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An Overview of Multivariate Data Analysis 
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Harvard University 

A cross section of basic yet rapidly developing topics in multivariate data 
analysis is surveyed, emphasizing concepts required in facing problems of 
practical data analysis while de-emphasizing technical and mathematical detail. 
Aspects of data structure, logical structure, epistemic structure, and hypothesis 
structure are examined. Exponential families as models, problems of inter- 
pretation, parameters, causality, computation, and data cleaning and missing 
values are discussed. 

1. INTRODUCTION 

Over the past quarter century, the technology of computation has experienced 
a revolutionary development which continues unabated, so that sophisticated 
analyses of large and complex data sets are becoming rapidly more feasible, 
while repeated analyses of small-to-moderate sized data sets can be virtually 
instantaneous from table top terminals in the statistician’s office. The hope has 
often been expressed that the technological revolution in computation would 
bring in its wake a comparable revolution in data analysis techniques, so that the 
science of data analysis would jump to a discernibly higher level of organization, 
power, and beauty. Mathematical statistics could then have a regeneration of its 
own as it faced the mathematical problems growing out of the new formulations 
of data analysis. Progress towards the projected new era has so far been limited, 
but many areas are visibly taking shape, and the next quarter century is full of 
promise as a period in which notable developments will appear. This paper 
concerns directions of conceptual development which, in the view of the author, 
will generate important components of the desired forward push. 
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Statisticians will increasingly require concepts adequate to frame analyses 
of complex highly multivariate data sets. But many academic statisticians have 
tended to define multivariate analysis narrowly, excluding even such obviously 
multivariate data types as factorial experiments, contingency tables, and time 
series. A preferable viewpoint would be to start with ordinary “univariate” 
data as the simplest case of multivariate data-relating one substantive variable 
(like weight) to an indexing variable (labelling the animals weighed)-and to 
place no rigid limits on the varieties of data types to be called multivariate. 
The standard types of textbooks of multivariate analysis (for example, [2, 8, 331) 
present basic and elegant techniques built around multiple linear regression, 
correlations including canonical correlations, multiple linear discriminant 
analysis, and principal component analysis. The narrow range here reflects 
categorizations more natural for mathematical statistics than for applied 
statistics. It is encouraging that the direct predecessors [27, 281 of the new 
Journal of Multivariate Analysis embrace a broad outlook. 

Theorists of multivariate analysis clearly need to venture away from multi- 
variate normal models. One might also hope for less emphasis on technical 
problems within specific theories of inference, whether frequentist or Bayesian, 
and whether decision-oriented or conclusion-oriented. Instead, attention should 
be directed towards questions posed by data, for example: It is plausible to 
ignore certain possible relations ? How should one sift through large arrays of 
interaction-type parameters to find those which are likely to be reproducible ? 
What simple systems of functional forms of distributions are likely to be adequate 
to fit the data without being overly rich ? What are the criteria which measure 
fit? Can simplifying structure be acceptably introduced into complex models, 
as by specifying a prior distribution of parameters which itself has estimable 
parameters ? What quantities of importance does a certain model predict ? 
What quantities can be robustly estimated, and what others, such as properties 
of tails, are sensitive to distribution assumptions? How are wild values to be 
detected and handled? Eventually, a more utilitarian and catholic viewpoint 
may lead to new categorizations of the subject of statistical analysis, and thence 
to new emphases in theoretical statistics. 

The data analyst envisaged here is a professional who sits in a central position 
among investigators with data, theoretical statisticians and computer specialists. 
Among these traditional scientific types, he should serve the objectives of 
communication and integration. His direct contributions are to the development 
of new techniques and to the accumulated experience in the use of many 
techniques. For this, he needs the wisdom to evaluate proposed techniques 
along dimensions of efficiency and resistance to error, both statistical and 
computational, and along the dimension of relevance to the substantive scientific 
enterprise involved. 
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2. ASPECTS OF DATA STRUCTURE 

A primary need is for a framework which permits adequate classification and 
description of a data set for data analytic purposes. The framework sketched 

below goes beyond the logical or network aspects of data structure (see 
Section 2.1), to include basic ways of thinking about data which help bring out 
meaning (Section 2.2), and to include formal mathematically expressed 
hypotheses (Section 2.3). The three levels of data structure are ordered in the 

sense that the second draws on the first while the third draws on the first two. 
Together they are conceived as providing the basic ingredients for the analyst’s 
model of his data. 

2.1. Logical structure. Any data set can be represented as a list of values of 
variables where each value must be tagged by identifiers for the variable, for the 

type of unit, and for the specific unit described by the value. For example, the 
value 121 may refer to the result of an I.Q. test devised for 8-year old children 
generally and applied to John Doe in particular. Usually, however, a data set can 
be represented much more compactly than in the list form with every value 
tagged by three pieces of information. Compactness is possible because the data 
have a logical structure defined by interrelationships among the variables and 

units involved. 
Understanding the logical structure of a data set provides more than a guide 

to efficient physical representation of the data. Such understanding is also a 
fundamental prerequisite for understanding at the deeper level of substantive 

scientific information conveyed by data. 
The practice in statistics and in most fields of application has been to treat 

each data set on an ad hoc basis, i.e., to obtain a grasp of the logical structure and 
to use this knowledge in data representation and in motivating analyses, but 
still to leave the understanding of structure implicit in the sense of not relating 
the particular structure to a highly developed, inclusive, multifaceted and 
formal typology of data structures. Indeed, in the present state of the art, only a 

rudimentary description of the required typology is available. Improved 
descriptions may yield dividends in uncovering important directions of progress 
for multivariate data analysis. 

The basic concept is variable. Variables can be conceived as substantive 

variables or indexing variables (cf. Section 2.2). Usually a given variable is 
viewed as predominantly one or the other, but a dual viewpoint is always possible. 
Thus, I.Q. is usually regarded as a substantive variable related to educational 
psychology, while the names of 8-year old children are mainly values of an 
indexing variable. But the latter could convey information about national 
origins, and thus become substantive, while I.Q. could be regarded formally 
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as a device for stratifying individuals, for example, to construct a frequency 
distribution, which is more akin to indexing individuals than to evaluating them 
in some meaningful way. Since considerations of logical structure relate primarily 
to the indexing or stratifying aspect of variable conception, a variable should be 
viewed in Section 2.1 as a logical device which groups units into categories, viz., 
categories defined by a common value of the variable. 

It is clear that an important piece of information about each individual 
variable is the mathematical space in which the variable takes values. The chief 
instances are (a) dichotomy, such as YES or NO, (b) nonordered polytomy, 
such as 4 different chemical drug treatments, (c) ordered polytomy, such as 
GOOD or FAIR or POOR, (d) integer response (usually nonegative, often 
counts), and (e) continuous response, at least with enough digits recorded to 
make the assumption of continuity an adequate approximation. Mixtures of 
these types also appear. The description of the logical structure of a given set of 
data begins naturally with a list of all the variables involved, together with a 
description of the space of possible values for each variable. 

A suggested second element in the description is a tree structure where each 
node corresponds to one of a complete set of k variables (including indexing 
variables) and where the k nodes are interconnected by a set of k - 1 directed 
lines. It should be emphasized that each node corresponds to a variable as a 
concept, not to a specific value or data point. Figures la,b,c,d illustrate typical 
variables. A variable with no branch directed into its node may be called a root 
variable. Most often, a single data set has only one root variable which is the 
indexing variable of the individuals or units or atoms described by the remaining 
variables. The nodes corresponding to the remaining nonroot variables each 
have an entering branch coming from the node corresponding to the indexing 
variable of the set of units to which the variable applies. The standard example 
of multivariate analysis, as illustrated in Fig. la has a single type of unit measured 
on a set of substantive variables. Figure lb illustrates how there can be more 
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FIG. la. Tree structure for standard multivariate sample. 
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b) 
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FIG. 1 b. Tree structure with more than one root variable. 
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FIG. lc. Hierarchical tree structure. 
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FIG. Id. Tree structure with an artificial root variable and with variable condi 
tioning. 
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than one root variable and, correspondingly, more than one branch entering 
a nonroot variable. If a nonroot variable is conceived as an indexing variable 
whose possible values or levels are susceptible to further classification, then 
several branches may emerge from the node of an indexing variable, as illustrated 
in Fig. lc. These hierarchical structures are familiar to practitioners of the 
analysis of variance, where the tree structure implies a list of possibly meaningful 
mean squares which can be computed from the data. 

Figure 1 d illustrates two kinds of issue which may complicate the use of a tree 
structure of variables. First, the choice of what to identify as units and as 
variables is not necessarily unambiguous. A common example involves time as an 
index variable. If an animal is weighed at successive points of time, the structure 
may be conceived as a string of different weight variables defined over the 
indices of individual animals. An alternative which may often be more streamlined 
is to create a new indexing variable of (animal, time) pairs, so that animal 
index, time index, and weight become three variables defined over the new 
indexing variable. The second issue concerns what may be called a conditioned 
or f&red variable, viz., a variable defined only over a subset of the values of an 
indexing variable, where the subset is determined by the values of one or more 
variables along directed branches growing out of the same indexing variable. 
The examples shown in Fig. Id relate to certain variables being unavailable 
after death and certain variables being available only on one sex. The device 
suggested for denoting a conditioned variable is a second type of directed branch 
proceeding from the conditioning variable to the conditioned variable, 
represented as a dotted line in Fig. Id. 

It is interesting that the conditioned variable concept introduces a type of 
nesting in which variables are nested within categories of other variables, while 
the hierarchical tree structure illustrated in Figs. lc and Id introduces nesting 
in which units are nested within entities of a different type. These two types of 
nesting are logically distinct and should not be confused with each other. 

The two aspects of variable structure described above, viz., the aspect of space 
of values and the aspect of tree structure, are nonspecific in the sense of applying 
to many possible data sets involving the same variables rather than applying 
specifically to a given data set whose structure is desired as a prelude to analysis. 
Some tightening of the structure may be possible if it is meant to apply only 
to a specific data set. Thus, some or even most possible values of a certain 
variable may not appear in the data set. Also, there may be de fuc20 variable 
conditioning, as when certain information was not recorded or was lost on certain 
blocks of data. 

A third aspect of logical data structure is Mance. Balance refers quite directly 
to a specific data set. The terms balanced or partially balanced are often used in 
connection with designs involving blocking and factorial structures, but the 

683/‘/3-S 
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definitions given are usually highly specific to narrow situations or they are 
somewhat loose. A path to a definition which is both precise and general is to 
associate balance with the recognition of groups of symmetries under the 
permutation of levels of certain variables. For example, an array of R rows and 
C columns with n observations in each of the RC cells has symmetry under the n! 
permutations of index levels within each cell and also under the R!C! permuta- 
tions of cells. If the number of observations nij in row i and column j varies, 
then there may be balance only within cells, unless nii depends only on i or on j, 
in which cases different groups of symmetries come into play. Another example 
of balance, although not often referred to as such, is the familiar multivariate 
data matrix of n rows and p columns giving the values of p variables on each of n 
individuals. The logical structure of such a data matrix is clearly invariant under 
all n! permutations of the individuals. It is also invariant under certain permuta- 
tions of variables, for example all p! permutations of variables of the same type 
such as continuous measurements. 

Balance makes possible the efficient storage of data as multiway arrays where 
the labeling of individual values of variables can be represented very compactly. 
Balance also introduces simple structure into mathematical models and related 
theory, such as when balance introduces simplifying orthogonalities into the 
models for analysis of variance. The benefits include simpler theory of inference, 
simpler computational algorithms for data analysis, and simpler interpretation 
of the results of analysis. The price is mathematical analysis of many special 
cases, for there are many kinds and degrees of symmetry possible in a reasonably 
complex data structure, and detailed development of techniques to take advantage 
of the symmetries is correspondingly varied. Finally, it may be noted that the 
concept of missing value is closely related to that of balance. From the viewpoint 
of logical data structure alone there is no reason to tag any particular absent 
observation as missing unless it destroys symmetry. An important area of concern 
about missing values in practical data analysis centers around repairing the 
damage from destroyed symmetry (cf., Section 7). 

There is at present no polished typology of logical data structures for multi- 
variate data analysis. The preceding discussion may raise more questions than it 
answers, but it will have served its purpose if it draws attention to the need for a 
more systematic and extensive foundation at this fundamental level. Increased 
cooperation among data analysts and computer scientists in this area would 
clearly be beneficial. 

2.2. Epistemic structure. The rational process by which any data set contri- 
butes to a particular field of knowledge depends strongly on preconceptions and 
understanding associated with that field. Some of this previous knowledge is 
quite specific to the field, such as knowledge of how and why an I.Q. test was 
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devised. Other aspects are general across many fields and so become parts of a 
general scientific outlook. These latter aspects are central to data analysis and 
statistics, especially when they facilitate inference beyond the immediate facts of 
a particular data set to more general circumstances. 

Three varieties of a priori knowledge will be surveyed briefly. The first of 
these was introduced above, namely the knowledge that the value or level of a 
certain variable contains substantive information within some recognized field 
of inquiry, as opposed to being simply an index variable. The second variety 
concerns a distinction between free variation and fixed variation. The third 
refers to symmetry conditions on a priori knowledge, and leads directly into 
probabilistic concepts. Each of these varieties represents a type of knowledge 
which comes with a data set, from its scientific context, and which is not 
empirical in the sense that the information in the data itself does not reinforce or 
refute the preconceptions. 

As argued in Section 2.1, any variable is capable of substantive interpretation, 
although certain variables, such as names, are usually accepted mainly as 
indexing variables. The possible dual interpretation corresponds to the mathe- 
matical duality between a function as a meaningful entity in itself and the set of 
values of a function which formally resemble index values. The role of duality 
in the mathematics of multivariate analysis is stressed in [8]. 

Some variables are regarded as free in the sense of reflecting natural variation 
or experimental variation in response to controlled conditions. Other variables 
are regarded as fixed, sometimes because their values have been deliberately set, 
as in experimentation, but often because the context of the data set suggests that 
the variable should be seen as having a determining or causal role in the phenom- 
enon under study rather than being a direct measure on the phenomenon. The 
most common statistical example appears in multiple regression analysis where 
there is a free or dependent variable to be related to a set of fixed or independent 
variables. A similar distinction appears throughout multivariate analysis, in 
analysis of variance, and in contingency table analysis, and the distinction is 
incorporated in turn into formal hypotheses or models (cf., Section 4). It is 
clear that substantive variables can be free or fixed. Index variables are most 
often taken to be fixed, since names are usually assigned, but sometimes even 
pure index variables can be reponse variables, as when a name conveys the winner 
of a race. Note especially that whether or not a variable is free or fixed cannot 
be deduced from the logical structure of the data, nor from the quantitative or 
qualitative information in the data. The distinction between free and fixed need 
not be entirely firm in a given situation, but it is conceptually important, 
and must be made on genuine a priori grounds. 

Most standard data reduction techniques are anchored in a judgment that 
certain units or levels of an indexing variable are to be treated symmetrically. 
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The computation of sample moments or the display of a sample frequency 
distribution are prime examples where an implicit a priori judgment has been 
made to treat evenly among the sample individuals. When several indexing 

variables appear in a hierarchical structure, separate symmetry conditions may 
be applied at several levels of the hierarchy. The term exchangeable is used in 
the theory of personal probability for models which treat symmetrically all 
subsets of any given size from a set of units, and the same term can be used 
consistently in a broader data analytic context to describe the a priori symmetry 

judgments discussed above. An analogous symmetry judgment of stationarity 
is often imposed on time series data. Again, the term is usually applied to 
specific probability models for time series data, but is appropriate at a looser level 
of assumption to mean that any time stretch of a given length would be regarded 

and treated a priori like any other time stretch of the same length. Similar iso- 
tropicity assumptions can be made for data indexed by position in physical space. 

The symmetries which define exchangeability, stationarity, and isotropicity 
should be viewed as idealized properties of prior knowledge associated with the 

idealized logical structure of a given data set. A very basic type of knowledge is 
the uncertain knowledge of answers to factual questions, this being the type of 
knowledge which the theory of probability aspires to deal with. Accordingly 
it is to be expected that the probability models which accompany the analysis 
of any data set will share the symmetry judgments deemed appropriate to the 

data set. The restrictions thus imposed on probability models do not entirely 
determine the specific mathematical forms of the models, but they powerfully 
restrict these forms, often to mixtures of random samples from hypothetical 
populations. The specific forms are hypotheses (cf., Section 2.3) which, unlike 
the symmetry judgments themselves, can and should be tested out on the data. 

For example, if multiple measurements are made on a sample of 100 human 
subjects, exchangeability together with the theory of probability says that the 
100 subjects can be viewed as a random sample from some population, whence 
hypotheses about the form of that population become conceptually meaningful 

as questions about a hypothetical probability mechanism which could have 
generated the data. The original symmetry assessment is completely a priori, 
however, since any multivariate sample distribution is a conceivable random 
sample from some distribution. It may be possible to refute the hypothesis 
that sample individuals were presented in a random order, but not the judgment 
that, as an unordered set, any subset of n individuals was a priori equivalent to 
any other subset of n individuals. 

2.3. Hypothesis struciure. After logical and epistemic structures are in place, 
specific mathematical hypotheses are often introduced to motivate and guide 
analyses. 
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Many mathematical models describe approximate deterministic relations. 
Examples include the linear models which often accompany discussions of the 
analysis of variance, and the quadratic relations appearing in models for factor 
analysis where both factor scores and factor loadings must be estimated. Heuristic 
procedures for fitting such structural models find effective use in exploratory 
data analysis. 

The traditional models of mathematical statistics are probability models. 
Typically, repeated observations on a vector of variables are regarded as drawn 
from a multivariate distribution. The distributions generally have smoothness 
properties, and may depend smoothly on hypothesized parameters and on the 
values of observables as well. Probability models can give greater precision and 
descriptiveness to structural models, for example, by fitting an error distribution 
which provides a formal tool for quantitatively assessing deviations from a 
simple deterministic model. Together with probability models comes the 
availability of formal tools of statistical inference for testing fit, estimating 
parameters, and making uncertain predictions. The tension between data 
analysis without and with probability is explored in Section 3. 

In Section 4, the discussion turns to an increasingly used general class of 
models based on exponential families of distributions. A broad review of 
mathematical models which have found substantial use in multivariate data 
analysis would be a worthwhile but very lengthy task, and is beyond the scope of 
this overview. 

3. How EXPLORATORY? 

Data analysis proceeds in an exploratory mode or a supportive mode. In the 
former, the data analyst attempts to pry into the essence of a data set by examina- 
tion from many angles, using graphs, charts, tables, scatterplots, etc. His tools 
may be categories of more or less well-tried and well-researched summary 
statistics, such as moments, quantiles, correlations, etc. Or he may use heuristic 
algorithms to fit rough models, as in clustering and scaling techniques. In the 
supportive mode, formal tools of inference are used to assess the plausibility 
and precision of formal hypotheses. 

Mathematical statisticians have long concentrated their efforts mainly on the 
supportive side. In reaction to this one-sidedness, and also to the controversial 
character of ‘the concepts of inference, some data analysts have claimed that a 
careful exploratory analysis can turn up everything of interest in a data set, 
rendering supportive techniques unnecessary. In general, however, there are 
benefits to be drawn from regarding the two modes as complementary and 
mutually reinforcing. 
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On the one hand, a too quick adoption of the supportive mode may lock the 

data analyst into a spectrum of hypotheses which would be instantly ruled out 
by casual inspection of a few plots of marginal distributions or plots of empirical 
relationships based on marginal summary statistics. On the other hand, it is very 
easy to discern apparently interesting empirical relationships, especially when 

many variables are sifted in search of relationships. Supportive techniques 
which can discount at least some of the biases introduced by data snooping 
would appear to be minimal supportive adjuncts to most exploratory techniques. 

A more ambitious defender of supportive techniques could argue that the 
fitting of precise mathematical models to data, with its clear logical separation of 
sample and population concepts, is the key feature raising statistics to the level 
of a science, somewhat analogous to physics, in which exact and sophisticated 

mathematics is a central part. This is not to deprecate the more intuitive and 
empirical exploratory side, but rather to suggest that the two modes operating in 
resonance, as do experimental and theoretical physics, create a living science of 
considerable range and power. Data exploration suggests hypotheses. Formalized 
hypotheses in turn suggest under mathematical analysis new quantities to 

compute which may be illuminating in the same way that more naive data 
exploration can be illuminating. For example, the recent developments in 
likelihood methods for fitting log linear models to contingency table data 

provide natural ways to associate specific interaction terms with individual 
combinations of factors (cf., [18] and references cited therein). Having estimates 
of such interaction terms, it becomes natural to plot these estimates against the 
analogs of main effect estimates, with the aim of discerning special structure or 
relationships which might be unsuspected a priori and which would not be 

visible in a large multiway array of raw data. The mutual relations among 
probabilistic fitting procedures and data exploration procedures defines a very 
large and promising field for research in multivariate data analysis. 

To a nonstatistician it may appear that the distinctions drawn here between 
exploratory and supportive methods are exaggerated In terms of the three 
aspects of data structure sketched in Sections 2.1, 2.2, and 2.3, both modes 

assume a common understanding of logical and epistemic structures, and they 
differ mainly in their approach to hypothesis structure. But even the simplest and 
most descriptive exploratory analysis is guided by hunches which are naturally 
conceived as imprecisely formulated hypotheses. The difference lies mainly in 
the degree of mathematical precision associated with hypotheses. Nevertheless, 
the difference of degree eventually becomes a difference of kind, as access to 
powerful mathematical and inferential tools, if used with intelligence and 
sensitivity becomes a highly significant factor in statistical methodology. 

The explorative side of multivariate data analysis has given rise to classes 
of techniques which delve into data structure at the basic level of attempting 
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to discern logical structure not directly apparent in the data. The oldest such 
class is factor analysis, directed at finding important variables which are linear 
combinations of observed variables, where the criterion of choice generally 
depends on a principal component analysis; for example, if a group of variables 
is highly intercorrelated, then a linear combination can be found which explains 
much of the common variation underlying the correlation. Such combinations 
are candidates for factors. Forty years of cumulative development have made 
factor analysis a vast topic to review. A start may be made from [6,21]. 

Computer technology has been an obvious catalyst in the development of 
various close relatives of factor analysis. In the latter, one draws on correlation 
coefficients which are inverse measures of distance between pairs of variables. 
In cluster analysis [19, 20, 22, 25, 37, 431, distances between pairs of individuals 
are used to group individuals into like categories, or more generally to produce 
hierarchical tree structures, with individuals at the tips of the smallest branches 
and with close individuals growing out of relatively far out common branches. 
Multidimensional scaling [5,29-3 1,35, 361 also relies on distances, often directly 
elicited by asking subjects to assess relative distances among pairs of entities. 
Again the objective is to place these entities, which may be attributes (e.g., 
colors) or individuals (e.g., nations), in spaces of a reasonably small number of 
dimensions. 

In the present state of the art, it is difficult to evaluate procedures of clustering, 
scaling and factoring, except by reference to specific applications where the 
results can be judged meaningful relative to outside criteria, such as recognizing 
that a clustering technique groups obviously similar individuals. Supportive 
techniques are badly needed, and these in turn require formulation of acceptable 
probabilistic models and reliable inference procedures for these models. As 
argued in Section 5.1, it is a difficult task to match highly multivariate data sets 
to models with the right degree of complexity so that both adequate fit and 
informative inferences can be secured. 

4. EXPONENTIAL FAMILIES As MODELS 

Multivariate data analysis needs a large and flexible class of hypothetical 
distributions of free variables indexed by the values of fixed variables. From this 
class, appropriate subfamilies would be chosen for fitting to specific data sets. 
The class of exponential models described below contains many subfamilies in 
common use. For example, the large body of techniques based on multivariate 
normal population models [2, 8, 331 derive from one basic subfamily, and the 
growing literature as referenced in [18] for contingency table analysis based on 
log linear models attests to the importance of another subfamily. Other sub- 
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families will surely be developed for applications. The many theoretical 
properties in common across subfamilies make it natural to consider the class as a 
unit. 

The data analytic attitude to models is empirical rather than theoretical. In 
some kinds of modeling, physical theories or other established theoretical 
considerations may lead to specific parametric forms, as generally holds, for 
example, in the fieid of applied probability. When detailed theoretical under- 
standing is unavailable, a more empirical attitude is natural, so that the estimation 
of parameters in models should be seen less as attempts to discover underlying 
truth and more as data calibrating devices which make it easier to conceive of 
noisy data in terms of smooth distributions and relations. Exponential families 
are viewed here as intended for use in the empirical mode. With a given data set, 
a variety of models may be tried on, and one selected on the grounds of looks and 
fit. 

A particular subfamily will refer to a space S, in which a point represents a 
possible outcome for a set of free or response variables, and a second space R 
labeling possible outcomes for a set of fixed variables. The first stage of definition 
provides a family of distributions over S. The second stage specifies how the 
distribution over S varies with position in R. 

Suppose that distributions over S are to be represented by densities relative 
to some familiar measure, where the two common examples are Lebesgue 
measure over continuous m-space and counting measure over discrete space. 
Suppose that Y, , Ya ,..., Y, represent 4 real-valued measurable functions over S. 
Then a typical family of exponential densities has the form 

f(s) = exp(a + ol,Y&) + ... + ol,Y,(s)) (4-l) 

for s E S. Here CY~ , 01s ,..., 01~ should be regarded as free parameters, although 
certain choices may not produce a density with finite integral over S, and are, 
therefore, not permissible. Also, 

01 = Ly(q , % ,..-7 4 (4.2) 

defines the normalizing factor exp(or) which makes the density integrate to 1. 
The functions Y, , Yz ,..., Y, may or may not be functionally related and may 

or may not uniquely determine a point in S. For example, if S is the space R* 
with general coordinates Z, , Z, ,..., Z, , then the family of multivariate normal 
distributions is determined by 

VI > y, >.*., YPI = [Z, , -G > .’ .> z, , 212, 22,. . . , zm2, z,z, ) z,z, ,. . . , Zmy&&], 

(4.3) 
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where 

q = m -t- m(m + 1)/2. (4.4) 

In this case, Yr , Ya ,..., Y, are functionally related and overdetermine the space. 
An extreme example arises if S is a space of M points and Q = 0, so that only 
the uniform distribution over the M points is included. For an intermediate 
example, suppose that S consists of points (i, j, K) for i = I,2 ,..., P, j = 1,2 ,..., Q, 
and k = 1, 2,..., M, and suppose that the Yi are P row indicators and Q column 
indicators, so that 4 = P + Q. The corresponding distribution of the triple 

(i, j, k) may be characterized as three independent multinomials, arbitrary over i 
and j but uniform over k. In this example, the row and column indicators 

y  1, yz >..., YP,Q underdetermine the space S, but nevertheless have a 
redundancy. 

The model (4.2) can be extended by the introduction of a set of fixed variables 

[Xl , x2 ,*.*, X,] defined over a space R. Each response s E S is paired with an 
observable vector [X, , X, ,..., X,] which influences or at least correlates with 
the response. The extended model is defined by 

f(s I Xl , X2 ,..., X,) = exp 
( 
01 + i f +ijXjYi(s) 

i-1 j=l 1 

which amounts to (4.2) with 

(4.5) 

(4.6) 

for i = I, 2,..., 4. It is understood in (4.5) that 01 depends on the C& and Xi 

through (4.6) and (4.2). The extended model is restrictive in the sense that the 
distribution over S is permitted to depend only on linear functions of Xi , 
X 2 ,***, X, . One can, however, go a long way with linearity, as shown by the 
central importance of least-squares multiple regression analysis. The extended 
model is general in the sense that it provides a broad generalization of the 
standard normal model underlying multiple regression analysis. 

The normal model, in a form suitable for q simultaneous predictors, is 

equivalent to a conditional distribution of Yr , Ys ,..., Y, given X1 , X, ,..., X, 
as characterized by conditioning an original multivariate normal distribution 

of Yl , y, ,-.., y, 7 Xl , x2 ,..., X, taken jointly. There is, of course, no reason 
to restrict the use of the conditional model to cases where Xi, X, ,..., X, 
could have been regarded as normally distributed. The assumption is essentially 
that the means of the normal variables Yi , Ys ,..., Y, depend linearly on 

Xl , x2 ,*.., X, while their covariances do not. Another special model is the 
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multinomial logit [4]. Here the k; , Y, ,..., Y, variables are indicator variables 
for a finite set of categories defining S. A theoretical umbrella including these 
two special cases is already quite large, but the scope for including other 
distributions of the form (4.2) is also large. For example, the normal model 
above can be extended by allowing both first- and second-moment structures to 
depend linearly on Xi , Xa , . . ., Xa . And the multinomial logit is easily extendable 
to models where the finite set of categories form an m-way array so that suitably 
restricted log linear models can be used as the family of distribution over S. 

Exponential models have attractive mathematical properties making it 
convenient to consider likelihood type analyses, which in any case are nearly 
obligatory from the theory of inference. In particular, a Fisherian style maximum 
likelihood analysis is a natural beginning point. Some relevant mathematical 

properties will now be sketched as a preliminary to a discussion of some technical 
aspects of fitting by maximum likelihood. 

The data consist of repeated observations on [Yi , Ya ,..., Y, , Xi , X, ,..., X,]. 
Denote n observations by [Y(l), Xu)] for 1 = 1, 2,..., n, where Y and X denote 
general vectors [Y, , Y, ,..., Ya] and [Xi , Xa ,..., X,], respectively. Rewriting 

(4.5) in the form 

logf = 44, X) + YW? (4.7) 

one finds that the log likelihood is 

L(4) = i (a(+, X(Z)) + Y(%$X'y 
14 

where the dependence of L(4) on the data has been suppressed for notational 

convenience. 
As will be seen below, consideration of L(4) suggests that, alongside the 

matrix C$ of exponential parameters of the model, it is illuminating to consider a 
corresponding matrix of moment parameters 

e = i O(E) = f  jp(y'z'qp') 
kl Z=l 

(4.9) 

where ZP( ..*) d enotes the expectation operator defined by the distribution (4.5) 
associated with Xo). Note that when the model is rewritten, leaning on its 
obvious linear invariances, with 

then 

Y-+Y*=YA and x+x*=xB, (4.10) 

,$ -...+ +* = A-l+B=,-l (4.11) 
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and 

8 + e* = ATOB. (4.12) 

The inversion relations between (4.11) and (4.12) suggest that the parameter sets 

4 and @ should be regarded as duals. 
The differential relations between the elements Bij of 0 and $ij of + may be 

expressed as follows. Using the fact that f  in (4.7) integrates to unity, it follows 
that 

da(+, Xtz’) + f f E(z’(Y~z’X~z’) d&, = 0. 
u=l0=1 

(4.12) 

Similarly, denoting by 8::’ the elements of the general term in (4.!3), it follows 

that 

= ‘f 2 C’z’(Y~‘X;z’, Y;z)X;“‘) d&u , 
u=lt%l 

(4.13) 

where Cu)( . . . . . . . ) is the covariance operator associated with Pz). Summing over I 
produces finally 

de, = i f C(U, v; i, j) d$u,, , 
u=lV=l 

where 

C(u, 0; i, j) = i C(z)(Y~)X~z), Yjz)Xiz)). 
Z=l 

(4.14) 

(4.15) 

The coefficients C(u, V; i, j) define a pq x pq symmetric matrix C relating pairs 

(u, w) to pairs (i, j). C is positive definite or semidefinite, for it defines expected 
products in the distribution of pairs YiXj defined by choosing one of Xtz) at 
random with equal probabilities l/n and choosing Y given X according to the 
distribution (4.5). It is easily shown that the 0 and 4 parameters have a one-one 
relationship provided that C is positive definite, i.e., if 8 denotes a possible 
matrix of moment parameters for the given X(r), Xc2),..., X(n), and if C is 

positive definite for all 4, then there is exactly one matrix of 4 parameters 
which yields a model with these e parameters. 
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Returning now to the log likelihood L(+), differentiation of (4.8) gives 

where 

The condition that L( 4) shall have zero first derivatives is thus seen to be that the 

matrix T of sample moments (4.17) shall equal the corresponding matrix 0 of 
moment parameters. From (4.16) it follows that the matrix of second derivatives 
of L(4) is the negative of the covariance matrix C whose positive definiteness 
assures the convexity of L(4). A s remarked above, there is in general (under 

positive definiteness) at most one 4 solving the equations T = 8, and this 4 
obviously maximizes L(4). I f  the equations cannot be solved, then the maximum 
of L(4) occurs on a boundary of $-space or is infinite and maximum likelihood 
estimation can make no practical sense. Particular examples of infinite L(+) 
are easily constructed, as in multiple regression analysis with more predictors (p) 
than observations (n), or in contingency table analysis with certain margins 

unrepresented in the data. Theoretical aspects of uniqueness, both general and 
specific to particular models, are susceptible of further development. 

To summarize, under broadly applicable operatingconditions, the maximum 
likelihood estimator for (p is unique and is equivalent to a method of moments in 
which the sample moments T are matched to their expectations 0 under the 

fitted model. From (4.15), it is seen that C is the covariance matrix of the 
estimated 8 under their conventional sampling distribution which regards the 
the Y(l) as random given Xo), and from (4.14) it follows that C-l is a corre- 
sponding asymptotic covariance for the estimated 4. Alternatively, Bayesians 
would regard C-l as an appropriate approximate posterior covariance for 4, 
since C is the negative of the matrix of second derivatives of L(4). Either inter- 
pretation of C-1 requires that the data are sufficient to render the estimates 
precise in the sense that the relations between 0 and 4 are practically linear over 
the region of uncertainty about the true +. 

The existence of unique maximum likelihood estimators 4 for + is one thing, 
but the usefulness and relevance of fitting by maximum likelihood is more 
fundamental, assuming the procedure to be mathematically well-defined. 
Difficulties are of two kinds, numerical and inferential: Whether or not 4 can be 
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successfully calculated from sample data, and whether or not the resulting 4 
have any meaning. Both questions are serious owing to the potentially large 
number pq of parameters involved. 

First consider the numerical question. Under special circumstances, an 
explicit formula can be given for 4, opening the way for algorithms to compute $ 
in a finite number of steps. Examples include fitting a single multivariate normal 
distribution over a space S, where both means and covariances are unknown, 
and fitting independent but otherwise arbitrary multinomials to the simple 
margins of a space S in the form of a contingency table. But examples do not 
include such simple extensions as fitting normal distributions where inverse 
second moments as well as first moments depend on .X1 , X, ,... , X, , nor 
contingency table fitting where all 2-way joint margins are matched to sample 
margins. In general, therefore, the equations for 4 are implicit, and computing 
algorithms are iterative in the sense of following a sequence of 4 matrices which 
is known to converge mathematically to 4. The basic iterative algorithm is the 
quadratic ascent procedure applied toL(t$), h’ h w rc is simply described because 
the first and second derivatives of L(4) h ave the simple forms T - 0 and -C 
computed above. Thus, a single iteration carries 4 -+ (p + d+, where 

04 = (T - e)C-l, 

with the notation assuming that 4, T and 8 are written as 1 x pq vectors meshing 
with the pq x pq matrix C, and where 8 and C involve moments computed from 
the model defined by the current 4. Many other iterative procedures can be 
devised by following a principle of cyclic fitting, whereby a subset of the 
parameters 4 is adjusted to obtain matches of the corresponding elements of 
T and 8, then other subsets covering all of 4 are adjusted, and so around the 
subsets in order until convergence obtains. Each step increases the likelihood 
because it solves a restricted maximum likelihood problem, and the process 
converges only when T = 0, so that no more adjustments are required, and the 
maximum of L(4) is achieved. Cyclic fitting procedures are popular in contin- 
gency table analysis when the individual steps are themselves fitting procedures 
of the special kind which can be made in closed form without iterations [12, 241. 
A disadvantage of cyclic fitting is that it does not, in general, provide the 
asymptotic covariance matrix C-l which is a byproduct of the straightforward 
quadratic ascent technique. 

The conceptual simplicity of the standard iterative approach should not be 
allowed to conceal the prodigious computational efforts which may be required 
to carry it out. Three troublesome elements will be sketched. First, it is necessary 
to make a pass through the data, or at least through summary statistics for each 
distinct X(I), on each iteration. If X(l), Xf2) ,..., Xln) are all distinct and large in 
number, expensive data manipulation in and out of core memory may be 
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required. Note that T is sufficient for 4 in the conventional language of mathe- 
matical statistics, because T does include all the dependence on the random free 
variables Yu), but L(4) also depends on the fixed variables X(I) and the latter 
dependence is an important factor in the fitting procedure. Second, at each step 
one needs the normalizing factors a(+, Xo)) as in (4.8), the first moments W 
as in (4.9) and the second moments CL) as in (4.13). These integrals are obtainable 
analytically in the important special case of normal distributions, but hardly 
ever otherwise. In general, numerical integration over S is required. In the 
present state of the art, to require these numerical integrals for each X(I) is 
prohibitive unless S is discrete and most of its probability is carried on relatively 
few points. Powerful numerical techniques will be required to surmount this 
difficulty. Some marginal succor may be obtained by not recomputing C at each 
integration, hoping that it changes sufficiently slowly to have slight effect. The 
third difficulty is the sheer size of the covariance matrix C, for example, 
1000 x 1000 if 4 = 20 and p = 50. Inversion of such a matrix is a feat in itself, 
letting alone repetitions on successive iterations. A simplifying approximation 
at this stage would be to replace C(u, V; i, j) by 

qu, v; i,j) = i C'yY 
i 

C', 
Z=l 

YjZ') j 

x i$lXkz)Xjz)I f n, 

which can be inverted by separate inversions of the two smaller matrices in 
curly brackets. The factorization (4.19) can hold for the actual C, but only in 
rare cases, as for example, when Yr , Ys ,..., Y, have a multivariate normal 
distribution whose mean depends linearly on X1 , X, ,..., X, but whose covariance 
is constant. 

Inferential considerations may come to the aid of numerical difficulties by 
advising the data analyst to cut down on the size of the parameter set to be fitted. 
The principle of parsimony in modeling is widely ignored when fitting is com- 
putationally easy. For example, an attempt to estimate a 50 x 50 correlation 
matrix from a sample of size 20 would produce more point estimates than 
original data points, and it makes little sense to regard such estimates as plausible 
surrogates for population values. Thus the problem of many parameters is 
more than a computational problem, and should be taken seriously in all situations 
when ambitious model-fitting is undertaken. Moreover, the problem is 
conceptually thorny, because it is not easily formulated within current theories 
of inference, and solutions to the problem are therefore tentative. Further 
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discussion of general aspects is deferred to Section 5.1, preceded here by some 
specific suggestions for exponential models. 

The simplest approach to parameter reduction is selection, meaning in the 
present context fitting only a subset of the pp parameters + while setting the rest 
to zero, or sometimes to another a priori null value. Selection of variables for 
multiple regression analysis is a widely used technique, with many variants, 
and suggests that parameter selection procedures will be useful tools for a broad 
class of models. In the case of parameters +, one can omit rows, columns, or 
single elements. Serviceable techniques will need to be developed empirically 
from the many possibilities. 

The foregoing techniques presuppose simplicity of theory in that plausible 
null values are available, and simplicity of data in that the data appear conform- 
able with many of these null values. Alternative techniques may be proposed 
which hypothesize special structure on 4. For example, in [41] it is supposed 
that the columns of 4 are almost identical in the case of a multinomial logit model. 
Another structure which could sometimes be plausible is the additive structure 
&$ = 01~ + j$ . A more complicated approach would be to restrict 4 to have 
rank Y < min (p, Q). The case Y = 1 would then imply multiplicative structure 
for the C& , and the model could be successively broadened by stepping up r. 
These procedures generalize canonical correlation analysis, in the sense that 
fitting a normal model in which the matrix of regression coefficients of Yi , 
Y 2 ,..., Y, on X1 , X2 ,..., X, is required to have rank Y is naturally done using 
the canonical variables associated with the largest Y canonical correlations as 
carriers of all the fitted correlation. The general procedure is more difficult to 
understand mathematically because it does not reduce to a standard eigenvalue 
calculation unless (4.19) holds, as it does in the canonical correlation case 
mentioned above. However, a back and forth type iterative fitting algorithm is 
easily defined, and appears to converge satisfactorily in the few cases tried by the 
author. 

Rather than directly cutting down the parameter space as above, one can 
treat all of the parameters as meaningful variables but regard them as random 
with a distribution depending on a relatively small set of secondary parameters. 
Random effects models in the analysis of variance illustrate this approach. 
Or the approach may be regarded as an empirical Bayes approach where prior 
distributions are fitted from data. The application of these ideas to exponential 
models has been mainly restricted to simple considerations of many means or 
many binomial probabilities, but rapid progress and increasingly wide acceptance 
of these techniques appears inevitable, and indeed necessary if the model-fitting 
side of multivariate data analysis is to progress. 

A final word of caution, searching in data for suitable restrictions on I$ or 
for suitable randomness hypotheses for I$ puts even more load on the difficult 
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task of computational fitting. Additional difficulty is posed by missing observa- 
tions (cf., Section 7), which must always be faced in real life where the use 
of data analytic tools is preceded by a data-cleaning operation. 

5. PROBLEMS OF INTERPRETATION 

5.1. Many parameters. Many tried and tested techniques of multivariate 
data analysis were invented at a time when 10 was a typical number of variables 
in an ambitious data collection program. Now, with automation and expanded 
support for scientific investigations, data sets having 100 or even 1000 variables 
are not uncommon. Multivariate data analysts need therefore to cultivate 
increasingly the habit of asking whether their data will bear the weight of their 
methods. The question reduces to asking whether fitted parameters are 
meaningful or, conversely, whether the numerical processes which produce them 
are not empty exercises. Sometimes evidence can be adduced after the fact by 
recognizing, for example, substantive meaning in clusters, factors or scales, or 
by successfully using a fitted model for prediction. Still, a crucial problem for 
theoretical statistics is to assess the evidence internally during the course of data 
analysis, and to alter that course where necessary so that the outputs of analysis 
have high signal-to-noise ratio. 

Certain monotonicity relations are nearly self-evident. The potential yield of 
reproducible model structure from a given data set depends directly on the 
sharpness of differences and strength of relations in the phenomenon underlying 
the data. Also, the more are the variables acquired, the more is the danger that 
interesting differences will be undetectable. And the larger the samples of units 
observed, the better one is able to detect structure. For example, it is easier to 
detect one salient effect if 10 standard solutions are assayed once than if 100 
standard solutions are assayed once; but in either case the task becomes easier 
if the assays are repeated. 

In terms of statistical inference, the problem with many parameters is that 
only a relatively small subset of the parameters, or a small set of functions of the 
parameters, carry important messages of substantive interest, while the remaining 
parameters become nuisance parameters which obscure the desired information 
through the unknownness of their values. The problem is especially severe when 
the parameters of interest are not known in advance but must be identified by 
scanning the data. 

The conceptual tools for approaching many parameters are not yet well formed, 
but two basic themes can be identified. The first of these is the need for measures 
of the confusion affecting questions of interest which is due to the uncertainty 
about many parameters. The decision-theoretic approach to inference evaluates 
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procedures in terms of operating characteristics, and there is confusion about 
these operating characteristics deriving from their dependence on unknown 
parameters. Admissibility theory generally restricts the class to Bayes rules. 
Openly Bayesian approaches can go further by assessing posterior probabilities 
for statements about parameters, but still there is confusion due to the vagueness 
of initial probability assessments. Approaches to inference which provide upper 
and lower bounds on posterior probabilities have built-in measures of confusion 
in the differences between the bounds. Further and more direct attempts should 
be made to define indices of confusion for data drawn from standard models, 
even if the indices are rather crude and tenuous in their relation to ideal theories 
of statistical inference. 

The second theme is the need for guidelines in the use of confusion indices 
when they are available. If confusion is large, then one should consider simplifying 
a model, but this can be done only at the cost of making the model less realistic. 
At present, the tradeoff between realism and clarity of message can only be made 
intuitively. The author has discussed elsewhere [9] the possibility of making the 
tradeoff more formal. 

In the case of multivariate techniques, the decision to fit large numbers of 
parameters is often made casually, not because adequate fit requires them, 
but because they arise naturally in the mathematical formulation of the model and 
can be fitted with relative ease. Parameter reduction techniques such as those 
sketched in Section 4 would then appear to offer clear prospects for more 
illuminating data analyses, especially when a decrease in confusion can be 
bought at little apparent cost in realism. 

5.2. Causality. A major objective behind much multivariate data collection 
is to provide support for hypotheses of cause and to measure the strength of 
causal relations. In consequence, it is inadequate to avoid the persistent question: 
Can statistical data ever be used to demonstrate cause ? The answer would 
appear to be yes, but with careful qualifications. 

One objection to statistical data can be quickly dismissed. This is the argument 
which rules out evidence based on statistical data because numbers cannot 
specify any mechanism to explain the cause and effect relation and, in particular, 
can specify no deterministic mechanism. A carefully controlled and randomized 
experiment in which, say, 20 out of 20 drug treated animals survived, while 
only 2 out of 20 placebo treated animals did so, would generally carry with it 
a strong implication of causal connection between treatment and survival, even 
assuming that the biochemical action is a mystery. Further detailed knowledge 
of the mechanism provides a greater degree of understanding about the 
circumstances under which causation is operating, but there is no discrete jump 
to a different and more satisfying concept of cause. Statistical data and statistical 
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evidence do not differ in kind from empirical data and evidence generally. As 
argued below, any empirical data can have only an indirect bearing on the 

establishment of a hypothesized causal mechanism. Nor should one require 
causal explanation to be completely deterministic. Whether or not all scientific 
explanation can ultimately be reduced to deterministic models may be an open 
question for philosophical disputation. But in the real world, residual uncertainty 
can never be eliminated entirely and often must be faced probabilistically, 

especially with biological and social phenomena. 
Necessary to any assignment of cause is an a p&vi judgment that an explan- 

atory (perhaps probabilistic) mechanism could plausibly exist. Otherwise, 
evidence of association in statistical data has no direct bearing on the presence or 

absence of causal relations. The train of logic is that a causal hypothesis is 
recognized to imply certain hypotheses of association or increased variability, 
or other observable manifestation. Then the latter type of hypotheses can be 

tested on data, and the failure of such tests to reject the data patterns implicit 
in the causal hypothesis provides negative support for the hypothesis. Negative 
support is unfortunately the best available, but accumulation of such support 
from many data sets eventually creates a sense of confidence akin to positive 

. 
support. This is surely as close to proof as is logically possible with empirical 

phenomena. 
So much for philosophy. The practical difficulties in establishing cause are 

even thornier than the philosophical difficulties. One must sort out competing 
causal hypotheses and find paths through complex patterns of multiple causes, 
and through hierarchical systems under which, for example, factor 1 may 

influence factor 2 and both may subsequently influence factor 3. The principles 
of experimental design can of course help with the problem of multiple causes, 
making some implausible by randomization and disentangling others by 
producing orthogonal design vectors. See [7] f  or some difficult aspects of design 

in relation to causal analysis. 
The method of path analysis, due originally to Sewall Wright, has been much 

used in recent years by social scientists to help sort out complex patterns. The 
underlying idea is to create restricted linear models in which terms are inserted 
only where plausible causal hypotheses exist. The pattern of observed correla- 
tions is then tested, mainly by eye, for conformity with the pattern implied by 
the restricted linear model. Some basic references are [l 1, 38, 47, 48, 491, some 
recent references are [3, 10, 26, 401, and a bibliography [23] is available. The 
simultaneous linear equation methods of economics [16] are close relatives 
of path analysis. With a few exceptions [38,44-46] statisticians have not entered 
the thickets of causal linear models. The need for supportive techniques is 
clear, however, and opportunities to sharpen a promising tool should not be 
neglected. 
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6. COMPUTATION 

If data analysis is the substantive core of the science of statistics, then the main 
technological burden of doing statistics falls on the computers and computing 
systems which carry out data analyses. The validity of these assertions is supported 
by the rapid growth of the field of statistical computation. Computers are also 
used in statistics as tools for exploring mathematical theories, and as teaching 
aids to provide graphic demonstrations of theory and methods and to allow 
students to experience directly the practice of data analysis. The interactions 
among these various uses serve to enhance the richness and prospects for growth 
and development in the area of statistical computation. 

Modern large computers operate in environments of extraordinary complexity 
both in terms of hardware and of time-sharing operating systems. Moreover, the 
technology continues to evolve rapidly, both through the trial and error process 
of constructing systems and through modifications of physical devices. Com- 
munication with the machine becomes ever more convenient as languages and 
systems of program modules are improved. Devices for input and output 
become more varied and faster, and memory devices become larger and less 
expensive. All of these factors imply that the data analyst can be in much 
greater contact with his data, can look at many more aspects of it quickly, and 
can interact with much more flexibility than was the case a few years ago. 

To some, the computer analysis of data, especially data about people, has 
become a sinister tool, and it is indeed true that problems of privacy are real and 
challenging. But they are primarily moral, social, and legal problems. For 
data analysts, the problem is to control computers so that the results of data 
analysis are purposeful and informative, especially in relation to their cost. 

Figure 2 is an attempt to show how an idealized data analyst user might 
interact with a computing system, given a system designed with a high level of 
interaction in mind. There is a definite separation of data structures and program 
structures in memory, where both can have a complex logical structure, and 
likewise there is a definite separation of programs into those which call, organize, 
and store data and those which carry through algorithmic operations of data 
analysis to produce numbers which carry a message. Mathematical statisticians, 
beginning most notably with the great generalist Gauss and his algorithm for 
least squares, have long been major contributors to data analysis algorithms. The 
practice of statistical data analysis has forced statisticians to be concerned with 
finding good methods for solving linear equations, finding eigenvalues and 
eigenvectors, maximizing functions, and so on, which in turn means keeping 
up with developments in numerical analysis, especially numerical linear algebra. 
Of central concern to data analysts is the design of building blocks which can be 
put together in many ways to produce higher level analyses with many possible 
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variations. Here it is vital that data analysts take a leading role, so that the system 
will have suitable levels of variety, flexibility and power relative to the desired 
applications. The problem of numerical accuracy of data analysis techniques 
calls for more cooperation between statisticians and numerical analysts. Recent 
papers such as [ 17,421 show encouraging evidence of dialogue. Clearly, the study 
of accumulated round-off error, and thence of how to reduce it, merits serious 
ongoing treatment both empirical and theoretical by data analysts and 
statisticians. Likewise, increased cooperation between computer scientists and 
statisticians on the information processing side of statistical computing is 
greatly to be sought. 

MACHINE USER 

FIG. 2. Schematic diagram of the interaction between the computing machine and 

the data analyst user. Note that system functions of the machine (i.e., control of flow, 
error diagnostics, wrappers for programs and data structures, etc.) are not explicitly 
represented. 

For more insight into the breadth and complexity of statistical computation, 
see [32, 341. 

7. DATA CLEANING AND MISSING VALUES 

After a data set is stored in a machine readable form, such as punched cards 
or magnetic tape, and before any main body of analysis is performed, it is 
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generally necessary to perform a screening analysis to detect impossible or 
implausible values and to decide what device or combination of devices is to be 
used to cope with the complications due to missing values. These processes are 
often more time-consuming and agonizing than the main body of data analysis. 
They are closely related, because a detected wild value may become a missing 
value, and because both processes can involve assessing a plausible range of 
values for a potential wild value in one case and for a missing value in the other 
case. 

Errors enter data during the measuring, recording and transmitting phases of 
data collection. For the most part, the detection of errors is beyond the power of 
the data analyst, excepting of course data from experiments specifically designed 
to assess biases and error distributions in measurement processes. It is necessary 
to believe at some point that the data are of adequate quality to make analysis 
meaningful, and to proceed while admitting that all variables are not exactly 
what they purport to be. After all, none of the tools in the data analyst’s arsenal is 
completely firm, whether they be models, or inference procedures, or numerical 
computations, and one must rely on intuition and experience to judge whether 
or not the whole ship is tight enough to carry the analysis. 

The term data cleaning refers mainly to the search for outlying values or 
values otherwise known to be impossible. The standard approach is to look at 
sample distributions of variables, from which extreme values can be picked up 
directly, or to look at simple moments such as fourth moments about the mean 
which can be highly inflated relative to the square of the sample variance. 
In the presence of correlated response variables, it is possible to predict the 
values of a variable from its correlates and thence to pick up extreme deviates not 
only from single distributions but also from distributions of prediction errors. 
For example, if Y is highly correlated with X1 , X2 , Xs , then a value of Y 
which is far from its predicted value, given X, , X2, X, , may be suspicious 
even though that value of Y is not at all extreme relative to the marginal distribu- 
tion of Y. 

Extreme observations pose questions of competing causes which are beyond the 
scope of the data itself to answer. Sometimes it is possible to retrace steps 
through the collection process and to obtain corroborating evidence of error 
which may in fact be overwhelming. In other cases, searching may be impossible 
or no evidence of irregularity may be found. Then the degree of extremity must 
be balanced against the possibility of a genuine measurement which happens to be 
very unusual. 1n extremis, the value may be expunged and treated as missing, 
but a safer course may be to create an extra parameter for the extreme value, 
and to admit that the interpretation may be an erroneous wild value or may be a 
genuine drawing from a long-tailed distribution. Either way, there is likely to 
be much vagueness about the parameter associated with the outlier, and the 
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main emphasis should be on modeling and analysis which prevent this vagueness 
from contaminating the answers to questions on which the data have much to 
offer. Univariate examples are the trimmed and Winsorized means methods 
popularized by Tukey [39]. In principle, any analysis technique based on a 

probabilistic model could have an attachment to fit parameters to extreme 
observations of any value which can be predicted by the model, assuming that 
the model appears to fit apart from a modest number of such suspicious values. 
The development of such attachments for multivariate methods is a worthy 
objective, but virtually unattempted so far. 

Missing values cause difficulties whose severity depends on many factors such 
as the number of missing values, their pattern, including whether they appear in 
fixed or response variables, and the degree of correlation between the indicator 
of missingness on a variable and other variables. If  only a few values are missing, 

it may be possible to show that any set of plausible inserts will produce almost the 
same final analysis, so that any ad hoc procedure of filling in missing values 
may be used. With increasing numbers of missing values, it becomes possible in 
principle to assess the correlation patterns between missingness indicators and 

other variables, and even to include missingness in a model to be fitted. The 
potential here is great, as are the difficulties posed by the need to relate a large 
number of indicator variables to a data structure which may be rich in detail 
quite apart from missing values. 

Some of the more common practical expedients are as follows. Most of these 
implicitly accept the randomness of missing values. In the case of response 

variables, maximum-likelihood model-fitting can be carried out whether or not 
complete data vectors are available; but it is computationally difficult to do so. 
Still, there is considerable scope for further development of maximum likelihood 
techniques, or at least of reasonable approximations to them. Another general 
approach is to fill in missing values with good estimates and then proceed to 
analyze as though the estimates were actual observations. In the case of missing 

response variables, this may often be reasonably close to the maximum likelihood 
approach, but in the case of missing fixed variables it usually means filling in the 
mean value of the variable, which may be a poor value and which in any case 
trades heavily on the randomness of the missing values. Still another approach 
applicable to missing fixed values is to attempt to estimate various summary 
statistics which would have been computed from the full data set. For example, 
in multiple regression analysis, each of the covariances entering the normal 
equations can be estimated by summing over those units where both variables 
are recorded, using different sets of units for different covariances. Both of the 
techniques just described for fixed values attempt to recoup the advantages of 
analysis techniques which are well-defined when data sets are not complicated 
by missingness. In particular, the former method of estimating each missing 
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value is able to take advantage of simplifications of analysis from balance which 
would have characterized the complete data set (cf., Section 2.1). See [l] for 
a review and study of certain missing value techniques depending on the 
assumption of randomness. 

An alternative tack to missing values is to drop from the analysis any unit for 
which a complete set of variables is not measured, and to proceed with the 
reduced data set as though it were complete. This approach is close in spirit 
to regarding missing values as kin to outliers, and presumably offers some 
protection against the possibility that missingness correlates with extreme 
values of the missing variables. That is, relations are studied in the more central 
regions of the distributions. In practice, reduction to completely observed units is 
feasible only if the number of such units is adequate. A variant is to select 
important variables and to require units to be complete on the selected variables. 

Finally, a different type of missingness deserves mention. Instead of identified 
units with only partial information, there may be no units having particular 
interesting values on some variable. The absence of these units may result from 
missing values on the variables concerned, but not necessarily. In the case of 
response variables which are continuous or nearly so, missing levels or sparsely 
observed levels are the norm, and the solution is typically to fit a smooth density 
to repeated observations. 

In the case of fixed variables, missing levels may be a matter of design, as 
when a certain drug may not have been tried, or perhaps a certain dose level of a 
drug may not have been selected. The effects of missing levels on a fixed variable 
must be assessed either by extrapolating a smooth relation, as by fitting a dose 
response curve, or by making an assumption of randomness, as might hold if 
it was assumed that the effect of an untried drug would be as though the drug 
was exchangeable with the drugs tried in the experiment. The former involves 
curve-fitting; the latter involves random effects models. These devices are part 
of the bread and butter of data analysis. 

8. REPRISE 

Rapid progress is both probable and vital in a pair of directions. 
First, exploratory and especially graphical techniques should be pushed and 

made computationally more convenient, so that the data analyst may see the 
the main outlines of his data and be able to explore for relations in a broad 
catalog of, known types. More approaches in the spirit of [13-151 should be 
tried, especially in the traditional area of searching for relations which may be 
used for prediction. The empirical development of structure-seeking techniques 
such as clustering and scaling has proceeded rapidly, as if filling a vacuum, and 
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standards for empirically judging these techniques may be expected to rise. 
The standards for relation-seeking analyses are already quite high, because of a 
long history of development of least squares, analysis of variance, multiple 
discriminant analysis, and contingency table methods, so that the would-be 
provider of new insights must grapple with a large body of available methods 
and exercise nontrivial ingenuity. 

Second, theoretical statisticians need to develop models and associated 
supportive reasoning techniques which will help the data analyst to separate the 
meaningful from chance artifacts, and which will make it possible to quanti- 
tatively assess meaningful features of data. The task is especially difficult in the 
area of structure-seeking techniques, where progress has been slow, due to the 
intricacies of having to search through complicated parameter spaces. As 
indicated above, however, even in the more traditional relation-seeking analyses, 
parameter spaces quickly become large. Detailed studies of the effect of prior 
information will greatly clarify the study of causal effects. Finally, the science 
of statistical inference itself should grow and shift in emphasis as it addresses 
itself to the tasks of data analysis. 

In short, the twin supports of data analysis, in computational and mani- 
pulative technique, on the one hand, and in statistical reasoning to secure 
reliable knowledge on the other, have clear prospects for growth into a healthy 
balanced science. 
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