a potential metabolic regulator in animals.

LncLSTR Depletion Has Profound Lipid-Lowering
Effects in Mice
To directly address the physiological role of lncLSTR in meta-

bolic regulation, we specifically depleted lncLSTR in the liver of

mice and studied its impact on energy metabolism. We tested

and identified a number of short hairpin RNAs (shRNAs) that

could suppress lncLSTR by more than 70% in mouse liver

when delivered by recombinant adenoviral vectors (Figure 2A).

This system allows us to assess the impact of liver-specific

lncLSTR depletion on systemic metabolism. We first profiled

essential nutrient factors in the plasma of lncLSTR knockdown

(KD) and control mice received lacZ shRNA adenoviruses. There

was no difference in plasma ketone, glycerol, or free fatty acid

levels between lncLSTR KD and control mice, whereas glucose

levels were slightly reduced by lncLSTR depletion (Figure S2A).

By contrast, we observed a significant reduction in plasma tri-

glyceride (TG) levels in lncLSTR KD mice compared to controls

(Figure 2B). Of note, reduced plasma TG levels in lncLSTR KD

mice occurred in all three feeding conditions (Figure 2B). All

major phenotypes of lncLSTR depletion were also corroborated

with a second pair of shRNA for lncLSTR (Figure S2B), affirming

that the metabolic changes we observed were specific to

lncLSTR knockdown in mice.

The drastic difference in plasma TG between lncLSTR KD

and control mice could be due to impaired intestinal and hepat-

ic TG secretion or enhanced plasma TG clearance by tissue

uptake. To distinguish these possibilities, we examined lipid

content of fecal excretions in lncLSTR KD and control mice

and detected only marginal differences in free fatty acid levels,

whereas we found no difference in TG and cholesterol levels

between the two groups (Figure S2C). Therefore, differential in-

testinal absorption is unlikely to be the primary reason for the

reduced plasma TG levels in lncLSTR KD mice. Given equal in-

testinal uptake, plasma TG levels reflect the delicate balance

between hepatic secretion and uptake primarily by muscle,

adipose, and liver itself. To compare liver TG secretion rates
Ce
between control and lncLSTR KD mice, we administrated

Poloxamer-407, a nonionic detergent that can block TG uptake

in mice (Millar et al., 2005), and monitored plasma TG levels for

several hours to calculate TG secretion rates. This experiment

revealed that TG secretion was not altered by lncLSTR deple-

tion (Figure 2C). Therefore, lncLSTR KD mice very likely have

enhanced tissue TG clearance leading to their lower plasma

TG levels.

To more vigorously test this idea, we performed a lipid load

assay by orally delivering a dose of olive oil into mice and

following their plasma TG levels for 4 hr. As expected, control

mice exhibited a rapid increase in plasma TG levels that peaked

around 2 hr post-administration (Figure 2D). LncLSTR KD mice,

however, only showed a marginal increase in their circulating TG

that quickly returned to baseline. These data strongly argue that

TG clearance is enhanced in mice with liver-specific loss of

function of lncLSTR.

Next, we sought to determine whether the lipid-lowering

effects of lncLSTR depletion could be exploited to improve

disease conditions associated with hyperlipidemia. We tested

this idea using a mouse model with a targeted mutation in apoli-

poprotein E (ApoE). ApoE�/� mice are best known for their

hypercholesterolemia but also exhibit significantly elevated tri-

glycerides in circulation, a known contributing factor for their

exaggerated atherogenesis (Le and Walter, 2007). Administra-

tion of lncLSTR KD adenoviruses into ApoE�/� mice caused no

change in their plasma cholesterol levels (Figure S2D) but

completely normalized their hypertriglyceridemia, demon-

strating that lncLSTR knockdown is also very effective in

lowering plasma TG in this disease model (Figure 2E). Hence,

liver-enriched lncRNAs such as lncLSTR could potentially be

targeted to develop novel therapeutic strategies for the manage-

ment of hyperlipidemia.

LncLSTR Depletion Increases ApoC2 Expression
and LPL Activities Leading to Enhanced Plasma
TG Clearance
Next, we explored the underlying mechanism for the enhanced

TG clearance in lncLSTR KDmice. TG clearance from circulation

primarily depends on the activities of lipoprotein lipase (LPL)

residing in the peripheral tissues such as fat and muscle (Gold-

berg and Merkel, 2001). When we examined the expression of

LPL and other key genes that control TG uptake in these tissues,

we found however that they were largely unchanged (Fig-

ure S3A). Consistently, post-heparin LPL activities were similar

between control and lncLSTR KD mice (Figure S3B). Expression

levels of hepatic genes involved in chylomicron and VLDL clear-

ance were also comparable between the two groups (Fig-

ure S3A). Consistent with these observations, TG levels in the

liver tissues of control and lncLSTR KD mice were indistinguish-

able (Figure S3E).

The liver is also able to secrete regulatory factors that directly

modulate LPL activities without changing their expression levels

(Williams, 2008). Such liver-derived LPL regulators include

apoC3 and angiopietin-like protein 3 (ANGPTL3), both of which

inhibit LPL activity, and apoC2, which is a potent activator of

LPL. Expression levels of apoC3 and ANGPTL3 were compara-

ble in lncLSTR KD and control mice, but strikingly there was a

very significant increase in apoC2 expression in the liver of
ll Metabolism 21, 455–467, March 3, 2015 ª2015 Elsevier Inc. 457
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Figure 2. LncLSTR Knockdown Reduces Plasma TG Levels in Mice

(A) Expression levels of lncLSTR in the livers of control and lncLSTR KD mice received shRNA adenoviruses for LacZ (LacZ sh) and lncLSTR (lncLSTR sh),

respectively (n = 6).

(B) Plasma TG levels in lncLSTR KD (lncLSTR sh) and control (LacZ sh) mice (n = 7) after a 6 hr fast (6h Fast), a 24 hr fast (24h Fast), or 6 hr refeeding after a 24 hr

fast (6h Refeed).

(C) TG secretion rates in lncLSTR KD and control mice (n = 6) determined by administration of Poloxamer-407 to block TG uptake.

(D) Plasma TG levels in lncLSTR KD and control mice (n = 7) orally receiving olive oil.

(E) Plasma TG levels in control (n = 8) and lncLSTR KD (n = 7) ApoE�/� mice.

Error bars represent SEM, *p < 0.05.
lncLSTR KD mice (Figures 3A and S2B). Furthermore, plasma

apoC2 protein levels were also markedly increased in lncLSTR

KD mice compared to controls (Figures 3B and S3C), whereas

there was a moderate decrease of apoC1 in the plasma of

lncLSTR KD mice and no significant change in protein levels

of apoC3, apoE, and Angptl8 (Figure S3C). If the increased

apoC2 was indeed a contributing factor for increased peripheral

tissue TG clearance in lncLSTR KD mice, we expected that

plasma from these mice would be able to activate LPL more effi-

ciently. Indeed, we observed that exogenous LPL activity was

strongly elevated in samples mixed with lncLSTR KD mouse

plasma compared to controls (Figure 3B). Such robust capacity
458 Cell Metabolism 21, 455–467, March 3, 2015 ª2015 Elsevier Inc.
for activation of LPL will strongly promote systemic TG clear-

ance, resulting in lower circulating levels. To further test this

hypothesis, we performed a TG uptake experiment in mice using

orally delivered 3H-triolein and demonstrated that heart, brown

fat, and soleusmuscle tissues of lncLSTR KDmice exhibit signif-

icantly increased uptake of radioactivities than those of control

mice, whereas hepatic TG uptakewas not changed (Figure S3D).

Furthermore, TG levels in soleus muscle during fasting, which

aremainly derived from LPL-mediated uptake of TG from VLDLs,

were significantly increased in lncLSTR KD mice compared to

controls (Figure S3E). To definitively test whether elevated

plasma apoC2 is a key factor that leads to enhanced LPL activity
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Figure 3. LncLSTR Regulates ApoC2 Expressions and Plasma LPL-Activating Capacity

(A) Gene expressions in the livers of control (lacZ sh) (n = 6) and lncLSTR KD (lncLSTR sh) mice (n = 5) after a 6 hr food withdrawal.

(B) Top: plasma apoC2 protein levels in control and lncLSTR KD mice. Plasma from individual mice of each group was analyzed by immunolotting. Bottom: LPL

activity stimulation by control or lncLSTR KD mouse plasma (n = 3).

(C) Top: apoC2 protein levels in plasma pooled from 6 mice of each group (control, lncLSTR KD, or lncLSTR and apoC2 double KD mice) were analyzed by

immunoblotting. Bottom: LPL activity stimulation by plasma of control, lncLSTR KD, or lncLSTR and apoC2 double KD mice (n = 8).

(D) Plasma TG levels in control (n = 9), lncLSTR KD (n = 10), or lncLSTR and apoC2 double KD mice (n = 9).

(E) Gene expressions in the livers of mice receiving control, lncLSTR KD, or both lncLSTR KD and lncLSTR rescue adenoviruses (n = 6)

(F) Plasma TG levels in mice receiving control, lncLSTR KD, or both lncLSTR KD and lncLSTR rescue adenoviruses (n = 9).

Error bars represent SEM, *p < 0.05.
and TG clearance in lncLSTR KD mice, we further knocked

down hepatic apoC2 by adenovirus-delivered apoC2 shRNA in

lncLSTR KD mice, which reversed the increased apoC2 level in

lncLSTR KD mice almost to the control level (Figures 3C and

S3F). This strategy effectively diminished the difference in LPL

activity stimulated by lncLSTR KD mouse plasma versus con-

trols (Figure 3C). More importantly, it caused a sizable rebound

of the reduced plasma TG levels associated with lncLSTR

knockdown (Figure 3D).

To gain further insights into the significance of lncLSTR tran-

script per se in regulating systemic TG metabolism and apoC2

expression, we performed a ‘‘rescue’’ experiment. Basically,

we injected lncLSTR KD adenoviruses to suppress endogenous

transcripts and concurrently rescued lncLSTR expression by

delivering a truncated lncLSTR that lacks the target sequence

for the shRNA (Figure S3G). In this system, the expression level
Ce
of lncLSTR could be significantly increased as compared to

lncLSTR KD mice (Figure 3E). Meanwhile, both decreased

plasma triglyceride and increased apoC2 expression in lncLSTR

knockdown mice were largely reversed as well (Figures 3E and

3F). Therefore, plasma TG appears to be inversely proportional

to the levels of apoC2 modulated by lncLSTR under all condi-

tions we have tested.

Taken together, these results strongly support that elevated

hepatic and plasma apoC2 levels are indeed an essential

underlying reason that lncLSTR depletion increases plasma TG

clearance.

LncLSTR Regulates ApoC2 Expression and Plasma TG
Clearance through an FXR-Mediated Pathway
To understand the mechanism by which lncLSTR regulates

apoC2 expression, we knocked down lncLSTR in primary
ll Metabolism 21, 455–467, March 3, 2015 ª2015 Elsevier Inc. 459
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Figure 4. LncLSTR Regulates ApoC2 through an FXR-Mediated Pathway

(A) Biological processes identified in a correlation analysis of lncLSTRwith coding genes based on 2,425 gene expression samples profiledwith AffymetrixMouse

Genome 430 2.0 Array. p value denotes the significance of gene enrichment in annotation terms.

(B) Cyp8b1 and Cyp7a1 expression in the livers of control and lncLSTR KD mice (left, n = 6) or in primary hepatocytes infected with control or lncLSTR KD

adenoviruses (right, n = 4).

(C) Top: illustration of bile acid synthesis pathway. Bottom: ratios of conjugated MCA/CA in the gallbladders of control or lncLSTR KD mice. Results represent

pooled bile from four mice.

(D) Gene expression in cultured hepatocytes treated with DMSO (control), CA, or MCA.

(legend continued on next page)
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hepatocytes but found that apoC2 levels were not changed in

this setting (Figure S5A), suggesting that lncLSTR does not

directly regulate apoC2 through a cell-autonomous mechanism.

To identify molecularmediators thatmight link lncLSTR to apoC2

expression, we employed a similar bioinformatic analysis that

initially allowed us to identify lncLSTR as an lncRNA metabolic

regulator. Since lncLSTR is one of the targets on the Affymetrix

Mouse Genome 430 2.0 Array, its expression levels had already

been documented alongside all coding genes in the over one

thousand microarray datasets using this chip that have been

deposited in the NCBI GEO database. The vast collection of

lncLSTR-mRNA coexpression information allowed us to perform

extensive correlation analyses to map potential physiological

pathways regulated by lncLSTR. Using this analysis, we found

that lncLSTR is implicated in multiple metabolic pathways (Fig-

ure 4A). In particular, lncLSTR is potentially involved in drug,

xenobiotics, and bile acid metabolism. Interestingly, these path-

ways are intrinsically connected and their proper functioning

depends on each other (Modica et al., 2009). Upon careful

inspection of the gene list generated by the bioinformatics anal-

ysis (Figure S4), we found that Cyp8b1, one of two rate-limiting

enzymes in bile acid synthesis, is among the genes whose

expression correlates with lncLSTR. Seventeen enzymes cata-

lyze bile acid synthesis, and two of them are very critical and

actively regulated. Cyp7a1 mediates the commitment step for

75% of all bile acids, thereby controlling the bile pool size,

whereas Cyp8b1 activity determines the ratio of two most abun-

dant bile acids in mouse, cholic acid (CA), and muricholic acid

(MCA), thereby controlling bile pool composition (de Aguiar

Vallim et al., 2013; Russell, 2009; Thomas et al., 2008) (Figure 4C,

bile acid pathway). Consistent with our correlation analysis, we

found that Cyp8b1, but not Cyp7a1, was significantly reduced

in the livers of lncLSTR KDmice (Figures 4B and S2B).We further

examined additional key enzymes of bile acid synthesis pathway

residing in different subcellular organelles including Cyp27a1

(Mitochondria), Cyp39a1 (Endoplasmic reticulum), Akr1d1

(Cytoplasm), and Baat (Peroxisome) and found that their

mRNA levels were largely not changed except a slight decrease

of Cyp27a1 in lncLSTR KD mice (Figure S5B), suggesting that

the overall bile acid synthesis pathway is largely intact. Further-

more, we found that Cyp8b1 was also significantly reduced in

primary hepatocytes in which lncLSTR was acutely depleted

(Figure 4B), suggesting that Cyp8b1 is one of the immediate

response genes downstream of lncLSTR and is potentially one

of direct targets of lncLSTR.

The significant reduction in Cyp8b1 in lncLSTR KD mice pre-

dicts a shift of the MCA/CA ratio of the bile acid pool (Figure 4C,

bile acid pathway). In addition to functioning as detergents which

facilitate lipid absorption, bile acids also possess diverse biolog-

ical activities through activation of endogenous nuclear recep-

tors (de Aguiar Vallim et al., 2013). The major bile acid receptor

in the liver is FXR, which mediates most of the biological effects

of bile acids on glucose and lipid metabolism (Zhang and

Edwards, 2008). Interestingly, FXR is also one of the best-char-
(E) Hepatic gene expressions in mice receiving control, lncLSTR KD, or both FXR

(F) LPL activities stimulated by plasma of mice receiving control, lncLSTR KD, o

(G) Plasma TG levels in mice receiving control, lncLSTR KD, or both FXR and lnc

Error bars represent SEM, *p < 0.05.

Ce
acterized regulators of apoC2 expression (Kast et al., 2001).

Since each bile acid activates FXR with different potency (de

Aguiar Vallim et al., 2013), a significantly altered bile composition

in lncLSTRKDmice could potentially increase apoC2 expression

through modulating FXR activity. To test this hypothesis, we

profiled bile acids in the gallbladder of lncLSTR KD and control

mice to reveal a sizeable increase in the ratio of conjugated

MCA versus CA in lncLSTR KD mice (Figure 4C).

To understand how such a shift in bile acid ratio could affect

FXR activity and apoC2 expression, we treated cultured hepato-

cytes with MCA or CA and found that both can increase expres-

sion of classical FXR targets such as Shp and Bsep (Figure 4D).

Intriguingly, MCA has lesser stimulatory effects on these genes

than CA, suggesting that MCA is actually a weaker FXR ligand.

However, we found that while apoC2 expression in hepatocytes

treated with MCA or CA increases, those treated with MCA

have significantly stronger enhancement (Figure 4D), which is

dependent on FXR (Figure S5C). Therefore, we have observed

a ligand-specific, differential transcriptional regulation by FXR

in which MCA-stimulated FXR appears to preferentially enhance

apoC2 expression compared to when FXR is stimulated by CA.

Finally, to definitively test whether the specific FXR activation

of apoC2 expression is a key effector of lncLSTR on TG clear-

ance, we simultaneously knocked down both FXR and lncLSTR

in mice and found that the elevated apoC2 in lncLSTR KD mice

was diminished when FXR was also reduced (Figures 4E and

S5D). FXR knockdown also reversed the capability of lncLSTR

KD mouse plasma to activate LPL (Figure 4F). Most importantly,

FXR knockdown effectively blunted the lipid-lowering effect of

lncLSTR depletion in mice (Figure 4G). To further investigate

the significance of FXR function in regulating systemic TG meta-

bolism by lncLSTR, we tested how lncLSTR affects plasma

TG levels in FXR null mice. Consistent with the results of FXR

knockdown, diminished effects of lowering plasma TG and

increasing apoC2 expression by lncLSTR KD were observed in

FXR null mice (Figures S5E and S5F). These results lend strong

support to our hypothesis that FXR activity and increased

apoC2 expression are essential to the enhanced TG clearance

in lncLSTR KD mice.

LncLSTR Interacts with TDP-43 to Regulate
Cyp8b1 Expression
We next sought to understand how lncLSTR regulates Cyp8b1

expression. First, we performed fractionation of mouse liver tis-

sue and found that lncLSTR is enriched in the nucleus (Figure 5A),

suggesting a potential role in gene transcription. Many lncRNAs

involved in transcription regulation often function through spe-

cific protein binding partners, especially histone modifiers (Gutt-

man et al., 2011). We then performed an RNA pull-down using

nuclear extracts of liver tissues to identify proteins that interact

with lncLSTR. Several additional bands were present in the

SDS-PAGE silver staining analysis of the fraction precipitated

with biotin-labeled lncLSTR compared to an antisense control

(Figure 5B). Proteins in these specific bands were identified by
and lncLSTR KD adenoviruses (n = 5).

r both FXR and lncLSTR KD adenoviruses (n = 5).

LSTR KD adenoviruses (n = 9).
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Figure 5. LncLSTR Interacts with TDP-43

(A) Levels of lncLSTR in whole-cell, cytosolic, or nuclear fractions of liver tissues pooled from 4 mice.

(B) Left: silver-stained SDS-PAGE gel analysis of proteins in nuclear extract of liver tissues that are bound to biotinylated lncLSTR or its antisense. The highlighted

regions were analyzed by mass spectrometry, identifying TDP-43 as a protein unique to lncLSTR. Right: immunoblotting analysis of proteins in nuclear extract of

liver tissues that are bound to biotinylated lncLSTR or its antisense using an anti-TDP-43 antibody.

(C) Left: anti-TDP-43 immunoblotting analysis of proteins in immunoprecipitates of liver tissues using an anti-TDP-43 antibody. Right: glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH), actin, and lncLSTR RNA levels in immunoprecipitates of liver tissues using an anti-TDP-43 antibody.

(D) Cyp8b1 expression in primary hepatocytes receiving lacZ shRNA, lncLSTR shRNA, scramble siRNA (scrb si), or TDP-43 siRNA in combination as indicated

(the Ct levels of Cyp8b1 and TDP-43 are �27 and �23, respectively).

Error bars represent SEM, *p < 0.05.
mass spectrometry, one of which was TDP-43, a known RNA

and DNA binding protein (Lee et al., 2012). We confirmed the

specific interaction between TDP-43 and lncLSTR by immuno-

blotting the lncLSTR-associated proteins with an antibody

specific to TDP-43 (Figure 5B). To test whether the lncLSTR-

TDP-43 interaction also occurs in vivo, we performed reciprocal

pulldown of TDP-43 using liver tissue (Figure 5C) and quantified

RNAs in the immunoprecipitates using quantitative real-time

PCR. These experiments revealed that lncLSTR is significantly

enriched in anti-TDP-43 precipitate but not in the IgG control

(Figure 5C).
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We next asked whether TDP-43 is functionally involved in the

regulation of Cyp8b1 expression by lncLSTR. TDP-43 knock-

down, when performed in combination with lncLSTR KD in pri-

mary hepatocytes, completely reversed the reduced Cyp8b1

expression associated with lncLSTR depletion (Figures 5D and

S5G). TDP-43 often acts as a transcriptional suppressor when

bound to DNA (Lee et al., 2012). Thus, it is possible that TDP-

43 binds to and inhibits the Cyp8b1 promoter and that this

inhibitory effect can be relieved when complexed with lncLSTR.

To test this hypothesis, we co-expressed TDP-43 with a Cyp8b1

promoter-driven luciferase construct in HEK293 cells and



demonstrated that the Cyp8b1 promoter activity induced by

HNF4a was suppressed by nearly 40% in the presence of

TDP-43 (Figure 6A). Interestingly, when lncLSTR was also pre-

sent, the inhibitory effect of TDP-43 on Cyp8b1 promoter was

significantly diminished (Figure 6A).

To further understand the molecular basis that TDP-43 regu-

lates Cyp8b1 expression, we took steps to map the TDP-43-

responsive locus on the Cyp8b1 promoter. We tested truncated

Cyp8b1 promoters ranging from1,800 to 200 bp and found that a

200 bp proximal Cyp8b1 promoter can still be suppressed by

TDP-43 (Figure 6B). To determine whether TDP-43 directly binds

to Cyp8b1 promoter, we performed a binding assay using re-

combinant TDP-43 proteins and a biotinylated 200 bp DNA frag-

ment of the Cyp8b1 promoter. These results demonstrate that

TDP-43 directly interacts with the Cyp8b1 promoter without

the need of accessory proteins (Figure 6C). Subsequently, we

localized the TDP-43 binding site on Cyp8b1 promoter to a short

40 bp region (�200 to�160) by screening several truncated ver-

sions of the original 200 bp promoter (Figure 6D). Finally, to

determine whether lncLSTR also regulates TDP-43 binding to

Cyp8b1 promoter in vivo, we performed chromatin immunopre-

cipitation of liver tissues using a specific TDP-43 antibody and

demonstrated that TDP-43 binds to the Cyp8b1 promoter (Fig-

ure 6E). Intriguingly, TDP-43 binding to the Cyp8b1 promoter

was clearly enhanced when lncLSTR was depleted (Figure 6E),

further confirming that the inhibitory effect of TDP-43 on

Cyp8b1 promoter is also subject to the regulation of lncLSTR

in vivo.

Based on these observations, we propose that interaction of

TDP-43 with lncLSTR reduces its occupancy and inhibition of

the Cyp8b1 promoter. Depletion of lncLSTR leads to increased

binding of TDP-43, reduced Cyp8b1 gene expression, and a

substantial change in bile acid composition. The altered bile

acids activate FXR to increase apoC2 levels, resulting in

enhanced TG clearance in mice (Figure 6F).

DISCUSSION

In recent years, lncRNAs have been being continuously discov-

ered at an unprecedented pace, yet their physiological signifi-

cance remains elusive (Derrien et al., 2012; Xie et al., 2014).

Mammals use complex hormonal and metabolite networks to

allow organs to communicate and to maintain physiological

homeostasis. The identification of the regulatory function of

lncLSTR in systemic triglyceride metabolism suggests that ani-

mals could employ lncRNAs to coordinate metabolic processes

in multiple organs. Regulation of TDP-43/Cyp8b1 by lncLSTR

consequently impact an FXR/apoC2 pathway to regulate TG

clearance, indicating that there might be extensive connections

between lncRNAs and the established signaling and metabolic

network. FXR activity modulates multiple metabolic pathways

including bile acid synthesis and lipid homeostasis (de Aguiar

Vallim et al., 2013). Activation of this pathway has pleiotropic

beneficial effects in the context of metabolic disorders (Thomas

et al., 2008). In addition, TDP-43 is a key regulator of microRNA

and mRNA processing aside from being a transcriptional

repressor (Lee et al., 2012). Given that FXR deficiency did not

completely block the lipid-lowing effects of lncLSTR depletion,

the interaction between lncLSTR and TDP-43 might have addi-
Ce
tional molecular and physiological functions, representing an

interesting area for future investigations.

Our study alsoprovides further insights into the role of apoC2 in

plasma TG metabolism, particularly its functional significance to

LPL activation. It is well documented that patients with homozy-

gous deficiency of apoC2 have elevated TG and significantly

reduced LPL activity supporting that apoC2 is an LPL activator

(Cox et al., 1978). But this notion was complicated by observa-

tions that apoC2 heterozygotes in human often do not exhibit

hypertriglyceridemia (Cox et al., 1978; Gabelli et al., 1993), and

apoC2 transgenic mice paradoxically have hypertriglyceridemia,

potentially due to the blockage of the VLDL and LPL interaction

by the high apoC2 levels (Shachter et al., 1994).We have demon-

strated that a reversal of the enhanced apoC2 expression in

lncLSTRKDmiceby liver-specific apoC2knockdown is sufficient

to cause rebound of the reduced plasma TG levels associated

with lncLSTR knockdown (Figures 3C and 3D). Consistently,

recent reports showed that infusion of recombinant apoC2 in

mice results in decrease of TG levels (Lee et al., 2011), and an

apoC2mimetic peptide activates LPL and decreases triglyceride

levels in mice (Amar et al., 2015). These results support that

apoC2, when regulated within physiological range, positively

regulates LPL activities and plasma TG uptake in mice.

In light of thousands of uncharacterized lncRNAs that could

also have important physiological functions, our work provides

a practical and efficient platform for identification and character-

ization of functional lncRNAs in crucial physiological processes.

It is currently unclear how many lncRNAs are functional, and it is

still very challenging to identify functionally important lncRNAs

from the large collection of documented non-coding transcripts.

These difficulties are partly due to the fact that some lncRNAs

could be simple byproducts of pervasive transcription of coding

genes. In addition, it is often more difficult to infer function for an

lncRNA based on its evolutional history because the current

comparative genomic tools cannot easily detect homology

between lncRNAs (Ulitsky and Bartel, 2013). We have carried

out detailed analyses of human/mouse homology of lncLSTR

by analyzing human RNA-seq databases for potential transcripts

expressed from the lncLSTR syntenic region in human genome

and could not identify a clear human homolog for it (Figure S6).

Therefore, it remains to be determined whether a human ‘‘homo-

log’’ of lncLSTR has significantly evolved in its primary sequence

yet maintains its structure or function. Nevertheless, it is impor-

tant to be able to efficiently identify those lncRNAs that are likely

to be functional as predicted by a knowledge-based analysis

and then to quickly test their function in vivo. Our approach is

to correlate lncRNA expression with coding gene expressions

within large, established collection of tissue-specific datasets

followed by rapid virus-mediated lncRNA knockdown. Our

platform can also be adapted to perform tests pre-clinically

to determine whether lncRNAs, especially those that have clear

human homologs, could constitute therapeutic targets for

metabolic disorders. Of course, more studies are needed before

the full potential of lncRNAs as a therapy can be assessed.

However, considering that most disease-associated SNPs

are distributed in non-coding regions of the genome (Hindorff

et al., 2009), functionally connecting even a small portion of

lncRNAs to specific diseases could generate a paradigm shift

on the drug discovery process.
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Figure 6. LncLSTR Interacts with TDP-43 to Regulate Cyp8b1 Expression

(A) Cyp8b1 promoter-driven luciferase activities in cells transfected with HNF4a expression vector in combination with vectors expressing either TDP-43 or

lncLSTR. Negative control for HNF4a and TDP-43 is a pcDNA 6.2 vector expressing a yellow fluorescent protein, and negative control for lncLSTR is the empty

pcDNA 6.2 vector.

(B) Luciferase activities driven byCyp8b1 promoter (200 bp) in cells transfectedwith HNF4a expression vector in combination with vectors expressing either TDP-

43 or YFP control.

(C) In vitro binding of biotinylated Cyp8b1 promoter (�200–1) with recombinant TDP-43. A biotinylated Cyp8b1 promoter fragment (�1,503–1,303) was used as a

negative control.

(legend continued on next page)
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In summary, our work reveals a novel lncRNA signaling

pathway that operates in a physiological context. We also

provide a framework for future identification and functional anno-

tation of lncRNAs in systemic metabolism and other crucial

physiological processes. Of note, our bioinformatics analyses

have revealed that key metabolic organs such as muscle and

adipose also specifically express a number of lncRNAs. A critical

objective for the future would be to elucidate the potential

interactions and integrations of these lncRNAs to coordinate

metabolic responses.

EXPERIMENTAL PROCEDURES

Bioinformatic Analyses

Mouse multi-tissue expression data (GSE9954, NCBI GEO database), which

measured gene expression in 22 mouse tissues using the Affymetrix Mouse

Genome 430 2.0 Array with two to three replicates for each tissue, was used

to identify mouse liver enriched lncRNAs. The microarray data were re-anno-

tated based on the annotation of Fantom 3 and Refseq databases using

the preprocessing method ‘‘MAS5’’ run by ncFANs (http://www.bioinfo.org/

ncfans/) to obtain expression profiles containing 14,861 coding genes and

4,571 lncRNAs (Liao et al., 2011). Briefly, for the total 496,468 probes in the

Mouse 430 2.0 array, only those perfectly matching to a transcript in the

non-coding sequences of Fantom 3 or coding sequences in Refseq database

were retained, giving rise to two sets of probes that targeted coding and non-

coding transcripts. We also removed the non-coding probes that matched

coding cDNA sequences in both the Refseq database and FANTOM3 project.

After these filtering processes, 67,089 probes (13.5%) perfectly matched the

FANTOM3 non-coding RNAs but not any Refseq mouse coding transcript,

and 248,116 probes (50.0%) matched Refseq coding transcripts but not any

non-coding RNAs. We also removed an additional 39,775 probes (8.0%)

that matched both Refseq coding transcripts and FANTOM3 lncRNAs. To

further reduce the noise, we removed probes matching more than one gene,

and to increase the accuracy, we discarded genes that were targeted by

less than three probes, leaving 14,861 coding genes and 5,169 non-coding

genes. To obtain an even more reliable set of non-coding genes, we removed

non-coding genes with a Codon Substitution Frequency score <300, as well as

those lncRNA loci whose genomic region could not be transformed from the

mm5 to mm9 of the mouse genome sequence release. Finally, 14,861 coding

genes and 4,571 lncRNA genes were retained. On average, coding and non-

coding genes were targeted by 14.9 and 11.2 probes, respectively. The tissue

enrichment of lncRNA expression was evaluated by Shannon Entropy, the

measurement of information content occurred as directed in order to identify

tissue-specific coding genes (Zhang and Zhang, 2011). As the information

content (tissue-enrichment) of a transcript increases, its entropy decreases.

The lncRNAs with overall expression entropy less than three and with categor-

ical expression entropy for each tissue less than four were considered to be

tissue-specific lncRNAs. The mean Fragments Per Kilobase of transcript per

Million (FPKM) for each liver-enriched lncRNAs were calculated based on a

RNA-seq dataset of six different mouse tissues including heart, hippocampus,

liver, lung, spleen, and thymus (Keane et al., 2011).

The protein-coding potential of lncLSTR sequence was evaluated by three

widely used algorithms, Coding Potential Calculator (CPC) (Kong et al.,

2007), Coding-Non-Coding Index (CNCI) (Sun et al., 2013), and Coding

Potential Assessment Tool (CPAT) (Wang et al., 2013). For CPC, transcripts

with scores more than 1 are classified as ‘‘coding,’’ less than�1 as ‘‘non-cod-

ing,’’ and between �1 and 1 are marked as ‘‘weak non-coding’’([�1, 0]) or

‘‘weak coding’’([0, 1]), respectively. The CPC score of lncLSTR is �1.12249,

which was calculated with http://cpc.cbi.pku.edu.cn/programs/run_cpc.jsp

using default thresholds. For CNCI, the transcripts with scores more than
(D) In vitro binding of biotinylated Cyp8b1 promoter fragments as indicated with

(E) Chromatin immunoprecipitation of liver tissues of control and lncLSTR KDmice

Cyp8b1 (targeting �392 to 1) or b-actin promoters.

(F) A working model where lncLSTR regulates a TDP-43/FXR/apoC2 pathway to

Error bars represent SEM, *p < 0.05.

Ce
0 are classified as coding while less than 0 are non-coding. The CNCI score

of lncLSTR is �1.59, indicating that it is a non-coding RNA. For CPAT, mouse

coding probability (CP) cutoff is 0.44, so transcripts with scores more than

0.44 are classified as ‘‘coding’’ and less than 0.44 as ‘‘non-coding.’’ The cod-

ing potential of lncLSTR calculated with http://lilab.research.bcm.edu/cpat/

index.php using default thresholds is 0.38, also indicating that it is a non-

coding transcript.

Wescanned lncLSTR frombothdirections to identify all putative open reading

frames (ORFs)over150bpusingATGasstart codonandTAA, TAG, TAGasstop

codons, and found five short ORFs, none of which are over 300 bp, the cutoff for

lncRNAs.We thenused theputativeORFs tosearchproteindatabases including

all non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF,

excluding environmental samples of unknown sources from WGS projects,

and found no match to any known protein. Finally, we searched these putative

ORFs against the Conserved Domain Database (http://www.ncbi.nlm.nih.gov/

Structure/bwrpsb/bwrpsb.cgi) and did not find any match.

2,425 individual samples from 34 Affymetrix Mouse Genome 430 2.0 Array

datasets deposited in NCBI GEO database (http://www.ncbi.nlm.nih.gov/

geo/) were used to construct a ‘‘two-color’’ co-expression network including

both coding and non-coding genes with an established method (Guo et al.,

2013) to predict potential biological processes in which lncLSTR might be

involved. Each of the 34 datasets consists of nine or more different experi-

mental conditions or cellular states, which include a number of biochemical

and biophysical conditions, various tissue resources, and diverse biological

processes. The accession numbers of datasets used in this analysis are

GSE8582, GSE8307, GSE8249, GSE7759, GSE7012, GSE6678, GSE6595,

GSE6514, GSE6487, GSE5976, GSE5296, GSE4051, GSE1986, GSE1479,

GSE1435, GSE13149, GSE12769, GSE11923, GSE11222, GSE10871,

GSE10493, GSE10246, GSE10765, GSE11922, GSE6065, GSE12982,

GSE13765, GSE11056, GSE9954, GSE9809, GSE9630, GSE9442, GSE9338,

and GSE4288.

Adenovirus Production and In Vivo Adenovirus Administration

The shRNAs for lncLSTR, FXR, and apoC2 were designed to act against

mouse sequences (lncLSTR shRNA1: 50-GTTGGAAGCTCTAAATAAA-30,
shRNA2: 50-GACGATTGCTACATGTATA-30; FXR shRNA: 50-GTGTAAATCT

AAACGGCTA-30; apoC2 shRNA: 50-TCCCTTCCTGCCACTACAT-30). The

hairpin template oligonucleotides were synthesized by Integrated DNA

Technologies and were subsequently cloned into the adenovirus vector of

the pAD/Block-it system (Invitrogen) according to the manufacturer’s proto-

cols. Rescue construct of lncLSTR was generated by PCR-amplifying a

truncated lncLSTR that lack 299 bp at 50 end carrying the shRNA1 target

sequence, and it was subsequently cloned into pAdv5 adenovirus vector for

virus packaging. Adenoviruses were amplified in HEK293A cells and purified

by CsCl gradient centrifugation. Purified viruses were desalted with PD10

columns (GE Healthcare Life Sciences) and titered with Adeno-X Rapid

Titer Kit (Clontech). Adenoviruses were delivered into mice intravenously at

1–2 3 109 pfu/mouse. In the case of double knockdown experiments, two

viruses of equal titer were first mixed, then each mouse received 2 3 109

pfu total virus. After 7 to 12 days, animal experiments were performed, and

tissue samples and plasma were harvested for further analysis.

Triglyceride Secretion

Mice were fasted for 6 hr. In vivo secretion rates of triglyceride (TG) into plasma

were determined in conscious, unrestrained mice, following intraperitoneal in-

jection of 1 g/kg body weight Poloxamer 407 (P-407, Sigma). Immediately

before, at 60 min, and 120 min after P-407 administration, tail vein blood sam-

ples were taken for TG level measurement with a colorimetric assay system

(Sigma) adapted for microplate format. TG secretion rates were calculated

using the slope between 60 min and 120 min, based on the assumption of a

plasma volume of 3.5% of body weight.
recombinant TDP-43.

using an anti-TDP-43 antibody. Bands were amplified with specific primers for

control plasma TG clearance in mice.
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Oral Lipid Tolerance Test

Mice were fasted for 4 hr and then received 0.2 ml olive oil by oral gavage.

Blood was taken from the tail vein right before and at different time points

after the oil load (0 min, 30 min, 1 hr, 2 hr, 3 hr, and 4 hr) to measure total

triglyceride levels in the blood by using the device and triglyceride strips

from Cardiochek.

Plasmid Constructs and Reporter Assay

The full-length TDP-43 was amplified frommouse liver cDNA and inserted into

the pcDNA6.2 mammalian expression vector (Invitrogen). A yellow fluorescent

protein (YFP) cDNA was cloned into the same vector as a control. A plasmid

carrying lncLSTR was purchased from B-Bridge International and lncLSTR

was sub-cloned into pcDNA6.2. Cyp8b1 promoters with different lengths

were amplified by PCR using mouse genomic DNA and cloned into a promo-

terless pcDNA6.2 vector with a firefly luciferase reporter. HEK293A cells were

maintained in DMEMmedium supplemented with 10%CCS. Cells were trans-

fected with Cyp8b1 reporter, HNF4a (Plasmid 33006, Addgene), lncLSTR, and

TDP-43 or YFP vectors, using polyethylenimine (PEI), and the luciferase assay

was performed 24 hr later using the Dual-Luciferase Reporter Assay Kit

(Promega). Transfection efficiency was measured by normalization to Renilla

luciferase activity expressed from a co-transfected pTK-RL vector (Promega).

RNA Pull-Down Assay and Native RNA Immunoprecipitation

The RNA pull-down was performed as described previously (Rinn et al., 2007).

Briefly, biotin-labeled RNAs were in vitro transcribed using the Biotin RNA

Labeling Mix and T7 RNA polymerase (Ambion), and purified with the RNeasy

Mini Kit (QIAGEN) on-column digestion of DNA. To prepare the mouse liver

nuclear extract, frozen liver tissueswere homogenized using a dounce homog-

enizer with 15–20 strokes in nuclear isolation buffer (250 mM sucrose, 10 mM

Tris-HCl [pH 7.5], 1 mM EDTA with protease inhibitors). Nuclear pellets were

collected by centrifugation at 1,000 3 g for 10 min, resuspended in 1 ml

RNA immunoprecipitation (RIP) buffer (150 mM NaCl, 20 mM Tris [pH 7.4],

1 mM EDTA, 0.5% Triton X-100 with protease inhibitors and RNaseOUT).

The lysates were mechanically sheared again using a dounce homogenizer

with 15–20 strokes. Nuclear membrane and other debris were pelleted by

centrifugation at 12,000 rpm for 10 min. The folded sense or anti-sense

RNAs (1 ug) were added into 2 mg pre-cleared nuclear lysates (supplemented

with 0.2 mg/ml heparin, 0.2 mg/ml yeast tRNA and 1 mM DTT) and incubated

at 4�C for 1 hr. Sixty microliters of washed Streptavidin-coupled Dynabeads

(Invitrogen) were added to each binding reaction and further incubated at

4�C for 1 hr. Beads were washed briefly five times with RIP buffer and heated

at 70�C for 10 min in 13 LDS loading buffer, and the retrieved proteins were

visualized by SDS-PAGE and silver staining. The unique protein bands shown

in the sense RNA pull-down were identified by Mass Spectrometry. For native

RIP, 5 ug anti-TDP43 antibody or rabbit IgG were added into 3 mg precleared

liver nuclear lysates and incubated at 4�C for 2 hr. 50 ul Dynabeads Protein G

were added and incubated for 1 hr at 4�C with gentle rotation. Beads were

washed briefly five times with RIP buffer and resuspended in 1 ml of Trizol.

Co-precipitated RNAs were isolated and analyzed by RT-PCR.

Recombinant Protein Binding Assay

400 ng biotin-labeled Cyp8b1 promoter fragments and 1 ug recombinant

TDP-43 protein (OriGene, TP310639) were incubated in 300 ul binding buffer

(0.1 mg/ml BSA, 10 ng/ul sperm DNA (Sigma, D7656), 5% glycerol, 0.5 mM

DTT, 20 mM HEPES,50 mM KCl,1 mM MgCl2, 0.2% NP-40) for 30 min at

25�C. 30 ul streptavidin beads were added into the binding reaction and incu-

bated for another 30 min. Beads were washed briefly four times with binding

buffer and boiled in 13 SDS loading buffer, and the retrieved proteins were

visualized by SDS-PAGE and western blot.

Chromatin Immunoprecipitation Analysis

Chromatin immunoprecipitation (ChIP) assays of frozen liver tissue were

performed using a Simple ChIP Enzymatic Chromatin IP kit (Cell Signaling

Technology) according to the manufacturer’s protocol. Immunoprecipitation

was performed using an anti-TDP-43 antibody (ab41881) from Abcam or

with rabbit IgG as a negative control. Primers used for amplifying Cyp8b1

and b-actin promoters are: Cyp8b1-chip-f, 50-TTAGAGACGAGGAAAGAGA

TGTGTACA-30; Cyp8b1-chip-r, 50-CAGCGCTGGAATTGCTTTATG-30; Actin-
466 Cell Metabolism 21, 455–467, March 3, 2015 ª2015 Elsevier Inc.
chip-f, 50-GCTTCTTTGCAGCT CCTTCGTTG-03; Actin-chip-r, 50-TTTGCACA

TGCCGGAGCCGTTGT-30. The PCR cycle parameters were 95�C for 5 min,

then 30 cycles of 95�C for 30 s, 60�C for 30 s, and 72�C for 45 s, followed

by a final extension at 72�C for 5 min for both of ChIP product and input (repre-

sent�0.2%). PCR products were resolved by electrophoresis in a 2%Agarose

E-gel (Invitrogen).

Statistical Analysis

Values represent mean ± SEM. Statistical significance of differences was

determined by Student’s t test or one-way ANOVA with Bonferroni’s post

hoc comparison where appropriate. p values less than 0.05 were considered

to be significant.
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