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Abstract

The paper is devoted to the variational analysis of the Willmore and other L2 curvature functionals,
among immersions of 2-dimensional surfaces into a compact Riemannian m-manifold (Mm , h)with m > 2.
The goal of the paper is two-fold, on one hand, we give the right setting for doing the calculus of variations
(including minmax methods) of such functionals for immersions into manifolds and, on the other hand, we
prove the existence results for possibly branched Willmore spheres under various constraints (prescribed
homotopy class, prescribed area) or under curvature assumptions for Mm . To this aim, using the integrability
by compensation theory, we first establish the regularity for the critical points of such functionals. We then
prove a rigidity theorem concerning the relation between CMC and Willmore spheres. Then we prove that,
for every non null 2-homotopy class, there exists a representative given by a Lipschitz map from the 2-sphere
into Mm realizing a connected family of conformal smooth (possibly branched) area constrained Willmore
spheres (as explained in the introduction, this comes as a natural extension of the minimal immersed spheres
in homotopy class constructed by Sacks and Uhlenbeck (1981) in, [38], in situations when they do not
exist). Moreover, for every A > 0 we minimize the Willmore functional among connected families of
weak, possibly branched, immersions of the 2-sphere having prescribed total area equal to A and we prove
full regularity for the minimizer. Finally, under a mild curvature condition on (Mm , h), we minimize the
sum of the area with the square of the L2 norm of the second fundamental form, among weak possibly
branched immersions of the two spheres and we prove the regularity of the minimizer.
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1. Introduction

Throughout the paper (Mm, h) will be a compact connected m-dimensional Riemannian
manifold. For a smooth immersion Φ⃗ of a compact 2-dimensional surface Σ into (Mm, h) recall
the definition of the Willmore functional

W (Φ⃗) :=


Σ

|H⃗ |
2dvolg, (1.1)

where the mean curvature H⃗ is half the trace of the second fundamental form I and volg is the
volume form associated to the pullback metric g := Φ⃗∗h, of the energy functional F

F(Φ⃗) :=
1
2


Σ

|I|2dvolg, (1.2)

and of the conformal Willmore functional Wconf

Wconf(Φ⃗) :=


Σ


|H⃗ |

2
+ K̄ (T Φ⃗)


dvolg, (1.3)

where K̄ (T Φ⃗) is the sectional curvature of the ambient manifold (Mm, h) computed on the
tangent space of Φ⃗(Σ ); recall moreover that Wconf is conformally invariant (i.e. is invariant under
conformal changes of the ambient metric h); see [43].

Remark 1.1. Observe that, by the Gauss–Bonnet Theorem, for immersions in the Euclidean
space Rm the three functionals W , Wconf and F differ just by a topological constant, so they are
equivalent from the variational point of view. This is not the case for immersions in Riemannian
manifolds, moreover in literature there is not a universal agreement about which L2-curvature
functional has to be called Willmore functional. Indeed, since in Riemannian manifolds Wconf
is conformal invariant while W is not, the conformal geometry community usually considers
Wconf and calls it “Willmore functional”; in addition, the pullback of the standard Willmore
functional of R3 into S3 via the stereographic projection is exactly Wconf =


(|H⃗ |

2
+ 1), so

people interested in the properties of surfaces immersed in R3 (for instance people working on the
Willmore conjecture, see for example [21,22,37,42]) called Wconf “Willmore functional”. On the
other hand, classically, the Willmore surfaces were introduced by Blaschke in the XX’s century as
generalized minimal surfaces (clearly every minimal surface is stationary for W under compactly
supported variations, moreover in R3 there are no closed minimal surfaces by the maximum
principle, so the closed Willmore surfaces in R3 are in a natural sense “generalized minimal
surfaces”), therefore from this point of view it is more natural to call


|H⃗ |

2 the Willmore
functional. Moreover, for immersions in a Riemannian manifold, the functional W appears in
the expression of the Hawking mass in general relativity hence, from the physical point of view,
W is the interesting quatity to look at (see for instance the introduction of [20] and the references
therein for more details). These are the reasons why we call


|H⃗ |

2 the “Willmore functional”
and


|H⃗ |

2
+ K̄ the “conformal Willmore functional”. �

The first goal of the present paper is to develop the analysis of the Willmore and the others L2

curvature functionals in Riemannian manifolds of any dimension. Indeed, as for immersions in
the euclidean space, there is the following functional analysis paradox: though the Willmore
functional W defined in (1.1) has perfect meaning for W 2,2

∩ W 1,∞ weak immersions, the
classical form of its Euler–Lagrange equation (derived in [43]) does not make sense for such
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weak objects (which are the natural ones for doing the analysis of the Willmore functional, as
it will be explained below; exactly as the Sobolev spaces are the natural framework to studying
PDEs). Indeed it requires L3 integrability of second derivatives being

∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |
2 H⃗ − R̃(H⃗) = 0, (1.4)

where R̃ : TΦ⃗(x)M → TΦ⃗(x)M is the curvature endomorphism defined by

∀X⃗ ∈ TΦ⃗(x)M R̃(X⃗) := −πn⃗


2

i=1

Riemh(X⃗ , e⃗i )e⃗i


, (1.5)

and Ã : TΦ⃗(x)M → TΦ⃗(x)M is defined as

∀X⃗ ∈ TΦ⃗(x)M Ã(X⃗) :=

2
i, j=1

I⃗(e⃗i , e⃗ j )⟨I⃗(e⃗i , e⃗ j ), X⃗⟩, (1.6)

where πn⃗ is the projection onto the normal space of Φ⃗ and (e⃗1, e⃗2) is an orthonormal basis of
TΣ for the induced metric g := Φ⃗∗h. The same problem appears in the other L2 curvature
functionals since the difference in the Euler–Lagrange equations is given just by lower order
terms.

A first achievement of the present work is to rewrite the Euler–Lagrange equation in a
conservative form which makes sense for such weak immersions. In order to be more accessible,
before we perform the computations and we present the equations in the codimension one case
in Section 2, then we pass to the more delicate higher codimensional case.

For this purpose, up to a reparametrization and working on a parametrizing disc D2, we can
assume that the immersion Φ⃗ is conformal so that it makes sense to consider the standard complex
structure of the disc D2; exploiting the complex notation is very convenient and simplifies also
the initial presentation given by the second author in [32] for immersions in the euclidean space.
The main result of Section 3 is the following theorem. Before stating it let us define R⊥

Φ⃗
(T Φ⃗) as

R⊥

Φ⃗
(T Φ⃗) :=


πT


Riemh(e⃗1, e⃗2)H⃗

⊥

(1.7)

where (e⃗1, e⃗2) is a positive orthonormal basis of T D2 for the induced metric g := Φ⃗∗h, πT :

TΦ⃗ M → Φ⃗∗(T D2) is the tangential projection and .⊥ denotes the rotation of an angle π
2

in Φ⃗∗(T D2) in the direction from e⃗1 towards e⃗2, intrinsically it can be written as X⃗⊥
=

(Φ⃗∗) ◦ ∗g ◦(Φ⃗∗)
−1(X⃗) for any X⃗ ∈ Φ⃗∗(T D2) where ∗g is the Hodge duality operator on

(T D2, g). We shall also denote by πn⃗ the orthogonal projection πn⃗ : TΦ⃗ M → (Φ⃗∗(T D2))⊥

from the tangent space to Mm onto the normal space to Φ⃗(D2).
We shall denote by D the Levi-Civita connection of (Mm, h) and by an abuse of notations

we also denote by D the associated covariant exterior derivative. We also denote by Dg the pull
back by Φ⃗ of D which is a connection – respectively a covariant exterior derivative – of the pull-
back bundle Φ⃗−1T Mm . D

∗g
g is the adjoint of the covariant derivative Dg for the induced metric

g = Φ⃗∗h. ⋆h is the Hodge operator associated to h on multi-vectors of Mm from ∧
p Mm into

∧
m−p Mm . All these objects are defined in Section 3 in (3.1)–(3.5) and (3.7).
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Theorem 1.1. Let Φ⃗ be a smooth immersion of the two dimensional disc D2 into an m-
dimensional Riemannian manifold (Mm, h), then the following identity holds

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= ∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |

2 H⃗ − R⊥

Φ⃗
(T Φ⃗) (1.8)

where ∆⊥ is the negative covariant Laplacian on the normal bundle to the immersion, Ã is the
linear map given in (1.6), R⊥ is defined in (1.7). �

Notice that though the right hand side does not make sense for W 1,∞
∩W 2,2 weak immersions,

the left hand side does. Therefore a straightforward but important consequence of Theorem 1.1
is the following conservative form of Willmore surfaces equation making sense for W 1,∞

∩W 2,2

weak immersions.

Corollary 1.1. A smooth immersion Φ⃗ of a 2-dimensional disc D2 in (Mm, h) is Willmore if and
only if

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= R̃(H⃗)− R⊥

Φ⃗
(T Φ⃗), (1.9)

where R̃ and R⊥ are the curvature endomorphisms defined respectively in (1.5) and (1.7). �

Remark 1.2. The Euler–Lagrange equations of the other L2 curvature functionals are computed
in Section 3 and differ just by terms completely analogous to the right hand side terms of
(1.9). �

Another important corollary is the conservative form of the constrained-conformal Willmore
equation. Let Σ be a smooth closed surface and Φ⃗ : Σ ↩→ M be a smooth immersion; the
pullback metric g := Φ⃗∗h induces a complex structure J on Σ , and in the associated conformal
class there exists a unique constant curvature metric c0 with total area 1 (see [14]); notice that
by construction Φ⃗ : (Σ , c0) ↩→ M is a conformal immersion. Recall that the smooth immersion
Φ⃗ of (Σ , c0) is said to be constrained-conformal Willmore if and only if it is a critical point of
the Willmore functional under the constraint that the conformal class is fixed. Before writing
the conservative form of the Willmore functional under constraint on the conformal class let us
introduce some notation. Call Q(J ) the space of holomorphic quadratic differentials on (Σ , J )
and let q ∈ Q(J ) written in local complex coordinates as q = f (z)dz ⊗ dz; let H⃗0 be the
Weingarten map given in local coordinates, for a conformal immersion with conformal factor
λ = log(|∂x Φ⃗|), by

H⃗0 :=
1
2

e−2λπn⃗


∂2

x2Φ⃗ − ∂2
y2Φ⃗ − 2i ∂2

xyΦ⃗


=
1
2


I⃗(e⃗1, e⃗1)− I⃗(e⃗2, e⃗2)− 2 i I⃗(e⃗1, e⃗2)


, (1.10)

where n⃗Φ⃗ is the normal space to Φ⃗ and (e⃗1, e⃗2) = e−λ(∂x Φ⃗, ∂yΦ⃗) is a positively oriented

orthonormal frame of T Φ⃗; recall also the definition of the Weingarten operator h⃗0 given locally
by

h⃗0 := 2 πn⃗(∂
2
z2Φ⃗) dz ⊗ dz = e2λ H⃗0 dz ⊗ dz. (1.11)
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We introduce on the space ∧
1−0 D2

⊗ ∧
1−0 D2 of 1 − 0 ⊗ 1 − 0 form on D2 the following

hermitian product1 depending on the conformal immersion Φ⃗:

(ψ1 dz ⊗ dz, ψ2 dz ⊗ dz)W P := e−4λ ψ1(z) ψ2(z) (1.12)

where eλ := |∂x1Φ⃗| = |∂x2Φ⃗|. We observe that for a conformal change of coordinate w(z) (i.e. w
is holomorphic in z) and for ψ ′

i satisfying

ψ ′

i ◦ w dw ⊗ dw = ψi dz ⊗ dz

one has, using the conformal immersion Φ⃗ ◦ w in the l.h.s.

(ψ ′

1 dw ⊗ dw,ψ ′

2 dw ⊗ dw)W P = (ψ1 dz ⊗ dz, ψ2 dz ⊗ dz)W P

for more information about the Weil–Peterson product see [14,35,36]. Now we can write the
constrained-conformal Willmore equation in conservative form.

Corollary 1.2. Let Φ⃗ : Σ ↩→ M be a smooth immersion into the m ≥ 3-dimensional
Riemannian manifold (Mm, h) and call c the conformal structure associated to g = Φ⃗∗h. Then
Φ⃗ is a constrained-conformal Willmore immersion if and only if there exists an holomorphic
quadratic differential q ∈ Q(c) such that

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= ℑ(q, h⃗0)W P + R̃(H⃗)− R⊥

Φ⃗
(T Φ⃗). � (1.13)

Observe that, in local complex coordinates, ℑ[(q, h⃗0)W P ] = e−2λ
ℑ[ f (z)H⃗0].

Notice that also the constrained-conformal equations of the other L2 curvature functional
differ just by terms completely analogous to the right hand side terms of (1.9).

Exploiting the conservative form just showed, in Section 5 we prove that the constrained-
conformal Willmore equation is equivalent to a system of conservation laws (see Theorem 5.1)
and in Section 6 we prove that weak solutions to this system of conservation laws are smooth.
For proving the regularity it is crucial to construct from the system of conservation laws some
potentials R⃗ and S which satisfy a critical Wente type elliptic system (see the system (6.17)).
Using integrability by compensation we gain some regularity on R⃗ and S which bootstrapped,
after some work, gives the smoothness of weak solutions to the constrained-conformal Willmore
equation. Therefore we are able to prove the following full regularity theorem for weak solutions
to the constrained-conformal Willmore equation.

Theorem 1.2 (Regularity of Weak Constrained-Conformal Willmore Immersions). Let Φ⃗ be a
W 1,∞ conformal immersion of the disc D2 taking values into a sufficiently small open subset
of the Riemannian manifold (M, h), with second fundamental form in L2(D2) and conformal
factor λ := log |∂x1Φ⃗| ∈ L∞(D2). If Φ⃗ is a constrained-conformal Willmore immersion then Φ⃗
is C∞. �

Remark 1.3. As the reader will see, the proof of the regularity is not just a straightforward
adaptation of the Euclidean one. Indeed in the euclidean case R⃗ and S were real valued and

1 This hermitian product integrated on D2 is the Weil–Peterson product.
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their existence was ensured by a direct application of the Poincaré Lemma. Here the curvature
terms make the situation more delicate. Indeed R⃗ and S, which now are complex valued, are
constructed using the Dz and ∂z operators (see Lemma 6.2), and their construction makes use of
singular integrals and Fourier analysis (see the Appendix). Notice that, in case of null curvature,
the imaginary parts of R⃗ and S vanish and the two, a priori different, constructions coincide.
Therefore our construction is canonical and has a geometric, beside analytic, meaning. �

Remark 1.4. The regularity issues regarding minimizers of L2 curvature functionals in 3-
dimensional Riemannian manifolds have been studied also in [15] using techniques from [39].
Beside the fact that here we deal with higher codimensions, the real advantage of this new ap-
proach is that it permits to infer that any weak solution to the equation is smooth, while in the
former the regularity crucially used the minimality property. Therefore our new approach is more
flexible and it is suitable for studying existence of more general critical points of saddle type. To
this purpose, we recall that in [2] the analysis of Palais–Smale sequences for the Willmore func-
tional in the Euclidean space is performed. Since the Riemannian curvature terms are subcritical,
the same results should hold for immersions in Riemannian manifolds. �

Remark 1.5. Since the difference between the Willmore equation and the Euler–Lagrange
equations of the other L2 curvature functionals F and Wconf (also under area or conformal type
constraint) is made of subcritical terms, the Regularity Theorem 1.2 applies to them as well. �

Another application of the conservative form of the equation is the following. Recall that
an immersion is called conformal Willmore if it is a critical point of the conformal Willmore
functional Wconf defined in (1.3), and is called constrained-conformal conformal Willmore if it
is a critical point of Wconf under the constraint of fixed conformal class. Notice that, since by
the Uniformization Theorem there is just one smooth conformal class on S2, the two notions
coincide for smooth immersions of S2. Recall also that a smooth immersion Φ⃗ : Σ ↩→ Mm of
the surface Σ has parallel mean curvature if the normal projection of the covariant derivative of
the mean curvature H⃗ with respect to tangent vectors to Φ⃗ is null:

πn⃗(DH⃗) = 0. (1.14)

Observe that in codimension one a surface has parallel mean curvature if and only if it has a
constant mean curvature, i.e. it is a CMC surface.

In Section 4, we prove the following proposition (the analogous proposition for immersions
in the Euclidean space appears in [36]) which ensures abundance of constrained-conformal
conformal Willmore surfaces in space forms. Since, as explained above, the conformal constraint
for smooth immersions of a 2-sphere is trivial, the proposition ensures also abundance of
conformal Willmore spheres in space forms.

Proposition 1.1. Let (Mm, h) be an m-dimensional Riemannian manifold of constant sectional
curvature K̄ and let Φ⃗ : Σ ↩→ Mm be a smooth immersion of the smooth surface Σ .

If Φ⃗ has parallel mean curvature then Φ⃗ is constrained-conformal conformal Willmore. �

The assumption on the sectional curvature is not trivial, indeed combining results of [30,25]
we get the following rigidity theorem.

Theorem 1.3 (Rigidity for Willmore). Let (M3, h) be a compact 3-dimensional Riemannian
manifold with constant scalar curvature. Then M has constant sectional curvature if and only if
every smooth constant mean curvature sphere is conformal Willmore. �
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After having studied the analysis of the Euler–Lagrange equation of the mentioned L2

curvature functionals we move to establish existence of minimizers of such functionals. We will
study both curvature and topological conditions which ensure the existence of a minimizer.

Before passing to the existence theorems observe that minimizing the Willmore and the other
L2 curvature functionals among smooth immersion is of course a-priori an ill posed variational
problem. In [35] (see also [33]), the second author introduced the suitable setting for dealing
with minimization problems whose highest order term is given by the Willmore energy. We now
recall the notion of weak branched immersions with finite total curvature.

By virtue of the Nash theorem we can always assume that Mm is isometrically embedded in
some euclidean space Rn . We first define the Sobolev spaces from S2 into Mm as follows: for
any k ∈ N and 1 ≤ p ≤ ∞

W k,p(S2,Mm) :=


u ∈ W k,p(S2,Rn) s.t. u(x) ∈ Mm for a.e. x ∈ S2


.

Now we introduce the space of possibly branched Lipschitz immersions: a map Φ⃗ ∈

W 1,∞(S2,Mm) is a possibly branched Lipschitz immersion if

(i) there exists C > 1 such that

∀x ∈ S2 C−1
|dΦ⃗|

2(x) ≤ |dΦ⃗ ∧ dΦ⃗|(x) ≤ |dΦ⃗|
2(x) (1.15)

where the norms of the different tensors have been taken with respect to the standard metric
on S2 and with respect to the metric h on Mm and where dΦ⃗ ∧dΦ⃗ is the tensor given in local
coordinates on S2 by

dΦ⃗ ∧ dΦ⃗ := 2 ∂x1Φ⃗ ∧ ∂x2Φ⃗ dx1 ∧ dx2 ∈ ∧
2 T ∗S2

⊗ ∧
2 TΦ⃗(x)M

m .

(ii) There exists at most finitely many points {a1 · · · aN } such that for any compact K ⊂

S2
\ {a1 · · · aN }

ess inf
x∈K

|dΦ⃗|(x) > 0. (1.16)

For any possibly branched Lipschitz immersion we can define almost everywhere the Gauss map

n⃗Φ⃗ := ⋆h
∂x1Φ⃗ ∧ ∂x2Φ⃗

|∂x1Φ⃗ ∧ ∂x2Φ⃗|
∈ ∧

m−2 TΦ⃗(x)M
m

where (x1, x2) is a local arbitrary choice of coordinates on S2 and ⋆h is the standard Hodge
operator associated to the metric h on multi-vectors in T M .

With these notations we define the following.

Definition 1.1. A Lipschitz map Φ⃗ ∈ W 1,∞(S2,Mm) is called “weak, possibly branched,
immersion” if Φ⃗ satisfies (1.15) for some C ≥ 1, if it satisfies (1.16) and if the Gauss map
satisfies

S2
|Dn⃗Φ⃗ |

2 dvolg < +∞ (1.17)

where dvolg is the volume form associated to g := Φ⃗∗h the pull-back metric of h by Φ⃗ on
S2, D denotes the covariant derivative with respect to h and the norm |Dn⃗Φ⃗ | of the tensor Dn⃗Φ⃗
is taken with respect to g on T ∗S2 and h on ∧

m−2 T M . The space of “weak, possibly branched,
immersion” of S2 into Mm is denoted FS2 . �
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Using Müller–Sverak theory of weak isothermic charts (see [28]) and the Hélein moving
frame technique (see [13]) one can prove the following proposition (see [33]).

Proposition 1.2. Let Φ⃗ be a weak, possibly branched, immersion of S2 into Mm in FS2 then
there exists a bi-Lipschitz homeomorphism Ψ of S2 such that Φ⃗ ◦ Ψ is weakly conformal: it
satisfies almost everywhere on S2

|∂x1(Φ⃗ ◦ Ψ)|2h = |∂x2(Φ⃗ ◦ Ψ)|2h
h(∂x1(Φ⃗ ◦ Ψ), ∂x2(Φ⃗ ◦ Ψ)) = 0

where (x1, x2) are local arbitrary conformal coordinates in S2 for the standard metric. Moreover
Φ⃗ ◦ Ψ is in W 2,2

∩ W 1,∞(S2,Mm). �

Remark 1.6. In view of Proposition 1.2 a careful reader could wonder why we do not work
with conformal W 2,2 weak, possibly branched, immersion only and why we do not impose for
the membership in FS2 , Φ⃗ to be conformal from the beginning. The reason why this would be a
wrong strategy and why we have to keep the flexibility for weak immersions not to be necessarily
conformal is clear in the proof of the existence theorems, Section 8 and in the Appendix where
we will study the variations of the functionals under general perturbations which do not have to
respect infinitesimally the conformal condition. �

Now that we have introduced the right framework we pass to discuss the existence theorems.
Fix a point p̄ ∈ Mm and a 3-dimensional subspace S < Tp̄ M of the tangent space to M at p̄.

We denote

R p̄(S) :=


i≠ j, i, j=1,2,3

K̄ p̄


E⃗i , E⃗ j


(1.18)

where {E⃗1, E⃗2, E⃗3} is an orthonormal basis of S and K̄ p̄(E⃗i , E⃗ j ) denotes the sectional curvature
of (M, h) computed on the plane spanned by (E⃗i , E⃗ j ) contained in Tp̄ M . Notice that R p̄(S)
coincides with the scalar curvature at p̄ of the 3-dimensional submanifold of M obtained
exponentiating S. Under a condition on R p̄(S), in the following theorem we minimize the
functional F1 defined on F as

F1(Φ⃗) :=


S2


1
2
|I|2 + 1


dvolg = F(Φ⃗)+ A(Φ⃗). (1.19)

Theorem 1.4. Let (Mm, h) be a compact Riemannian manifold and assume there is a point p̄
and a 3-dimensional subspace S < Tp̄ M such that R p̄(S) > 6, where R p̄(S) is the curvature
quantity defined in (1.18). Then there exists a branched conformal immersion Φ⃗ of S2 into
(Mm, h) with finitely many branched points b1, . . . , bN , smooth on S2

\{b1, . . . , bN
}, minimizing

the functional F1 in FS2 , i.e. among weak branched immersions with finite total curvature. �

Observe that the unit round m-dimensional sphere Sm with canonical metric has R p̄(S) ≡ 6
for any base point p̄ and any subspace S, so the assumption is that our ambient manifold has at
least one point p̄ and at least three directions spanning S where the manifold is “more positively
curved” than Sm . Let us make a remark about the regularity in the branch points.
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Remark 1.7. The removability of point singularities for Willmore surfaces in Euclidean space
has been studied in [16,17,32]; recently Y. Bernard and the second author, in [4], proved that the
parametrization is smooth also in the branch points if two residues vanish. Analogous statements
should hold for branched Willmore immersions in manifolds. �

Remark 1.8. It is always possible to minimize F1 by forcing the immersion to pass through a
fixed family of points. For an arbitrary choice of points sufficiently close to the minimizers we
found in Theorem 1.4, this should generate a Willmore sphere passing through these points but
satisfying the Willmore equation only away from these points. Since in the variational argument
these points cannot be moved the corresponding residues obtained in [16,32,4] have no reason to
vanish and the conformal parametrization Φ⃗ of a minimizer should be at most C1,α in general.
This should contrast presumably with the situation at the branched points of the minimizers
obtained in Theorem 1.4. Since these points are left free during the minimization procedure, the
first residue γ⃗0 (see [4]) should vanish and the conformal map Φ⃗ should be at least C2,α at these
points. �

Remark 1.9. Another interesting question to deepen concerns the analysis of energy
identities/loss of energy in the possible neck regions. Such a study was performed in [3] for
the Willmore functional in Euclidean space; we expect that similar results hold for immersions
of spheres (or of higher genus surfaces under the assumption that the conformal classes do not
degenerate in the moduli space) in Riemannian manifolds. �

Now let us consider the problem of minimizing the functional F =


|I|2. In codimension one,
E. Kuwert, J. Schygulla and the first author, in [15], proved the existence of a smooth immersion
of S2 without branched points minimizing the functional F under curvature conditions on the
compact ambient 3-manifold (see also [27] for non compact ambient 3-manifolds); notice that
the topological argument employed for excluding the branch points crucially depends on the
codimension one assumption. Therefore, in higher codimension, it makes sense to look for
minimizers of F among branched immersions, as done in the following theorem.

Theorem 1.5. Let (Mm, h) be a compact Riemannian manifold. Assume there is a minimizing
sequence for the functional F =

1
2


|I|2 in FS2 (among weak possibly branched immersions

with finite total curvature), {Φ⃗k}k∈N ⊂ FS2 , with area bounded by positive constants from below
and above:

0 <
1
C

≤ A(Φ⃗k) ≤ C < ∞.

Then there exists a branched conformal immersion Φ⃗ of S2 into (Mm, h) with finitely many
branched points b1, . . . , bN , smooth on S2

\ {b1, . . . , bN
}, minimizing the functional F in FS2 ,

i.e. among weak branched immersions with finite total curvature. �

Remark 1.10. By analogous arguments to the proof of Theorem 1.4, the lower bound on the
area is ensured if R p̄(S) > 0 for some point p̄ and 3-dimensional subspace S < Tp̄ M .

Notice that a uniform upper bound on the areas of the minimizing sequence is a crucial
information for compactness issues; moreover generally this is not a trivial property in view
of the possibility of totally geodesic laminations (a similar constraint appears in [23]). �

Up to here we studied the existence of minimizers of curvature functionals under curvature
conditions on the ambient manifold. Now we move to consider the existence of area-constrained
Willmore spheres under topological conditions on the ambient manifold.
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For any x0 ∈ Mm we denote respectively by π2(Mm, x0) the homotopy groups of based
maps from S2 into Mm sending the south pole to x0 and by π0(C0(S2,Mm)) the free homotopy
classes. It is well known that the group π2(Mm, x0) for different x0 are isomorphic to each other
and π2(M) denotes any of the π2(Mm, x0) modulo isomorphisms. Recall that, in [38], J. Sacks
and K. Uhlenbeck proceeded to the minimization of the Dirichlet energy

E(Φ⃗) =
1
2


S2

|dΦ⃗|
2 dvolS2

among mappings Φ⃗ of the two sphere S2 into Mm within a fixed based homotopy class in
π2(Mm, x0) in order to generate area minimizing, possibly branched, immersed spheres realizing
this homotopy class.

Even if the paper had a great impact in mathematics, the program of Sacks and Uhlenbeck was
only partially successful. Indeed the possible loss of compactness arising in the minimization
process can generate a union of immersed spheres realizing the corresponding free homotopy
class but for which the underlying component in the homotopy group π2(Mm) may have
been forgotten (for more details see also the Introduction to [26]). It is very hard in the
Sacks–Uhlenbeck’s work to distinguish the classes which are realized by minimal conformal
immersions from the somehow not satisfying classes. At least Sacks and Uhlenbeck could prove
that the set of satisfying classes generates, as a π1-module, the homotopy group π2(Mm).

To overcome this difficulty, we minimize a curvature functional – corresponding to A + W
in the absence of branched points – under homotopy constraint and we prove that, even if we
still have a bubbling phenomenon, the limit object must be connected. More precisely we show
that for every non trivial 2-homotopy group of Mm there is a canonical representative given
by a Lipschitz map from S2 to M realizing the connected union of conformal branched area-
constrained Willmore spheres which are smooth outside the branched points. Notice that this is
a natural generalization of Sacks–Uhlenbeck’s procedure in a sense that, if a class γ in π2(Mm)

possesses an area minimizing immersion Φ⃗ then H⃗Φ⃗ ≡ 0, in particular Φ⃗ is an area-constrained
Willmore sphere minimizing A + W in its homotopy class.

Before stating the theorem let us recall that for any Lipschitz mapping a⃗ from S2 into
Mm, (a⃗)∗[S2

] denotes the current given by the push-forward by a⃗ of the current of integration
over S2: for any smooth two-form ω on Mm

(a⃗)∗[S2
], ω


:=


S2
(a⃗)∗ω.

Moreover we denote with [a⃗] ∈ π2(Mm) the 2-homotopy class corresponding to the continuous
map a⃗ : S2

→ Mm .

Theorem 1.6. Let (Mm, h) be a compact Riemannian manifold and fix 0 ≠ γ ∈ π2(Mm). Then
there exist finitely many branched conformal immersions Φ⃗1, . . . , Φ⃗N

∈ FS2 and a Lipschitz
map f⃗ ∈ W 1,∞(S2,Mm) with [ f⃗ ] = γ satisfying

f⃗ (S2) =

N
i=1

Φ⃗i (S2) and (1.20)

f⃗∗[S2
] =

N
i=1

Φ⃗i
∗[S

2
]. (1.21)
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Moreover for every i , the map Φ⃗i is a conformal branched area-constrained Willmore immersion
which is smooth outside the finitely many branched points b1, . . . , bNi . More precisely we mean
that, outside the branched points, every Φ⃗i is a smooth solution to the Willmore equation with
the Lagrange multiplier 2H⃗ :

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= 2H⃗ + R̃(H⃗)− R⊥

Φ⃗
(T Φ⃗), (1.22)

where πn⃗ is the projection onto the normal space to Φ⃗, ⋆h and ∗g are respectively the Hodge
operator on (M, h) and (S2, g := Φ⃗∗h); R̃ and R⊥ are the curvature endomorphisms defined
respectively in (1.5) and (1.7). The operators Dg, D

∗g
g , . . . are defined above (see also more

explicit expressions in Section 3). �

Remark 1.11. With the same proof, the analogous theorem about the existence of a connected
family of smooth branched conformal immersions of S2 which are area-constrained critical
points for the functional F and are realizing a fixed homotopy class holds. �

Remark 1.12. It might be interesting to investigate whether the minimizer in a fixed homotopy
class is really obtained by a Lipschitz realization of more than one smooth branched immersions
of spheres or it is realized by exactly one smooth branched immersion of S2. The asymptotic
behavior of the solutions at possible connection points of 2 distinct spheres in relation with the
cancellation of the first residue γ⃗0 mentioned in Remark 1.8 (which should also hold in the
situation of Theorem 1.6) is a starting point for studying the possibility to have such connection
points while considering an absolute minimizer. �

Let us give here an idea of the proof of Theorem 1.6. Consider the following Lagrangian L
defined on FS2

L(Φ⃗) :=


S2


1
4
|I|2 −

1
2

K̄ (T Φ⃗)+ 1


dvolg, (1.23)

where K̄ (T Φ⃗) is the sectional curvature of the ambient manifold (Mm, h) evaluated on the
tangent space to Φ⃗(S2) and observe that, by the Gauss equation, outside the branch points it
holds

1
4
|I|2 −

1
2

K̄ (T Φ⃗)+ 1 = |H⃗ |
2
+ 1 −

1
2

KΦ⃗, (1.24)

where KΦ⃗ is the Gauss curvature of Φ⃗, i.e. the sectional curvature of the metric g = Φ⃗∗(h) on
S2. Notice that, since the Gauss curvature integrated on compact subsets away the branch points
gives a null Lagrangian (i.e. a Lagrangian with null first variation with respect to compactly
supported variations), the Euler–Lagrange equation of L coincides with the Euler–Lagrange
equation of


(|H⃗ |

2
+ 1) outside the branched points; therefore the critical points of L satisfy

the area-constrained Willmore equation (1.31) outside the branched points.
Our approach is then to minimize L; the space on which the minimization procedure is

performed is the set T of N + 1-tuples T⃗ = ( f⃗ , Φ⃗1, . . . , Φ⃗N ), where N is an arbitrary positive
integer, where f⃗ ∈ W 1,∞(S2,Mm) and Φ⃗i

∈ FS2 satisfy (1.20) and (1.21); naturally we define

L(T⃗ ) =

N
i=1

L(Φ⃗i ). (1.25)
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Observe that, up to rescaling the ambient metric h by a positive constant, we can always assume
that K̄ ≤ 1 on all M (or equivalently choose in (1.23), instead of 1, a large positive constant C >

maxM K̄ ). On a minimizing sequence T⃗k under the constraint that the map f⃗k ∈ W 1,∞(S2,Mm)

is in the fixed homotopy class 0 ≠ γ ∈ π2(Mm), both the areas and the L2 norms of the second
fundamental forms are clearly equibounded; therefore, using results from [26] we construct a
minimizer T⃗∞ = ( f⃗∞, Φ⃗1

∞, . . . , Φ⃗
N∞
∞ ) ∈ T such that f⃗∞ ∈ W 1,∞(S2,M2) is still in the

homotopy class γ . Using the regularity theory developed in Section 6 we conclude with the
smoothness of the Φ⃗i

∞ outside the finitely many branched points.
Observe that, for small values of the area, smooth (contractible in M) area constrained-

Willmore spheres have been constructed in [18] (see also [8,19,20,24,25]) as perturbations of
small geodesic spheres using perturbative methods; notice that instead Theorem 1.6 deals with
the global situation when the topology of the ambient manifold plays a crucial role. Moreover in
the next theorem we produce area-constrained Willmore spheres for any value of the area. More
precisely consider the Lagrangian WK defined on FS2 as follows

WK (Φ⃗) :=


S2


1
4
|I|2 −

1
2

K̄ (T Φ⃗)


dvolg. (1.26)

Using the Gauss equation, one has

1
4
|I|2 −

1
2

K̄ (T Φ⃗) = |H⃗ |
2
−

1
2

KΦ⃗, (1.27)

and, as before, this implies that the critical points of WK satisfy exactly the Willmore equation
outside the branch points. Notice moreover that, if one considers just non branched immersions
then WK is exactly the Willmore functional W up to an additive topological constant by the
Gauss–Bonnet Theorem, so minimizing WK under area constraint among branched immersions
is the natural generalization of minimizing W under area constraint among non branched
immersions; moreover the possibility of having a branched minimal sphere (for the existence
of branched minimal spheres in Riemannian manifolds see for example [38]) for a fixed value of
the area suggests that the correct setting, for the global problem of minimizing the Willmore
functional under area constraint for not necessarily small values of the area, is the one of
branched immersions.

Theorem 1.7. Let (Mm, h) be a compact Riemannian manifold and fix any A > 0. Then there
exist finitely many branched conformal immersions Φ⃗1, . . . , Φ⃗N

∈ FS2 and a Lipschitz map
f⃗ ∈ W 1,∞(S2,Mm) with

N
i=1

A(Φ⃗i ) = A, (1.28)

f⃗ (S2) =

N
i=1

Φ⃗(S2) and (1.29)

f⃗∗[S2
] =

N
i=1

Φ⃗i
∗[S

2
], (1.30)

such that for every i , the map Φ⃗i is a conformal branched area-constrained Willmore immersion
which is smooth outside the finitely many branched points b1, . . . , bNi . More precisely we mean
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that, outside the branched points, every Φ⃗i is a smooth solution to the Willmore equation with
the Lagrange multiplier aH⃗ (for some a ∈ R)

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= aH⃗ + R̃(H⃗)− R⊥

Φ⃗
(T Φ⃗), (1.31)

with the same notation as in Theorem 1.6. Moreover the N + 1-tuple T⃗ = ( f⃗ , Φ⃗1, . . . , Φ⃗N )

minimizes the functional WK in the set of tuples T (defined above) having area A, where the
area and the WK functional of an element T⃗ = ( f⃗ , Φ⃗1, . . . , Φ⃗N ) ∈ T are defined in a natural
way as A(T⃗ ) =

N
i=1 A(Φ⃗i ) and WK (T⃗ ) =

N
i=1 WK (Φ⃗i ) respectively. �

With the same proof, the analogous theorem about the existence of a connected family of
smooth branched conformal immersions of S2 which are area-constrained critical points for the
functional F and whose total area is an arbitrary A > 0 holds; this connected family moreover
minimize the functional F in T under the area constraint A(T ) = A.

Remark 1.13. For small area A < ε0, by the monotonicity formula (the monotonicity formula
is a crucial tool introduced in [39], for the proof in this context see Lemma 7.2) the minimizer
has also small diameter and thanks to the estimates contained in [19,18], the minimum of the
functional WK is close to 2π . With arguments analogous to [18] (using [21]), one checks that,
for small area A < ε0, the minimizer produced in Theorem 1.7 is made of just one smooth
non branched area-constrained Willmore immersion of the 2-sphere. Therefore Theorem 1.7 is
the natural generalization of the main theorem in [18], where Lamm and Metzger minimize the
Willmore functional under small area constraint among non branched little spheres. �

Notations and conventions.
For the Riemann curvature tensor Riemh of (Mm, h) we use the convention of [45] (notice

that other authors, like [9], adopt the opposite sign convention): for any X⃗ , Y⃗ , Z⃗ ∈ Tx M define

Riemh(X⃗ , Y⃗ )Z⃗ := DX⃗ DY⃗ Z⃗ − DY⃗ DX⃗ Z⃗ − D
[X⃗ ,Y⃗ ]

Z⃗ .

The Hodge operator on Rm or more generally on the tangent space Tx M of an oriented
Riemannian manifold (Mm, h) is the linear map from ∧

p Tx M into ∧
m−p Tx M which to a p-

vector α assigns the m − p-vector ⋆h α on Tx M such that for any p-vector β in ∧
p Tx M the

following identity holds:

β ∧ ⋆h α = ⟨β, α⟩h E⃗1 ∧ · · · ∧ E⃗m (1.32)

where (E⃗1, . . . , E⃗m) is an orthonormal positively oriented basis of Tx M and ⟨·, ·⟩h is the scalar
product on ∧

p Tx M induced by h. Notice that even if Mm is not orientable, we can still define
⋆h locally.

We will also need the concept of interior multiplication x between p- and q-vectors, p ≥ q ,
producing a p − q-vector such that (see [10] 1.5.1 combined with 1.7.5): for every choice of p-,
q- and p − q-vectors, respectively α, β and γ the following holds:

⟨αxβ, γ ⟩ = ⟨α, β ∧ γ ⟩. (1.33)

We call • the following contraction operation which to a pair of p- and q-vectors (α, β)
assigns the p + q − 2-vector α • β such that:

– if q = 1, α • β := αxβ,
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– if α ∈ ∧
p Tx M, β ∈ ∧

q Tx M and γ ∈ ∧
s Tx M then

α • (β ∧ γ ) := (α • β) ∧ γ + (−1)rs(α • γ ) ∧ β. (1.34)

2. The conservative form of the Willmore surface equation in 3-dimensional manifolds

Let Σ 2 be an abstract closed surface, (M, h) a 3 dimensional Riemannian manifold and
Φ⃗ : Σ 2 ↩→ (M, h) a smooth immersion. Since the following results are local, we can work
locally in a disc-neighborhood of a point and use isothermal coordinates on this disc. This means
that we can assume Φ⃗ to be a conformal immersion from the unit disc D2

⊂ R2 into (M, h).
Let us introduce some notations. Given the conformal immersion Φ⃗ : D2 ↩→ (M, h) we

call g := Φ⃗∗h = e2λ(dx2
1 + dx2

2) the induced metric; denote (e⃗1, e⃗2) the orthonormal basis of
Φ⃗∗(TΣ 2) given by

e⃗i := e−λ ∂Φ⃗
∂xi

,

where eλ = |∂x1Φ⃗| = |∂x2Φ⃗|. The unit normal vector n⃗ to Φ⃗(Σ ) is then given by

n⃗ = ⋆h(e⃗1 ∧ e⃗2).

Denoted with D the covariant derivative of (M, h) we have the second fundamental form

I⃗(X⃗ , Y⃗ ) := −⟨DX⃗ n⃗, Y⃗ ⟩n⃗

and the mean curvature

H⃗ :=
1
2


I⃗(e⃗1, e⃗1)+ I⃗(e⃗2, e⃗2)


.

Introduce moreover the Weingarten operator expressed in conformal coordinates (x1, x2) as:

H⃗0 :=
1
2


I⃗(e1, e1)− I⃗(e2, e2)− 2 i I⃗(e1, e2)


.

In [32] an alternative form to the Euler–Lagrange equation of Willmore functional in
euclidean setting was proposed; our goal is to do the same for immersions in a Riemannian
manifold.

Theorem 2.1. Let Φ⃗ be a smooth immersion of a two dimensional manifold Σ 2 into
a 3-dimensional Riemannian manifold (M3, h); restricting the immersion to a small disc
neighborhood of a point where we consider local conformal coordinate, we can see Φ⃗ as a
conformal immersion of D2 into (M, h). Then the following identity holds

− 2e2λ∆g H n⃗ − 4e2λ H⃗ (H2
− (K g

− K h))+ 2e2λR⊥

Φ(T Φ⃗)

= D∗


−2∇ Hn⃗ + H Dn⃗ − H ⋆h(n⃗ ∧ D⊥n⃗)


, (2.1)

where H⃗ is the mean curvature vector of the immersion Φ⃗,∆g is the negative Laplace–Beltrami
operator, ⋆h is the Hodge operator associated to metric h, D· := (D

∂x1 Φ⃗
·, D

∂x2 Φ⃗
·) and D⊥

· :=

(−D
∂x2 Φ⃗

·, D
∂x1 Φ⃗

·) and D∗ is an operator acting on couples of vector fields (V⃗1, V⃗2) along

Φ⃗∗(TΣ ) defined as

D∗(V⃗1, V⃗2) := D
∂x1 Φ⃗

V⃗1 + D
∂x2 Φ⃗

V⃗2.
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Finally recall the definition (1.7) of R⊥

Φ⃗
(T Φ⃗) := (Riem(e⃗1, e⃗2)H⃗)⊥ = ⋆h


n⃗ ∧ Riemh(e⃗1, e⃗2)

H⃗

. �

A straightforward but important consequence of Theorem 2.1 is the following conservative
form of Willmore surfaces equations.

Corollary 2.1. A conformal immersion Φ⃗ of a 2-dimensional disc D2 is Willmore if and only if

2e2λ
[R⊥

Φ(T Φ⃗)+ H⃗Rich(n⃗, n⃗)] = D∗


−2DH⃗ + 3H Dn⃗ − ⋆h(H⃗ ∧ D⊥n⃗)


. � (2.2)

Now recall that an immersion Φ⃗ is said to be constrained-conformal Willmore if and only if it
is a critical point of the Willmore functional under the constraint that the conformal class is fixed.
In [6] is derived the Willmore equation under conformal constraint for immersions of surfaces in
a 3-dimensional Riemannian manifold, which, matched with Theorem 2.1, gives the following
corollary.

Corollary 2.2. A conformal immersion Φ⃗ of a 2-dimensional disc D2 is constrained-conformal
Willmore if and only if there exists an holomorphic function f (z) such that

2e2λ


R⊥

Φ(T Φ⃗)+ H⃗Rich(n⃗, n⃗)+ e−2λ
ℑ( f (z)H⃗0)


= D∗


−2DH⃗ + 3H Dn⃗ − ⋆h(H⃗ ∧ D⊥n⃗)


. � (2.3)

We proceed in the following way: first we prove a general lemma for conformal immersions
of the 2-disc in (M3, h), then we pass to the proof of the theorem and of its corollaries.

Lemma 2.1. Let Φ⃗ be a conformal immersion from D2 into (M, h). Denote by n⃗ the unit normal
vector n⃗ = ∗h(e⃗1 ∧ e⃗2) of the conformal immersion Φ⃗ and denote by H the mean curvature.
Then the following identity holds

− 2H ∇Φ⃗ = Dn⃗ + ⋆h(n⃗ ∧ D⊥n⃗) (2.4)

where D· := (D
∂x1 Φ⃗

·, D
∂x2 Φ⃗

·) and D⊥
· := (−D

∂x2 Φ⃗
·, D

∂x1 Φ⃗
·). �

Proof of Lemma 2.1. Denote (e⃗1, e⃗2) the orthonormal basis of Φ⃗∗(TΣ 2) given by

e⃗i := e−λ ∂Φ⃗
∂xi

,

where eλ = |∂x1Φ⃗| = |∂x2Φ⃗|. The unit normal vector n⃗ is then given by

n⃗ = ⋆h(e⃗1 ∧ e⃗2).

We have
⟨e⃗1, ⋆h(n⃗ ∧ D⊥n⃗)⟩ = −⟨D⊥n⃗, e⃗2⟩

⟨e⃗1, ⋆h(n⃗ ∧ D⊥n⃗)⟩ = ⟨D⊥n⃗, e⃗1⟩.

From which we deduce
− ⋆h(n⃗ ∧ D

∂x2 Φ⃗
n⃗) = ⟨D

∂x2 Φ⃗
n⃗, e⃗2⟩e⃗1 − ⟨D

∂x2 Φ⃗
n⃗, e⃗1⟩ e⃗2

⋆h(n⃗ ∧ D
∂x1 Φ⃗

n⃗) = −⟨D
∂x1 Φ⃗

n⃗, e⃗2⟩e⃗1 + ⟨D
∂x1 Φ⃗

n⃗, e⃗1⟩ e⃗2.
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Thus, by the symmetry of the second fundamental form,
D
∂x1 Φ⃗

n⃗ − ⋆h(n⃗ ∧ D
∂x2 Φ⃗

n⃗) = [⟨D
∂x2 Φ⃗

n⃗, e⃗2⟩ + ⟨D
∂x1 Φ⃗

n⃗, e⃗1⟩]e⃗1

D
∂x2 Φ⃗

n⃗ + ⋆h(n⃗ ∧ D
∂x1 Φ⃗

n⃗) = [⟨D
∂x2 Φ⃗

n⃗, e⃗2⟩ + ⟨D
∂x1 Φ⃗

n⃗, e⃗1⟩] e⃗2.

Since H = −e−λ 2−1
[⟨D

∂x2 Φ⃗
n⃗, e⃗2⟩ + ⟨D

∂x1 Φ⃗
n⃗, e⃗1⟩] we deduce (2.4) and Lemma 2.1 is

proved. �

Proof of Theorem 2.1 and its corollaries. First let us introduce the operator D∗ acting on
couples of vector fields (V⃗1, V⃗2) along Φ⃗∗(TΣ ) defined as

D∗(V⃗1, V⃗2) := D
∂x1 Φ⃗

V⃗1 + D
∂x2 Φ⃗

V⃗2.

We can again assume that Φ⃗ is conformal. First apply the operator D∗ to (2.4) and multiply by
H . This gives

− 2H2 D∗ DΦ⃗ − 2H∇ H · DΦ⃗ = H D∗


Dn⃗ + ⋆h(n⃗ ∧ D⊥n⃗)


. (2.5)

We replace −2H DΦ⃗ in (2.5) by the expression given by (2.4), moreover we also use the
expression of the mean curvature vector in terms of Φ⃗:

D∗ DΦ⃗ = 2e2λ H⃗ . (2.6)

So (2.5) becomes

− 4H2 H⃗ e2λ
+ ∇ H ·


Dn⃗ + ⋆h(n⃗ ∧ D⊥n⃗)


= H D∗


Dn⃗ + ⋆h(n⃗ ∧ D⊥n⃗)


. (2.7)

By the Gauss equations, called K g the Gauss curvature of Σ and K h
= K h(Φ⃗∗(TΣ )) the

sectional curvature of (M, h) evaluated on the tangent plane to Φ⃗(Σ ) we have

(K g
− K h)n⃗ = −

1
2
⋆h(Dn⃗ ∧ D⊥n⃗)e−2λ.

Using that the Hodge duality ⋆h commutes with the covariant differentiation D we get

D∗
[⋆h(n⃗ ∧ D⊥n⃗)] = ⋆h(Dn⃗ ∧ D⊥n⃗)+ ⋆h[n⃗ ∧ Riemh(∂x2Φ⃗, ∂x1Φ⃗)n⃗]

where we use the convention that Riemh(X⃗ , Y⃗ )Z⃗ := DX⃗ Y⃗ − DY⃗ X⃗ − D
[X⃗ ,Y⃗ ]

Z⃗ ; putting together
the last two equations we obtain

D∗
[⋆h(n⃗ ∧ D⊥n⃗)] = −2e2λ(K g

− K h)n⃗ + ⋆h[n⃗ ∧ Riemh(∂x2Φ⃗, ∂x1Φ⃗)n⃗]. (2.8)

Computing (2.7) − 2H (2.8) we get

− 4e2λ H⃗ (H2
− (K g

− K h))+ ∇ H ·


Dn⃗ + ⋆h(n⃗ ∧ D⊥n⃗)


− 2 ⋆h


n⃗ ∧ Riemh(∂x2Φ⃗, ∂x1Φ⃗)H⃗


= H D∗


Dn⃗ − ⋆h(n⃗ ∧ D⊥n⃗)


. (2.9)

Since D∗(∇ Hn⃗) = e2λ∆g Hn⃗ + ∇ H · Dn⃗ we have

H D∗(Dn⃗ − ⋆h(n⃗ ∧ D⊥n⃗)) = 2e2λ∆g Hn⃗ + ∇ H ⋆h(n⃗ ∧ D⊥n⃗)

+ D∗
[−2∇ Hn⃗ + H Dn⃗ − H ⋆h(n⃗ ∧ D⊥n⃗)]

+ ∇H Dn⃗. (2.10)



624 A. Mondino, T. Rivière / Advances in Mathematics 232 (2013) 608–676

Plugging (2.10) into (2.9) we obtain

− 4e2λ H⃗ (H2
− (K g

− K h))− 2 ⋆h


n⃗ ∧ Riemh(∂x2Φ⃗, ∂x1Φ⃗)H⃗


− 2e2λ∆g H n⃗

= D∗


−2∇ Hn⃗ + H Dn⃗ − H ⋆h(n⃗ ∧ D⊥n⃗)


. (2.11)

Now observe that
⟨⋆h(n⃗ ∧ Riemh(∂x2Φ⃗, ∂x1Φ⃗)H⃗), e⃗1⟩ = −⟨Riemh(e⃗2, e⃗1)H⃗ , e⃗2⟩

⟨⋆h(n⃗ ∧ Riemh(∂x2Φ⃗, ∂x1Φ⃗)H⃗), e⃗2⟩ = ⟨Riemh(e⃗2, e⃗1)H⃗ , e⃗1⟩

and the normal component is null; hence

⋆h


n⃗ ∧ Riemh(∂x2Φ⃗, ∂x1Φ⃗)H⃗


= −e2λ(Riem(e⃗1, e⃗2)H⃗)

⊥
=: −e2λR⊥

Φ⃗
(T Φ⃗)

where ·
⊥ denotes the rotation in the plane Φ⃗∗(TΣ ) of π2 in the sense from e⃗1 to e⃗2. Therefore we

finally write the relation (2.11) as

− 2e2λ∆g H n⃗ − 4e2λ H⃗ (H2
− (K g

− K h))+ 2e2λR⊥

Φ(T Φ⃗)

= D∗


−2∇ Hn⃗ + H Dn⃗ − H ⋆h(n⃗ ∧ D⊥n⃗)


. (2.12)

Now recall that the immersion Φ⃗ is Willmore if and only if

(∆g H)n⃗ + 2H⃗(H2
− (K g

− K h))+ H⃗Rich(n⃗, n⃗) = 0

so, using Eq. (2.12), Φ⃗ is a Willmore immersion if and only if

2e2λR⊥

Φ(T Φ⃗)+ 2e2λ H⃗Rich(n⃗, n⃗) = D∗


−2∇ Hn⃗ + H Dn⃗ − H ⋆h(n⃗ ∧ D⊥n⃗)


. (2.13)

Observing that DH⃗ = D(Hn⃗) = H Dn⃗ + ∇ Hn⃗ we can rewrite the last relation as

2e2λ
[R⊥

Φ(T Φ⃗)+ H⃗Rich(n⃗, n⃗)] = D∗


−2DH⃗ + 3H Dn⃗ − ⋆h(H⃗ ∧ D⊥n⃗)


(2.14)

which is the desired identity.
In [6] is derived the Willmore equation under conformal constraint for immersions of

surfaces in a 3-dimensional Riemannian manifold; more precisely, by [6, Proposition 2], Φ⃗ is a
conformal constrained Willmore immersion if and only if there exists an holomorphic quadratic
differential q ∈ H0(K 2) such that W ′(Φ⃗) = δ∗(q), which is equivalent to ask that there exists

an holomorphic function f (z) such that W ′(Φ⃗) = e−2λ
ℑ( f (z)H⃗0). Hence Φ⃗ is conformal

constrained Willmore if and only if

− (∆g H)n⃗ − 2H⃗(H2
− (K g

− K h))− H⃗Rich(n⃗, n⃗) = e−2λ
ℑ( f (z)H⃗0) (2.15)

for some holomorphic function f (z); we conclude using the relation (2.12). �

3. Conservative form of the Willmore equation in manifold in arbitrary codimension

Let us start introducing some notation. Let Φ⃗ be a smooth immersion of the disc D2 into a
Riemannian manifold (Mm, h) of dimension m ≥ 3. We stress that at this point Φ⃗ is not assumed
to be conformal. Let us denote with g = gΦ⃗ := Φ⃗⋆h the pull back metric on D2 by Φ⃗. Call ⋆h
and ∗g the Hodge duality operators, defined in (1.32) for p-vectors tangent respectively to M and



A. Mondino, T. Rivière / Advances in Mathematics 232 (2013) 608–676 625

to D2. Consider a positively oriented orthonormal frame f⃗1, f⃗2 of T D2 endowed with the metric
g and let e⃗1 := Φ⃗∗( f⃗1), e⃗2 := Φ⃗∗( f⃗2) be the corresponding orthonormal frame of Φ⃗∗(T D2),
called D the covariant derivative in (M, h) we define

Dg : ΓD2(TΦ⃗ M ⊗ ∧
p T D2) → ΓD2(TΦ⃗ M ⊗ ∧

p+1 T D2)

X⃗ ⊗ α⃗ → De⃗1 X⃗ ⊗ ( f⃗1 ∧ α⃗)+ De⃗2 X⃗ ⊗ ( f⃗2 ∧ α⃗)

= gi j


D
∂xi Φ⃗

X⃗ ⊗


∂

∂x j ∧ α⃗


, (3.1)

where, in the last line we used coordinates (x1, x2) on D2,ΓD2 denotes the set of the sections
of the corresponding bundle, and TΦ⃗ M is the tangent bundle of M along Φ⃗(D2). Notice that the
definition does not depend on the choice of coordinates chosen on D2, i.e. it is intrinsic. Observe
we defined Dg on a generating family, so the definition extends to the whole space.

Next extend the definition of ∗g to TΦ⃗ M ⊗ ∧
p T D2 as

∗g : TΦ⃗ M ⊗ ∧
p T D2

→ TΦ⃗ M ⊗ ∧
(2−p) T D2

X⃗ ⊗ α⃗ → X⃗ ⊗ (∗g α⃗). (3.2)

Using (3.1) and (3.2) let us define

D
∗g
g := (−1) ∗g Dg ∗g . (3.3)

We also need to extend the definitions of ⋆h,∧M , scalar product and the projection πn⃗ onto the
normal space to Φ⃗ as follows

⋆h : ∧
p TΦ⃗ M ⊗ ∧

q T D2
→ ∧

(m−p) TΦ⃗ M ⊗ ∧
q T D2

η⃗ ⊗ α⃗ → (⋆h η⃗)⊗ α⃗ (3.4)

∧M : ∧
p TΦ⃗ M ⊗ ∧

q T D2
× ∧

s TΦ⃗ M → ∧
p+s TΦ⃗ M ⊗ ∧

q T D2

(η⃗ ⊗ α⃗, τ⃗ ) → (η⃗∧M τ⃗ )⊗ α⃗. (3.5)

⟨·, ·⟩ : (∧p TΦ⃗ M ⊗ ∧
q T D2)× (∧p TΦ⃗ M ⊗ ∧

q T D2) → R

(η⃗ ⊗ α⃗, τ⃗ ⊗ β⃗) → ⟨η⃗, τ⃗ ⟩h⟨α⃗, β⃗⟩g (3.6)

πn⃗ : TΦ⃗ M ⊗ ∧
q T D2

→ TΦ⃗ M ⊗ ∧
q T D2

X⃗ ⊗ α⃗ → (πn⃗(X⃗))⊗ α⃗. (3.7)

Define also RΦ⃗(T Φ⃗) to be

RΦ⃗(T Φ⃗) :=

2
j=1


⟨Riemh(I1 j , e⃗2)e⃗1, e⃗2⟩e⃗ j + ⟨Riemh(e⃗1, I2 j )e⃗1, e⃗2⟩e⃗ j


(3.8)

and

(D R)(T Φ⃗) :=

m
i=1

⟨(DE⃗i
Riemh)(e⃗1, e⃗2)e⃗1, e⃗2⟩E⃗i . (3.9)

The goal of this section is to prove Theorem 1.1. Observe that, now, all the terms appearing
in the statement have been defined. Let us summarize the arguments of the proof.
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Proof of Theorem 1.1. The proof is almost given in the subsection below; more precisely it
follows by combining (3.28) of Theorem 3.1 with (3.29) in Remark 3.1; indeed with some
straightforward computation following the definitions (3.1)–(3.5) and (3.7) one checks that the
left hand side of (1.8) and the left hand side of (3.29) coincide. �

Before passing to the proof of the corollaries, some comments have to be done.
In order to exploit analytically Eq. (1.8) we will need a more explicit expression of πn⃗(Dg H⃗).

Recall the definition of given in (1.33), let as before (e⃗1, e⃗2) be an orthonormal basis of
Φ⃗∗(T D2), call n⃗ the orthogonal m − 2 plane given by

⋆h(e⃗1 ∧ e⃗2) = n⃗

and let (n⃗1 · · · n⃗m−2) be a positively oriented orthonormal basis of the m − 2-plane given by n⃗
satisfying n⃗ = ∧α n⃗α . One verifies easily that

n⃗ e⃗i = 0
n⃗ n⃗α = (−1)α−1

∧β≠α n⃗β
n⃗ (∧β≠α n⃗β) = (−1)m+α−2 n⃗α.

We then deduce the following identity.

∀w⃗ ∈ TΦ⃗(x)M πn⃗(w⃗) = (−1)m−1 n⃗ (n⃗ w⃗). (3.10)

From (3.10) we deduce in particular

πn⃗(Dg H⃗) = Dg H⃗ − (−1)m−1 Dg(n⃗) M (n⃗ H⃗)

− (−1)m−1 n⃗ M (Dg(n⃗) M H⃗); (3.11)

where, analogously as before, we define

M : (∧p TΦ⃗ M ⊗ T D2)× ∧
q TΦ⃗ M → ∧

(p−q) TΦ⃗ M ⊗ T D2

(α⃗ ⊗ v⃗, β⃗) → (α⃗ ⊗ v⃗) M β⃗ := (α⃗ β⃗)⊗ v⃗. (3.12)

A straightforward but important consequence of Theorem 1.1 is the conservative form of
Willmore surface equations given in Corollary 1.1. Let us prove it.

Proof of Corollary 1.1. Recall that the first variation of the Willmore functional in general
Riemannian manifolds has been computed in [43]; equating it to zero we get the classical
Willmore equation in manifolds: Φ⃗ is a Willmore immersion if and only if

∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |
2 H⃗ − R̃(H⃗) = 0 (3.13)

where R̃ is the curvature endomorphism defined in (1.5). Collecting (3.13) and Eq. (1.8) we get
the thesis. �

Recall that an immersion Φ⃗ of Σ is said to be constrained-conformal Willmore if and only if it
is a critical point of the Willmore functional under the constraint that the conformal class is fixed.
Let us prove the conservative form of the constrained-conformal Willmore surface equation given
in Corollary 1.2.

Proof of Corollary 1.2. Recall (see [35], and the notation given in the introduction before
Corollary 1.2) that an immersion Φ⃗ is a constrained-conformal Willmore immersion if and only
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if there exists an holomorphic quadratic differential q ∈ Q(J ) such that

∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |
2 H⃗ − R̃(H⃗) = ℑ[(q, h⃗0)W P ] (3.14)

where R̃ is the curvature endomorphism defined in (1.5). The thesis follows putting together
(3.32) and Eq. (3.28). �

Now we prove that also the Euler–Lagrange equation of the functional F =
1
2


|I|2 can be

written in the conservative form, being the Euler–Lagrange equation of W plus some lower order
terms. Let us start with an auxiliary lemma.

Lemma 3.1. Let Φ⃗ : D2 ↩→ (M, h) be a smooth immersion, then the first variation of the
functional


D2 K̄ (Φ⃗∗(T D2))dvolg with respect to a smooth compactly supported variation w⃗ is

given

d

dt


D2

K̄ ((Φ⃗ + tw⃗)∗(T D2))dvolgΦ⃗+tw⃗
(t = 0)

= −


D2

⟨(D R)(T Φ⃗)+ 2RΦ⃗(T Φ⃗)+ 2K̄ (Φ⃗∗(T D2))H⃗ , w⃗⟩dvolg (3.15)

where (D R)(T Φ⃗) and RΦ⃗(T Φ⃗) are the curvature quantities defined respectively in (3.9) and
(3.8). �

Proof. Let (e⃗1, e⃗2) be an orthonormal frame of Φ⃗∗(T D2) extended in the neighborhood of
Φ⃗(D2) by parallel translation in the normal directions, and πT denotes the projection on
Φ⃗∗(T D2) By definition K̄ (Φ⃗∗(T D2)) = −⟨Riemh(e⃗1, e⃗2)e⃗1, e⃗2⟩. Observe that using the
orthonormality of (e⃗1, e⃗2), the antisymmetry of Riemh(·, ·) and the fact that Dπn⃗(w⃗)e⃗i = 0 we get

Riemh(Dw⃗ e⃗1, e⃗2) = Riemh(I(πT (w⃗), e⃗1), e⃗2);

recall moreover that the first variation of the volume element is −2⟨H⃗ , w⃗⟩volg . Collecting these
informations and using the symmetry of the Riemann tensor one gets

−


D2


⟨(Dw⃗Riemh)(e⃗1, e⃗2)e⃗1, e⃗2⟩ + 2⟨Riemh(I(πT (w⃗), e⃗1), e⃗2)e⃗1, e⃗2⟩

+ 2⟨Riemh(e⃗1, I(πT (w⃗), e⃗2))e⃗1, e⃗2⟩ + 2K̄ (Φ⃗∗(T D2))⟨H⃗ , w⃗⟩


dvolg. (3.16)

Now the thesis follows recalling the definitions (3.9) and (3.8). �

Corollary 3.1. A smooth immersion Φ⃗ of a 2-dimensional disc D2 in (Mm, h) is critical for the
functional F =

1
2


|I|2 if and only if

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= 2R̃(H⃗)− 2R⊥

Φ⃗
(T Φ⃗)+ (D R)(T Φ⃗)+ 2RΦ⃗(T Φ⃗)+ 2K̄ (Φ⃗∗(T D2))H⃗ , (3.17)

where R̃ and R⊥ are the curvature endomorphisms defined respectively in (1.5) and (1.7). �

Proof. The Gauss equation yields

1
2
|I|2 = 2|H⃗ |

2
+ K̄ (Φ⃗∗(T D2))− KΦ⃗ (3.18)
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where KΦ⃗ is the Gauss curvature of the metric g = Φ⃗∗h. Integrating over D2, we get

F(Φ⃗) = 2W (Φ⃗)+


D2

K̄ (Φ⃗∗(T D2))−


D2

KΦ⃗dvolg.

Since by the Gauss–Bonnet theorem the last integral reduces, up to an additive constant, to
an integral on the boundary, if we take variations w⃗ compactly supported in D2 it gives no
contribution in the first variation. Therefore the thesis follows combining the first variation of W
given in Corollary 1.1 and Lemma 3.1. �

Corollary 3.2. A smooth immersion Φ⃗ of a 2-dimensional disc D2 in (Mm, h) is conformal
Willmore (i.e. critical for the conformal Willmore functional Wconf =


(|H⃗ |

2
+ K̄ )dvolg) if and

only if

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= R̃(H⃗)− R⊥

Φ⃗
(T Φ⃗)+ (D R)(T Φ⃗)+ 2RΦ⃗(T Φ⃗)+ 2K̄ (Φ⃗∗(T D2))H⃗ . (3.19)

Notice if (M, h) has constant sectional curvature K̄ then the right hand side is null and we get

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= 0. � (3.20)

Proof. The proof of (3.25) follows combining Corollary 1.1 and Lemma 3.1.
Now assume that the sectional curvature K̄ is constant; then observe that Wconf(Φ⃗) =

W (Φ⃗)+ K̄ A(Φ⃗),

dWconf = dW − 2K̄ H⃗ . (3.21)

Moreover, K̄ constant implies that (see [9, Corollary 3.5] and recall the opposite sign convention
in the Riemann tensor)

⟨Riemh(X⃗ , Y⃗ )W⃗ , Z⃗⟩ = h(X⃗ , Z⃗)h(Y⃗ , W⃗ )− h(X⃗ , W⃗ )h(Y⃗ , Z⃗)

∀X⃗ , Y⃗ , W⃗ , Z⃗ ∈ Tx M. (3.22)

Therefore, plugging (3.22) directly into the definitions (1.5) and (1.7) we get

R̃(H⃗) = −2K̄ H⃗ , (3.23)

R⊥

Φ⃗
(T Φ⃗) = 0. (3.24)

Eq. (3.26) follows combining (3.21), (3.23), (3.24) and Corollary 1.1. �

Corollary 3.3. Let Φ⃗ : Σ ↩→ M be a smooth immersion into the m ≥ 3-dimensional
Riemannian manifold (Mm, h) and call J the complex structure associated to g = Φ⃗∗h. Then
the immersion Φ⃗ is constrained-conformal conformal Willmore (i.e. critical for the conformal
Willmore functional Wconf =


(|H⃗ |

2
+ K̄ )dvolg under the constraint of fixed conformal class)

if and only if there exists an holomorphic quadratic differential q ∈ Q(J ) such that

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= ℑ


(q, h⃗0)W P


+ R̃(H⃗)− R⊥

Φ⃗
(T Φ⃗)
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+ (D R)(T Φ⃗)+ 2RΦ⃗(T Φ⃗)+ 2K̄ (Φ⃗∗(T D2))H⃗ (3.25)

where H⃗0, h⃗0 and (·, ·)W P are defined in (1.10)–(1.12).
Notice that if (M, h) has constant sectional curvature K̄ then the curvature terms of the right

hand side vanish and we get

1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗


= ℑ


(q, h⃗0)W P


. � (3.26)

Proof. The proof is analogous to the proof of Corollary 1.2 once we have Corollary 3.2. �

3.1. Derivation of the conservative form: use of conformal coordinates and complex notation

We first introduce some complex notation that will be useful in the sequel. In this subsection
Φ⃗ is a conformal immersion into a Riemannian manifold (Mm, h) of dimension m ≥ 3, denote
z = x1 + i x2, ∂z = 2−1(∂x1 − i∂x2), ∂z = 2−1(∂x1 + i∂x2).
Moreover we denote2

e⃗z := e−λ∂zΦ⃗ = 2−1(e⃗1 − i e⃗2)

e⃗z := e−λ∂zΦ⃗ = 2−1(e⃗1 + i e⃗2).

Observe that
⟨e⃗z, e⃗z⟩ = 0

⟨e⃗z, e⃗z⟩ =
1
2

e⃗z ∧ e⃗z =
i

2
e⃗1 ∧ e⃗2.

(3.27)

We also use the shorter notation Dz := D
∂zΦ⃗

and Dz̄ := D∂z̄Φ⃗
for the covariant derivative with

respect to the vectors ∂zΦ⃗ and ∂z̄Φ⃗. Introduce moreover the Weingarten operator expressed in
our conformal coordinates (x1, x2):

H⃗0 :=
1
2


I⃗(e⃗1, e⃗1)− I⃗(e⃗2, e⃗2)− 2 i I⃗(e⃗1, e⃗2)


.

Theorem 3.1. Let Φ⃗ be a smooth immersion of a two dimensional manifold Σ 2 into an
m-dimensional Riemannian manifold (Mm, h); restricting the immersion to a small disc
neighborhood of a point where we consider local conformal coordinate, we can see Φ⃗ as a
conformal immersion of D2 into (M, h). Then the following identity holds

4 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= ∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |

2 H⃗ + 8ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


, (3.28)

where H⃗ is the mean curvature vector of the immersion Φ⃗,∆⊥ is the negative covariant
Laplacian on the normal bundle to the immersion, Ã is the linear map given in (1.6), Dz · :=

2 Observe that the notation has been chosen in such a way that e⃗z = e⃗z .
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D
∂zΦ⃗

·, and Dz · := D
∂zΦ⃗

· are the covariant derivatives in (M, h) with respect to the tangent

vectors ∂zΦ⃗ and ∂zΦ⃗. �

Remark 3.1. Observe that using the identity (3.34) proved in Lemma 3.2, Eq. (3.28) can be
written using real conformal coordinates as follows

−
e−2λ

2
D∗


DH⃗ − 3πn⃗(DH⃗)+ ⋆h(D

⊥n⃗ ∧ H⃗)


= ∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |
2 H⃗ − R⊥

Φ⃗
(T Φ⃗), (3.29)

observe we used the equation below, which follows by definition (1.7),

R⊥

Φ⃗
(T Φ⃗) = −8ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


=


πT


Riemh(e⃗1, e⃗2)H⃗

⊥

.

Notice that identity (3.29) in codimension one gives exactly the previous (2.12). �

A straightforward but important consequence of Theorem 3.1 is the following conservative
form of Willmore surfaces equation in conformal coordinates.

Corollary 3.4. A conformal immersion Φ⃗ of a 2-dimensional disc D2 in (Mm, h) is Willmore if
and only if

4 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= R̃(H⃗)+ 8ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


. (3.30)

Proof. Recall that Φ⃗ is a Willmore immersion if and only if (3.13) holds. Combining (3.13) and
Eq. (3.28) we get the desired result. �

Now recall that an immersion Φ⃗ is said to be constrained-conformal Willmore if and only if
it is a critical point of the Willmore functional under the constraint that the conformal class is
fixed.

Corollary 3.5. A conformal immersion Φ⃗ of a 2-dimensional disc D2 in (Mm, h) is constrained-
conformal Willmore if and only if there exists an holomorphic function f (z) such that

4 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= e−2λ

ℑ( f (z)H⃗0)+ R̃(H⃗)+ 8ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


. (3.31)

Proof of Corollary 3.5. An immersion Φ⃗ is a constrained-conformal Willmore immersion if and
only if there exists an holomorphic function f such that

∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |
2 H⃗ − R̃(H⃗) = e−2λ

ℑ( f (z)H⃗0) (3.32)

where R̃ is the curvature endomorphism defined in (1.5).
Therefore putting together (3.32) and Eq. (3.28) we get the thesis. �

In order to prove Theorem 3.1 some computational lemmas will be useful; let us start with the
following.
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Lemma 3.2. Let Φ⃗ be a conformal immersion of D2 into (Mm, h) then

πT (Dz H⃗)− i ⋆h(Dz n⃗ ∧ H⃗) = −2

H⃗ , H⃗0


∂zΦ⃗ (3.33)

and hence

Dz H⃗ − 3πn⃗(Dz H⃗)− i ⋆h(Dz n⃗ ∧ H⃗) = −2

H⃗ , H⃗0


∂zΦ⃗ − 2πn⃗(Dz H⃗). � (3.34)

Proof of Lemma 3.2. We denote by (e⃗1, e⃗2) the orthonormal basis of Φ⃗∗(T D2) given by

e⃗i = e−λ ∂Φ⃗
∂xi

.

With these notations the second fundamental form h which is a symmetric 2-form on T D2 into
(Φ⃗∗T D2)⊥ is given by

h =


α,i, j

hαi j n⃗α ⊗ (e⃗i )
∗

⊗ (e⃗ j )
∗

with hαi j = −e−λ


D
∂xi Φ⃗

n⃗α, e⃗ j


.

(3.35)

We shall also denote

h⃗i j := I⃗(e⃗i , e⃗ j ) =

m−2
α=1

hαi j n⃗α.

In particular the mean curvature vector H⃗ is given by

H⃗ =

m−2
α=1

Hα n⃗α =
1
2

m−2
α=1

(hα11 + hα22) n⃗α =
1
2
(h⃗11 + h⃗22). (3.36)

Let n⃗ be the m − 2 vector of TΦ⃗(x)M given by n⃗ = n⃗1 ∧ · · · ∧ n⃗2. We identify vectors and
m − 1-vectors in TΦ⃗(x)M using the Hodge operator ⋆h for the metric h; for the Hodge operator
we use the standard notation (see for example [29, Chapter 7.9.2])

⟨α, β⟩ ⋆h 1 = (α ∧ ⋆h β)

for any couple of p-vectors α and β, where we set ⋆h 1 := e⃗1 ∧ e⃗2 ∧ n⃗; then we have for instance

⋆h(n⃗ ∧ e⃗1) = e⃗2 and ⋆h(n⃗ ∧ e⃗2) = −e⃗1. (3.37)

Since e⃗1, e⃗2, n⃗1 · · · n⃗m−2 is a basis of TΦ⃗(x)M , we can write for every α = 1 · · · m − 2

Dn⃗α =

m−2
β=1

⟨Dn⃗α, n⃗β⟩ n⃗β +

2
i=1

⟨Dn⃗α, e⃗i ⟩ e⃗i

and consequently

⋆h(n⃗ ∧ D⊥n⃗α) = ⟨D⊥n⃗α, e⃗1⟩ e⃗2 − ⟨D⊥n⃗α, e⃗2⟩ e⃗1. (3.38)

Hence

⋆h(D
⊥n⃗ ∧ H⃗) = −⟨D⊥ H⃗ , e⃗1⟩ e⃗2 + ⟨D⊥ H⃗ , e⃗2⟩ e⃗1

= ⟨H⃗ , πn⃗(D
⊥e⃗1)⟩ e⃗2 − ⟨H⃗ , πn⃗(D

⊥e⃗2)⟩ e⃗1.
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Using (3.35), we then have proved

⋆h(D
⊥n⃗ ∧ H⃗) =


−⟨H⃗ , h⃗12⟩ ∂x2Φ⃗ + ⟨H⃗ , h⃗22⟩ ∂x1Φ⃗
⟨H⃗ , h⃗11⟩ ∂x2Φ⃗ − ⟨H⃗ , h⃗12⟩ ∂x1Φ⃗


. (3.39)

The tangential projection of DH⃗ is given by

πT (DH⃗) = ⟨DH⃗ , e⃗1⟩ e⃗1 + ⟨DH⃗ , e⃗2⟩ e⃗2

= −⟨H⃗ , πn⃗(De⃗1)⟩ e⃗1 − ⟨H⃗ , πn⃗(De⃗2)⟩ e⃗2.

Hence

πT (DH⃗) =


−⟨H⃗ , h⃗11⟩ ∂x1Φ⃗ − ⟨H⃗ , h⃗12⟩ ∂x2Φ⃗
−⟨H⃗ , h⃗12⟩ ∂x1Φ⃗ − ⟨H⃗ , h⃗22⟩ ∂x2Φ⃗


. (3.40)

Combining (3.39) and (3.40) gives

− πT (DH⃗)− ⋆h(D
⊥n⃗ ∧ H⃗) =


⟨H⃗ , h⃗11 − h⃗22⟩ ∂x1Φ⃗ + 2⟨H⃗ , h⃗12⟩ ∂x2Φ⃗
2⟨H⃗ , h⃗12⟩ ∂x1Φ⃗ + ⟨H⃗ , h⃗22 − h⃗11⟩ ∂x2Φ⃗


. (3.41)

This last identity written with the complex coordinate z is exactly (3.33) and Lemma 3.2 is
proved. �

Before we move to the proof of Theorem 3.1 we shall need two more lemmas. First we have
the following.

Lemma 3.3. Let Φ⃗ be a conformal immersion of the disc D2 into Mm , called z := x1+i x2, eλ :=

|∂x1Φ⃗| = |∂x2Φ⃗| denote

e⃗i := e−λ ∂xi Φ⃗, (3.42)

and let H⃗0 be the Weingarten operator of the immersion expressed in the conformal coordinates
(x1, x2):

H⃗0 :=
1
2


I(e⃗1, e⃗1)− I(e⃗2, e⃗2)− 2 i I(e⃗1, e⃗2)


.

Then the following identities hold

Dz

eλ e⃗z


=

e2λ

2
H⃗ , (3.43)

and

Dz

e−λe⃗z


=

1
2

H⃗0. � (3.44)

Proof of Lemma 3.3. The first identity (3.43) comes simply from the fact that Dz∂zΦ⃗ =
1
41Φ⃗,

from (3.48) and the expression of the mean curvature vector in conformal coordinates

H⃗ =
e−2λ

2
1Φ⃗.

It remains to prove the identity (3.44). One has moreover

Dz

eλe⃗z


= Dz∂zΦ⃗ =

1
4


D
∂x1 Φ⃗

∂x1Φ⃗ − D
∂x2 Φ⃗

∂x2Φ⃗ − 2 i D
∂x1 Φ⃗

∂x2Φ⃗

. (3.45)
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On the one hand the projection into the normal direction gives

πn⃗


D
∂x1 Φ⃗

∂x1Φ⃗ − D
∂x2 Φ⃗

∂x2Φ⃗ − 2 i D
∂x1 Φ⃗

∂x2Φ⃗


= 2 e2λ H⃗0. (3.46)

On the other hand the projection into the tangent plane gives

πT


D
∂x1 Φ⃗

∂x1Φ⃗ − D
∂x2 Φ⃗

∂x2Φ⃗ − 2 i D
∂x1 Φ⃗

∂x2Φ⃗


= e−λ

∂x1Φ⃗,


D
∂x1 Φ⃗

∂x1Φ⃗ − D
∂x2 Φ⃗

∂x2Φ⃗ − 2 i D
∂x1 Φ⃗

∂x2Φ⃗


e⃗1

+ e−λ

∂x2Φ⃗,


D
∂x1 Φ⃗

∂x1Φ⃗ − D
∂x2 Φ⃗

∂x2Φ⃗ − 2 i D
∂x1 Φ⃗

∂x2Φ⃗


e⃗2.

This implies after some computation

πT


D
∂x1 Φ⃗

∂x1Φ⃗ − D
∂x2 Φ⃗

∂x2Φ⃗ − 2 i D
∂x1 Φ⃗

∂x2Φ⃗


= 2 eλ

∂x1λ− i∂x2λ


e⃗1 − 2 eλ


∂x2λ+ i∂x1λ


e⃗2

= 8 ∂zeλ e⃗z . (3.47)

The combination of (3.45)–(3.47) gives

Dz

eλe⃗z


=

e2λ

2
H⃗0 + 2 ∂zeλ e⃗z,

which implies (3.44). �

The last lemma we shall need in order to prove Theorem 3.1 is the Codazzi–Mainardi identity
that we recall and prove below.

Lemma 3.4 (Codazzi–Mainardi Identity). Let Φ⃗ be a conformal immersion of the disc D2 into
(Mm, h), called z := x1 + i x2, eλ := |∂x1Φ⃗| = |∂x2Φ⃗| denote

e⃗i := e−λ ∂xi Φ⃗, (3.48)

and denote H⃗0 the Weingarten operator of the immersion expressed in the conformal coordinates
(x1, x2):

H⃗0 :=
1
2


I(e⃗1, e⃗1)− I(e⃗2, e⃗2)− 2 i I(e⃗1, e⃗2)


.

Then the following identity holds

e−2λ ∂z


e2λ

⟨H⃗ , H⃗0⟩


= ⟨H⃗ , Dz H⃗⟩ + ⟨H⃗0, Dz H⃗⟩

+ 2⟨Riemh(e⃗z, e⃗z)∂zΦ⃗, H⃗⟩. � (3.49)

Proof of Lemma 3.4. Using (3.44) we obtain

⟨Dz H⃗0, H⃗⟩ = 2

Dz


Dz


e−2λ ∂zΦ⃗


, H⃗


= 2


Dz


Dz


e−2λ ∂zΦ⃗


, H⃗


+ 2⟨Riemh(e⃗z, e⃗z)∂zΦ⃗, H⃗⟩.
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Thus

⟨Dz H⃗0, H⃗⟩ = −4

Dz


∂zλ e−2λ ∂zΦ⃗


, H⃗


+


Dz


e−2λ

2
1Φ⃗


, H⃗


+ 2⟨Riemh(e⃗z, e⃗z)∂zΦ⃗, H⃗⟩

= −2∂zλ

H⃗0, H⃗


+


Dz H⃗ , H⃗


+ 2⟨Riemh(e⃗z, e⃗z)∂zΦ⃗, H⃗⟩. (3.50)

This last identity implies the Codazzi–Mainardi identity (3.49) and Lemma 3.4 is proved. �

Proof of Theorem 3.1. Due to Lemma 3.2, as explained in Remark 3.1, it suffices to prove in
conformal parametrization the identity (3.29). First of all we observe that

4 e−2λ
ℜ


πn⃗


Dz


πn⃗(Dz H⃗)


= e−2λ πn⃗


D∗


πn⃗(DH⃗)


= ∆⊥ H⃗ . (3.51)

The tangential projection gives

4 e−2λ πT


Dz


πn⃗(Dz H⃗)


= 8 e−2λ


Dz(πn⃗(Dz H⃗)), e⃗z


e⃗z

+ 8 e−2λ

Dz(πn⃗(Dz H⃗)), e⃗z


e⃗z . (3.52)

Using the fact that e⃗z and e⃗z are orthogonal to the normal plane we have in one hand using (3.43)
Dz(πn⃗(Dz H⃗)), e⃗z


= −e−λ


πn⃗(Dz H⃗), Dz


eλ e⃗z


= −

eλ

2


Dz H⃗ , H⃗


(3.53)

and on the other hand using (3.44)
Dz(πn⃗(Dz H⃗)), e⃗z


= −eλ


πn⃗(Dz H⃗), Dz


e−λ e⃗z


= −

eλ

2


Dz H⃗ , H⃗0


. (3.54)

Combining (3.52)–(3.54) we obtain

4 e−2λ πT


Dz


πn⃗(Dz H⃗)


= −4 e−2λ


Dz H⃗ , H⃗


∂zΦ⃗ +


Dz H⃗ , H⃗0


∂zΦ⃗


. (3.55)

Putting (3.51) and (3.55) together we obtain

4 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)


= ∆⊥ H⃗ − 4 e−2λ

ℜ


Dz H⃗ , H⃗


+


Dz H⃗ , H⃗0


∂zΦ⃗


. (3.56)

Using the Codazzi–Mainardi identity (3.49) and using also again identity (3.44), (3.56) becomes

4 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= ∆⊥ H⃗ + 2 ℜ


H⃗ , H⃗0


H⃗0 + 4⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


. (3.57)

The definition (1.6) of Ã gives

Ã(H⃗) =

2
i, j=1

⟨H⃗ , h⃗i j ⟩ h⃗i j ;
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hence a short elementary computation gives

Ã(H⃗)− 2|H⃗ |
2 H⃗ = 2−1


H⃗ , h⃗11 − h⃗22


(h⃗11 − h⃗22)+ 2⟨H⃗ , h⃗12⟩ h⃗12.

Using H⃗0 this expression becomes

Ã(H⃗)− 2|H⃗ |
2 H⃗ = 2ℜ


H⃗ , H⃗0


H⃗0


. (3.58)

Combining (3.57) and (3.58) gives

4 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= ∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |

2 H⃗

+ 8ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


(3.59)

which is the desired equality and Theorem 3.1 is proved. �

4. Parallel mean curvature vs. constrained-conformal conformal Willmore surfaces

As an application of the Conservative form of the Willmore equation, in this section we
prove the link between parallel mean curvature surfaces and constrained-conformal conformal
Willmore surfaces mentioned in the introduction; notice that Proposition 1.1 gives a lot of
examples of constrained-conformal conformal Willmore surfaces.

Proof of Proposition 1.1. Observe that the proof in the Euclidean case was given by the second
author in [36], here we adapt the computations to the Riemannian setting. Up to a change of
coordinates, we can assume that Φ⃗ is a smooth conformal immersion. Since (Mm, h) has constant
sectional curvature K̄ , then writing Eq. (3.25) using the conformal parametrization gives that Φ⃗
is constrained-conformal conformal Willmore if and only if there exists a holomorphic function
f (z) such that (see also (3.31))

4 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= e−2λ

ℑ( f (z)H⃗0). (4.1)

Now assume that H⃗ is parallel, that is πn⃗(Dz H⃗) = πn⃗(Dz̄ H⃗) = 0. From the Codazzi–Mainardi
identity (3.49), observing that the curvature term vanishes as showed in the proof of Corollary 3.2
(it is nothing but R⊥

Φ⃗
(T Φ⃗)) we obtain

e−2λ ∂z


e2λ

⟨H⃗ , H⃗0⟩


= 0;

therefore f (z) := e2λ
⟨H⃗ , H⃗0⟩ is holomorphic. Since by assumption πn⃗(Dz H⃗) = 0, we can write

the left hand side of (4.1) as

4 e−2λ
ℜ


Dz


e2λ

⟨H⃗ , H⃗0⟩ ∂zΦ⃗ e−2λ


= 4 e−2λ
ℜ


f (z)Dz(e
−λe⃗z)


.

Now using (3.44) we write the right hand side of the last equation as 2e−2λ
ℜ


f (z)H⃗0


=

e−2λ
ℑ


2i f (z)H⃗0


. We have just shown that Φ⃗ satisfies the constrained-conformal conformal

Willmore equation (4.1) with holomorphic function 2ie2λ
⟨H⃗ , H⃗0⟩. �
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Proof of Theorem 1.3. One implication follows directly from Proposition 1.1 observing that
the constraint on the conformal class is trivial on smooth immersions of spheres by the
Uniformization theorem.

Let us prove the opposite implication by contradiction: we assume that the compact
Riemannian 3-manifold (M3, h) has a constant scalar curvature Scal0 but it is not a space form
and we exhibit an embedded sphere which has constant mean curvature but is not conformal
Willmore.

First of all let us denote Sµν := Ricµν −
1
3 Scal hµν the trace-free Ricci tensor of (M, h) and

observe that under our assumptions

m := max
x∈M

∥Sx∥
2 > 0. (4.2)

Indeed if ∥S∥
2

≡ 0 then the manifold is Einstein, but the 3-dimensional Einstein manifolds are
just the space forms (for example see [31, pp. 38–41]).

Now consider the function r : M → R defined as

r(x) := −
11

378
∥Sx∥

2
+

55
1134

Scal2(x)−
1
21

△Scal(x) = −
11

378
∥Sx∥

2
+

55
1134

Scal20 (4.3)

where in the last equality we used that Scal ≡ Scal0. The function r we just defined is exactly
the function r defined at p. 276 in [30]; this can be seen using the irreducible decomposition of
the Riemann curvature tensor which implies (notice that we are assuming M to be 3-d, so the
Weil tensor vanishes)

∥Riemh
∥

2(x) =
1
3

Scal2(x)+ 4∥Sx∥
2
;

plugging this expression in the formula in [30] and taking m = 3, after some straightforward
computations we end up with (4.3). Let us recall Theorem 1.1 of [30].

There exists ρ0 > 0 and a smooth function φ : M × (0, ρ0) → R such that

(i) For all ρ ∈ (0, ρ0), if x̄ is a critical point of the function φ(·, ρ) then, there exists an
embedded hyper-surface S♯x̄,ρwhose mean curvature is constant equal to 1

ρ
and that is a

normal graph over the geodesic sphere Sx̄,ρ for some function which is bounded by a constant
times ρ3 in C2,α topology.

(ii) For all k > 0, there exists ck > 0 which does not depend on ρ ∈ (0, ρ0) such that

∥φ(·, ρ)− Scal + ρ2r∥Ck (M) ≤ Ckρ
3. (4.4)

Now, for ρ0 small enough, we claim that at all points of global minimum of φ we have ∥S∥
2 > 0.

If it is not the case let xφρ be a point of global minimum of φ(·, ρ) and observe that (4.4) and (4.3)
yield

φ(xφρ , ρ) ≥ Scal0 +
55

1134
Scal20 ρ

2
− C0ρ

3
; (4.5)

on the other hand, at a maximum point x S for ∥S∥
2, we have analogously

φ(x S, ρ) ≤ Scal0 +
55

1134
Scal20 ρ

2
−

11
378

mρ2
+ C0ρ

3
; (4.6)

now (4.5) and (4.6) together with the crucial fact that m > 0 (ensured by the fact that (M, h) is
not space form) imply that for ρ small enough φ(x S, ρ) < φ(xφρ , ρ) contradicting the minimality
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of xφρ . Collecting Theorem 1.1 of [30] and what we have just proved we conclude the following:
for ρ0 small enough, for every ρ ≤ ρ0 consider a minimum xρ a point for φ(·, ρ), then

(a) ∥Sxρ∥
2 > 0

(b) there exists an embedded CMC sphere S♯xρ ,ρ whose mean curvature given by a normal graph
over the geodesic sphere Sx̄,ρ for some function which is bounded by a constant times
ρ3 in C2,α topology. Observe that, since the graph function satisfies the mean curvature
equation, bootstrapping the C2,α bound using Schauder estimates, one gets the graph function
is bounded in C4,α norm by a constant times ρ3.

But now, since (a) holds, Theorem 1.4 in [25] implies that for small ρ the CMC perturbed
geodesic spheres constructed in (b) cannot be conformal Willmore immersions. The proof is
now complete. �

5. Conformal constrained Willmore surfaces in manifold in arbitrary codimension via a
system of conservation laws

Let us start with a general lemma for surfaces.

Lemma 5.1. Let Φ⃗ be a conformal immersion of the disc D2 into a Riemannian manifold (M, h)
and let X⃗ be the following L1

+ H−1 vector field

X⃗ := −2i

H⃗ , H⃗0


∂zΦ⃗ − 2i πn⃗(Dz H⃗); (5.1)

then the following system of equations holdsℑ


e⃗z, X⃗


= 0 (SysX-1)

ℑ


e⃗z ∧ (X⃗ + 2i Dz H⃗)


= 0 (SysX-2)

(5.2)

where, given two complex vectors fields X⃗ , Y⃗ ∈ Γ (T M ⊗ C) : X⃗ = X⃗1 + i X⃗2, Y⃗ = Y⃗1 + i Y⃗2
with X⃗1, X⃗2, Y⃗1, Y⃗2 ∈ Γ (T M) we use the notation ⟨X⃗ , Y⃗ ⟩ to denote the quantity

⟨X⃗ , Y⃗ ⟩ := h(X⃗1, Y⃗1)− h(X⃗2, Y⃗2)+ i h(X⃗1, Y⃗2)+ i h(X⃗2, Y⃗1)

where, of course, h(· , ·) denotes the standard scalar product of tangent vectors in the
Riemannian manifold (M, h). �

Proof of Lemma 5.1. First of all by Lemma 3.2 we can write X⃗ as

X⃗ := −2i

H⃗ , H⃗0


∂zΦ⃗ − 2i πn⃗(Dz H⃗) = i Dz H⃗ − 3iπn⃗(Dz H⃗)+ ⋆h(Dz n⃗ ∧ H⃗). (5.3)

Let us start by the first equation (SysX -1). Since e⃗z is tangent and πn⃗(Dz H⃗) is normal to
(Φ⃗)∗(T D2), the scalar product simplifies as

ℑ


e⃗z, X⃗


= ℑ


e⃗z, iπT (Dz H⃗)


+ ℑ


e⃗z, ⋆h(Dz n⃗ ∧ H⃗)


. (5.4)

Identity (3.33) together with (3.27) gives

ℑ


e⃗z, iπT (Dz H⃗)


= −ℑ


e⃗z, ⋆h(Dz n⃗ ∧ H⃗)


. (5.5)

Putting together (5.4) and (5.5) we obtain (SysX -1).
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Now let us prove (SysX -2). Since e⃗z̄ ∧ e⃗z̄ = 0 we have

ℑ


e⃗z ∧ X⃗


= ℑ


e⃗z ∧


−2i πn⃗(Dz H⃗)


= ℑ


e⃗z ∧


−2i Dz H⃗


− ℑ


e⃗z ∧


−2i πT (Dz H⃗)


. (5.6)

In order to have (SysX -2) it is enough to prove that ℑ


e⃗z ∧


−2i πT (Dz H⃗)


= 0. Using (3.27)

we write

πT (Dz H⃗) = 2⟨Dz H⃗ , e⃗z⟩e⃗z̄ + 2⟨Dz H⃗ , e⃗z̄⟩e⃗z, (5.7)

hence, again e⃗z̄ ∧ e⃗z̄ = 0 implies that

ℑ


e⃗z ∧


−2i πT (Dz H⃗)


= ℑ


e⃗z ∧


−4i ⟨Dz H⃗ , e⃗z̄⟩e⃗z


= 4ℜ


⟨Dz H⃗ , e⃗z̄⟩


e⃗z ∧ e⃗z


. (5.8)

Now use the fact that H⃗ is orthogonal to e⃗1, e⃗2 and that πn⃗(De⃗1 e⃗2) = I12 = I21 = πn⃗(De⃗2 e⃗1) to
conclude that

4ℜ


⟨Dz H⃗ , e⃗z̄⟩


e⃗z ∧ e⃗z


=

1
2


De⃗2 H⃗ , e⃗1


−


De⃗1 H⃗ , e⃗2


e⃗1 ∧ e⃗2


= −

1
2


H⃗ , De⃗2 e⃗1


−


H⃗ , De⃗1 e⃗2


e⃗1 ∧ e⃗2


= 0. �

Theorem 5.1. Let Φ⃗ be a conformal immersion of the disc D2 into a Riemannian manifold
(M, h), then Φ⃗ is a conformal constrained Willmore immersion if and only if there exists an
H−1

+ L1 vector field Y⃗ such that
ℑ


e⃗z, Y⃗


= 0 (Sys-1)

ℑ


e⃗z ∧ (Y⃗ + 2i Dz H⃗)


= 0 (Sys-2)

ℑ


Dz̄ Y⃗


= −e2λ


1
2

R̃(H⃗)+ 4ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


(Sys-3). �

(5.9)

Proof of Theorem 5.1. Let us first prove the “only if” part: we assume that Φ⃗ is constrained
conformal Willmore and prove that there exists an H−1

+ L1 vector field Y⃗ satisfying the system
of Eqs. (5.9).

Recall that Φ⃗ is a conformal constrained Willmore immersion if and only if there exists an
holomorphic function f (z) such that Eq. (3.32) is satisfied, namely

∆⊥ H⃗ + Ã(H⃗)− 2|H⃗ |
2 H⃗ − R̃(H⃗) = e−2λ

ℑ( f (z)H⃗0) = ⟨q, h⃗0⟩W P

where h⃗0 = H⃗0 dz ⊗ dz. We claim that the vector

Y⃗ := e−λ f e⃗z − 2i

H⃗ , H⃗0


∂zΦ⃗ − 2i πn⃗(Dz H⃗) (5.10)

satisfies the system. Recall the definition of the vector X⃗ given in (5.1), observe that Y⃗ =

e−λ f e⃗z + X⃗ . Since X⃗ satisfies the system (5.2) and since ⟨e⃗z̄, e⃗z̄⟩ = 0 = e⃗z̄ ∧ e⃗z̄ we conclude that
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Y⃗ satisfies the first two equations of system (5.9). Now let us prove the third equation (Sys-3),
we have

ℑ


Dz̄ Y⃗


= −2ℑ


i Dz̄


H⃗ , H⃗0


∂zΦ⃗ + πn⃗(Dz H⃗)


+ ℑ


Dz̄(e

−λ f e⃗z)


= −2ℜ


Dz̄


H⃗ , H⃗0


∂zΦ⃗ + πn⃗(Dz H⃗)


+ ℑ


f Dz̄(e

−λe⃗z)


+ ℑ

(∂z̄ f ) e−λe⃗z


.

Recall the identity (3.44), sum and subtract e2λ


1
2 R̃(H⃗)+ 4ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


and

get

ℑ


Dz̄ Y⃗


= −e2λ


1
2

R̃(H⃗)+ 4ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


+ ℑ


(∂z̄ f ) e−λe⃗z


− 2ℜ


Dz̄


H⃗ , H⃗0


∂zΦ⃗ + πn⃗(Dz H⃗)


+

1
2
ℑ


f H⃗0


+ e2λ


1
2

R̃(H⃗)+ 4ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


. (5.11)

Now recall that Φ⃗ is conformal constrained Willmore if and only if the identity (3.31) holds,
moreover f is holomorphic so ∂z f = 0; therefore we can conclude that

ℑ


Dz̄ Y⃗


= −e2λ


1
2

R̃(H⃗)+ 4ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


as desired.

For the other implication assume that there exists a vector Y⃗ satisfying the system (5.9) and
write Y⃗ as

Y⃗ = Ae⃗z + Be⃗z + V⃗

where A and B are complex numbers and V⃗ := πn⃗(Y⃗ ) is a complex valued normal vector to the
immersed surface. The first equation of (5.9), using (3.27), is equivalent to

ℑ A = 0. (5.12)

Observe that if we write

Dz H⃗ = C e⃗z + D e⃗z + W⃗

where W⃗ = πn⃗(Dz H⃗), one has, using (3.43) and the fact that H⃗ is orthogonal to e⃗z

C = 2

e⃗z, Dz H⃗


= −2


Dz(e

λ e⃗z), H⃗


e−λ
= −eλ |H⃗ |

2. (5.13)

Hence we deduce in particular

ℑ C = 0. (5.14)

We have moreover using (3.44)

D = 2

e⃗z, Dz H⃗


= −2


Dz(e

−λ e⃗z), H⃗


eλ = −eλ ⟨H⃗0, H⃗⟩. (5.15)

Thus combining (5.13) and (5.15) we obtain

Dz H⃗ = −|H⃗ |
2 ∂zΦ⃗ − ⟨H⃗0, H⃗⟩ ∂zΦ⃗ + πn⃗(Dz H⃗). (5.16)
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Using (3.27), the second line in the conservation law (5.9) is equivalent to
ℑ(i A − 2C) = 0

ℑ


e⃗z ∧


V⃗ + 2i W⃗


= 0.

(5.17)

We observe that e⃗1∧


V⃗ + 2i W⃗


and e⃗2∧


V⃗ + 2i W⃗


are linearly independent since


V⃗ + 2i W⃗


is orthogonal to the tangent plane; moreover we combine (5.14) and (5.17) and we obtain that
(5.17) is equivalent to

ℑ(i A) = 0

e⃗1 ∧ ℑ


V⃗ + 2i W⃗


= 0

e⃗2 ∧ ℑ


i

V⃗ + 2i W⃗


= 0.

(5.18)

Combining (5.12) and (5.18) we obtain that the first two conservation laws of (5.9) are equivalent
to 

A = 0
V⃗ = −2i W⃗ = −2i πn⃗(Dz H⃗).

(5.19)

Or in other words, for a conformal immersion Φ⃗ of the disc into Rm , there exists a vector field Y⃗
satisfying the first two equations of the system (5.9) if and only if there exist a complex valued
function B and a vector field Y⃗ such that

Y⃗ = B e⃗z − 2i πn⃗(Dz H⃗). (5.20)

We shall now exploit the third equation of (5.9) by taking Dz of (5.20). Let

f := eλB + 2i e2λ

H⃗ , H⃗0


. (5.21)

With this notation (5.20) becomes

Y⃗ = e−λ f e⃗z − 2i

H⃗ , H⃗0


∂zΦ⃗ − 2i πn⃗(Dz H⃗) (5.22)

which is exactly Eq. (5.10) (recall we defined a vector Y⃗ in that way starting from a conformal
immersion Φ⃗ satisfying the constrained-conformal Willmore equation). Then repeating the
computations above (i.e. the ones for the “only if” implication) we get that Eq. (5.11) is still
valid, but since Y⃗ satisfies (Sys-3) we get

0 = −2ℜ


Dz̄


H⃗ , H⃗0


∂zΦ⃗ + πn⃗(Dz H⃗)


+

1
2
ℑ


f H⃗0


+ e2λ


1
2

R̃(H⃗)+ 4ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


+ ℑ


(∂z̄ f ) e−λe⃗z


. (5.23)

Consider the normal and the tangential projections of (5.23). The tangential projection of identity
(3.28) gives

πT


−2ℜ


Dz̄


H⃗ , H⃗0


∂zΦ⃗ + πn⃗(Dz H⃗)


= −4 e2λ

ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


; (5.24)
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on the other hand, the tangential projection of (5.23) gives

0 = πT


−2ℜ


Dz̄


H⃗ , H⃗0


∂zΦ⃗ + πn⃗(Dz H⃗)


+ 4 e2λ

ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


+ ℑ


(∂z̄ f ) e−λe⃗z


, (5.25)

so, combining (5.24) and (5.25) we obtain

0 = ℑ

(∂z̄ f ) e−λe⃗z


. (5.26)

The normal projection of (5.23) gives

0 = πn⃗


−2ℜ


Dz̄


H⃗ , H⃗0


∂zΦ⃗ + πn⃗(Dz H⃗)


+

1
2
ℑ


f H⃗0


+

e2λ

2
R̃(H⃗)


. (5.27)

Therefore, putting together (5.24), (5.26) and (5.27) we conclude that (5.23) implies the
following system

4 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= e−2λ

ℑ( f (z)H⃗0)+ R̃(H⃗)+ 8ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


ℑ (∂z f e⃗z) = 0.

(5.28)

The second line is equivalent to

∂z f e⃗z − ∂z f e⃗z = 0.

Taking the scalar product with e⃗z and using (3.27), observe that (5.28) is equivalent to
4 e−2λ

ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= e−2λ

ℑ( f (z)H⃗0)+ R̃(H⃗)+ 8ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


∂z f = 0.

(5.29)

The second line gives that f = f (z) is holomorphic and the equation in the first line is exactly
the equation of the conformal constrained Willmore surfaces (3.31); therefore we proved that
the existence of a vector field Y⃗ satisfying the system of conservation laws (5.9) implies that the
immersion Φ⃗ is conformal constrained Willmore. �

6. Regularity for Willmore immersions

We start by using the divergence structure of the constrained-conformal Willmore equation in
order to construct potentials which will play a crucial role in the regularity theory.

Lemma 6.1. Let Φ⃗ be a W 1,∞ conformal immersion of the disc D2 taking values into a
sufficiently small open subset of the Riemannian manifold (M, h), with second fundamental form
in L2(D2) and conformal factor λ ∈ L∞(D2). Assume Φ⃗ is a constrained-conformal Willmore
immersion; then there exist the following potential vector fields:

(i) there exists a complex vector field (i.e. a vector field with values in the complexified tangent
bundle of M) L⃗ ∈ L2,∞(D2) with ∇ℑL⃗ ∈ L2,∞(D2) satisfying

Dz L⃗ = Y⃗ on D2

ℑL⃗ = 0 on ∂D2,
(6.1)
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where Y⃗ is the vector given in (5.10) in the proof of Theorem 5.1;
(ii) there exists a complex valued function S ∈ W 1,(2,∞)(D2) with ∇

2
ℑS ∈ Lq(D2) for every

1 < q < 2 satisfying
∂z S = ⟨∂zΦ⃗, L⃗⟩ on D2

ℑS = 0 on ∂D2
;

(6.2)

(iii) there exists a complex valued 2-vector field R⃗ ∈ W 1,(2,∞)(D2) with ∇
2
ℑR⃗ ∈ Lq(D2) for

every 1 < q < 2 satisfying
Dz R⃗ = ∂zΦ⃗ ∧ L⃗ − 2i∂zΦ⃗ ∧ H⃗ on D2

ℑR⃗ = 0 on ∂D2. �
(6.3)

Proof. (i): Let Y⃗ be the vector field given by (5.10) in the proof of Theorem 5.1 and observe that,
by our assumption of the immersion Φ⃗, we have Y⃗ ∈ H−1

+ L1(D2). Moreover, since Y⃗ satisfies
Eq. (Sys-3) of (5.9), then

∥ℑ(Dz̄ Y⃗ )∥L2(D2) ≤ C∥H∥L2(D2). (6.4)

Since Φ⃗ is taking values into a small open subset V ⊂ M , by choosing Riemann normal
coordinates on V centered in Φ⃗(0), we can assume that the functions

γ
j

k := Γ j
kl∂zΦl , γ

j
k ∈ C0

∩ W 1,2(D2) (6.5)

are smaller than the ϵ given in the statement of Lemmas A.1 and A.2; extend γ j
k to the whole C

and multiply them by a smooth cutoff function in order to obtain

γ
j

k ∈ C0
∩ W 1,2(C), supp γ j

k ⊂ B2(0), ∥γ
j

k ∥L∞(C) ≤ ϵ. (6.6)

Using γ j
k we can extend the operator Dz to complex vector fields U⃗ ∈ L1

loc(C) in the following
way

DzU j
:= ∂zU j

+

m
k=1

γ
j

k U k in distributional sense.

Analogously extend Y j
∈ H−1

+ L1(D2) to functions Ỹ j
∈ H̊−1

+ L1(C), where H̊−1(C)
is the dual of homogeneous Sobolev space H̊1(C) (this is just a technical point for applying
Lemma A.1) such that

∥Ỹ j
∥H̊−1+L1(C) ≤ C∥Y j

∥H−1+L1(D2) < ∞,

∥ℑ(Dz Ỹ j )∥L1(C) ≤ C∥ℑ(DzY j )∥L1(D2) ≤ C∥ℑ(DzY j )∥L2(D2) < ∞.

For convenience, in the following we identify Y j and its extension. Now we apply Lemma A.1
and define L⃗ ∈ L2,∞(D2) to be the unique solution to the problem

Dz L⃗ = Y⃗ on D2

ℑL⃗ = 0 on ∂D2.

Observe that moreover the same lemma gives that ∇(ℑL⃗) ∈ L2,∞(D2) which implies that
ℑL⃗ ∈ L p(D2) for every 1 < p < ∞.
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Proof of (ii). Let us start with a computation; from (Sys-1) of (5.9), since by (i) we have
Dz L⃗ = Y⃗ on D2, then

0 = ℑ


⟨∂z̄Φ⃗, Dz L⃗⟩


= ℑ


∂z⟨∂z̄Φ⃗, L⃗⟩ − ⟨Dz∂z̄Φ⃗, L⃗⟩


.

Using identity (3.43), by complex conjugation we obtain

ℑ(∂z̄⟨∂zΦ⃗, L⃗⟩) = −
e2λ

2
⟨H⃗ ,ℑL⃗⟩ ∈ Lq(D2) for every 1 < q < 2, (6.7)

where the Lq bound follows by the Hölder inequality observing that by (i) we have ∇ℑL⃗ ∈

L2,∞(D2) then ℑL⃗ ∈ L p(D2) for every 1 < p < ∞; on the other hand, by assumption,
H⃗ ∈ L2(D2).

By (i), we have ⟨∂zΦ⃗, L⃗⟩ ∈ L2,∞(D2) and as before we extend it to the whole C keeping

controlled the norms: ⟨∂zΦ⃗, L⃗⟩ ∈ L1
∩ L2,∞(C) and ℑ(∂z̄⟨∂zΦ⃗, L⃗⟩) ∈ Lq(C) for every

1 < q < 2.
Now we apply Lemma A.2, with m = 1 and γ j

k = 0, and define S ∈ W 1,(2,∞)(D2) to be the
unique solution to

∂z S = ⟨∂zΦ⃗, L⃗⟩ on D2

ℑS = 0 on ∂D2
;

moreover ∇
2
ℑS ∈ Lq(D2) for every 1 < q < 2 which implies, by Sobolev Embedding

Theorem, ∇ℑS ∈ L p(D2) for all 1 < p < ∞.
Proof of (iii). Since Y⃗ = Dz L⃗ , Eq. (Sys-2) in (5.9) gives

0 = ℑ


∂z̄Φ⃗ ∧ Dz L⃗ + 2i∂z̄Φ⃗ ∧ Dz H⃗


= −ℑ


Dz̄


∂zΦ⃗ ∧ L⃗ − 2i∂zΦ⃗ ∧ H⃗


− (Dz̄∂zΦ⃗) ∧ L⃗ + 2i(Dz̄∂zΦ⃗) ∧ H⃗


,

using (3.43) we obtain

ℑ


Dz̄


∂zΦ⃗ ∧ L⃗ − 2i∂zΦ⃗ ∧ H⃗


= −

e2λ

2
H⃗ ∧ ℑL⃗ ∈ Lq(D2)

for every 1 < q < 2, (6.8)

where the Lq(D2) estimate comes from the Hölder inequality since H⃗ ∈ L2(D2) and ℑL⃗ ∈

L p(D2) for every 1 < p < ∞. As in (ii) extend the complex valued vector field ∂zΦ⃗ ∧ L⃗ −

2i∂zΦ⃗ ∧ H⃗ ∈ L2,∞(D2) to a complex valued vector field on C keeping the norms controlled:

∂zΦ⃗ ∧ L⃗ − 2i∂zΦ⃗ ∧ H⃗ ∈ L1
∩ L2,∞(C) and ℑ


Dz̄


∂zΦ⃗ ∧ L⃗ − 2i∂zΦ⃗ ∧ H⃗


∈ Lq(D2) for

every 1 < q < 2.
As in (ii), we apply Lemma A.2 in order to define R⃗ ∈ W 1,(2,∞)(D2) as the unique solution

to 
Dz R⃗ = ∂zΦ⃗ ∧ L⃗ − 2i∂zΦ⃗ ∧ H⃗ on D2

ℑR⃗ = 0 on ∂D2
;

moreover ∇
2
ℑR⃗ ∈ Lq(D2) for every 1 < q < 2 which implies, by the Sobolev Embedding

Theorem, ∇ℑR⃗ ∈ L p(D2) for all 1 < p < ∞. �
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Next we play with the introduced R⃗ and S in order to produce, in the following lemma, an
elliptic system of Wente type involving Φ⃗, R⃗ and S.

Lemma 6.2. Let Φ⃗ be a W 1,∞ conformal immersion of the disc D2 taking values into a
sufficiently small open subset of the Riemannian manifold (M, h), with second fundamental form
in L2(D2) and conformal factor λ ∈ L∞(D2). Assume Φ⃗ is a constrained-conformal Willmore
immersion and let R⃗ ∈ W 1,(2,∞)(D2) and S ∈ W 1,(2,∞)(D2) be given by Lemma 6.1; then R⃗
and S satisfy the following coupled system on D2:

Dz R⃗ = (−1)m+1 ⋆h


n⃗ • i Dz R⃗


+ (i∂z S) ⋆h n⃗

∂z S = ⟨−i Dz R⃗, ⋆h n⃗⟩. �
(6.9)

Proof. By definition, R⃗ satisfies Eq. (6.3) on D2, i.e:

Dz R⃗ = ∂zΦ⃗ ∧ L⃗ − 2i∂zΦ⃗ ∧ H⃗ . (6.10)

Taking the • contraction defined in (1.34) between n⃗ and Dz R⃗ we obtain

n⃗ • Dz R⃗ = −(n⃗xL⃗) ∧ ∂zΦ⃗ + 2i(n⃗xH⃗) ∧ ∂zΦ

= −[n⃗xπn⃗(L⃗)]∂zΦ⃗ + 2i(n⃗xH⃗) ∧ ∂zΦ, (6.11)

where x is the usual contraction defined in (1.33).
For a normal vector N⃗ , a short computation using just the definitions of ⋆h and x gives

⋆h[(n⃗xN⃗ ) ∧ e⃗1] = (−1)m N⃗ ∧ e⃗2

⋆h[(n⃗xN⃗ ) ∧ e⃗2] = (−1)m+1 N⃗ ∧ e⃗1,

where, as usual, e⃗1 and e⃗2 are the orthonormal bases of T Φ⃗(D2) given by the vectors ∂1Φ⃗, ∂2Φ⃗
normalized. Since ∂zΦ⃗ =

1
2


∂1Φ⃗ − i∂2Φ⃗


, we get

⋆h[(n⃗xN⃗ ) ∧ ∂zΦ⃗] = (−1)m N⃗ ∧ (i∂zΦ⃗). (6.12)

Combining (6.11) and (6.12) we have

⋆h[n⃗ • Dz R⃗] = (−1)m+1πn⃗(L⃗) ∧ (i∂zΦ⃗)+ 2i(−1)m H⃗ ∧ (i∂zΦ⃗), (6.13)

multiplying both sides with i(−1)m gives

(−1)m+1 ⋆h[n⃗ • (i Dz R⃗)] = ∂zΦ⃗ ∧ πn⃗(L⃗)− 2i∂zΦ⃗ ∧ H⃗ . (6.14)

Combining (6.10) and (6.14) we obtain

(−1)m+1 ⋆h[n⃗ • (i Dz R⃗)] = Dz R⃗ − ∂zΦ⃗ ∧ πT (L⃗). (6.15)

Observing that, by (3.27)

πT (L⃗) = 2⟨L⃗, e⃗z̄⟩e⃗z + 2⟨L⃗, e⃗z⟩e⃗z̄,

then

∂zΦ⃗ ∧ πT (L⃗) = ∂zΦ⃗ ∧ (2⟨L⃗, e⃗z⟩)e⃗z̄ = (2⟨L⃗, ∂zΦ⃗⟩)e⃗z ∧ e⃗z̄,
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using again (3.27), and the definition of S (6.2) gives

∂zΦ⃗ ∧ πT (L⃗) = (i∂z S) ⋆h n⃗. (6.16)

The combination of (6.16) and (6.15) gives the first equation of (6.9). The second equation is
obtained by taking the scalar product between the first equation and ⋆h n⃗ once one have observed
that

⟨⋆h n⃗, ⋆h(n⃗ • Dz R⃗)⟩ = 0.

This fact comes from (6.13) which implies that ⋆h(n⃗ • Dz R⃗) is a linear combination of wedges
of tangent and normal vectors to T Φ⃗(D2). This concludes the proof. �

Proposition 6.1. Let Φ⃗ be a W 1,∞ conformal immersion of the disc D2 taking values into a
sufficiently small open subset of the Riemannian manifold (M, h), with second fundamental form
in L2(D2) and conformal factor λ ∈ L∞(D2). Assume Φ⃗ is a constrained-conformal Willmore
immersion and let R⃗ ∈ W 1,(2,∞)(D2) and S ∈ W 1,(2,∞)(D2) be given by Lemma 6.1; then the
couple (ℜR⃗,ℜS) satisfies the following system on D2

∆(ℜR⃗) = (−1)m ⋆h[Dn⃗ • D⊥(ℜR⃗)] − ⋆h[Dn⃗ ∇
⊥(ℜS)] + F̃

∆(ℜS) = ⟨D(⋆h n⃗), D⊥(ℜR⃗)⟩ + G̃;
(6.17)

where F̃ and G̃ are some functions (F̃ is 2-vector valued) in Lq(D2) for every 1 < q < 2.
Moreover we denoted ∆(ℜR⃗) := D

∂x1 Φ⃗
D
∂x1 Φ⃗

(ℜR⃗) + D
∂x2 Φ⃗

D
∂x2 Φ⃗

(ℜR⃗), observe this differ

from the intrinsic Laplace–Beltrami operator by a factor e2λ. For a more explicit shape of the
equations see (6.25) and (6.27) in the end of the proof. �

Proof. Let us start by proving the first equation. Applying the Dz̄ operator to the first equation
of (6.9) we have

Dz̄ Dz R⃗ = (−1)m+1i ⋆h Dz̄


n⃗ • Dz R⃗


+ i Dz̄


∂z S ⋆h n⃗


,

whose real part is

ℜ(Dz̄ Dz R⃗) = (−1)m ⋆h ℑ


Dz̄


n⃗ • Dz R⃗


− ℑ


Dz̄

∂z S ⋆h n⃗


. (6.18)

Observe that

Dz̄ Dz R⃗ :=
1
4


(D

∂x1 Φ⃗
+ i D

∂x2 Φ⃗
)(D

∂x1 Φ⃗
− i D

∂x2 Φ⃗
)


R⃗

=
1
4
1R⃗ −

i

4


D
∂x1 Φ⃗

, D
∂x2 Φ⃗


R⃗, (6.19)

where


D
∂x1 Φ⃗

, D
∂x2 Φ⃗


:= (D

∂x1 Φ⃗
D
∂x2 Φ⃗

− D
∂x2 Φ⃗

D
∂x1 Φ⃗

) is the usual bracket notation. An easy

computation in local coordinates shows that all the derivatives appearing in [D
∂x1 Φ⃗

, D
∂x2 Φ⃗

](R⃗)

cancel out together with all the mixed terms, giving
D
∂x1 Φ⃗

, D
∂x2 Φ⃗

 m
i, j=1

Ri j E⃗i ∧ E⃗ j


=

m
i, j=1

Ri j
[(Riem(∂x1Φ⃗, ∂x2Φ⃗)E⃗i ) ∧ E⃗ j

+ E⃗i ∧ (Riem(∂x1Φ⃗, ∂x2Φ⃗)E⃗ j )], (6.20)
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where as before {E⃗i }i=1,...,m is an orthonormal frame of TΦ⃗(x)M . Putting together (6.18) and
(6.19) we obtain

∆(ℜR⃗) = 4(−1)m ⋆h ℑ


Dz̄


n⃗ • Dz R⃗


− 4ℑ


Dz̄

∂z S ⋆h n⃗


−


D
∂x1 Φ⃗

, D
∂x2 Φ⃗


(ℑR⃗). (6.21)

Using that the • contraction commutes with the covariant derivative (this fact follows by the
definitions and by the identity Dh = 0, i.e. the connection is metric) we compute

ℑ


Dz̄(n⃗ • Dz R⃗)


= ℑ


n⃗ • (Dz̄ Dz R⃗)+ Dz̄ n⃗ • Dz R⃗


=

1
4

n⃗ • [∆(ℑR⃗)− [D
∂x1 Φ⃗

, D
∂x2 Φ⃗

](ℜR⃗)] + ℑ


Dz̄ n⃗ • Dz R⃗


. (6.22)

A short computation gives

ℑ


Dz̄ n⃗ • Dz R⃗


=

1
4


D
∂x1 Φ⃗

n⃗ • D
∂x1 Φ⃗

(ℑR⃗)+ D
∂x2 Φ⃗

n⃗ • D
∂x2 Φ⃗

(ℑR⃗)


+
1
4


D
∂x2 Φ⃗

n⃗ • D
∂x1 Φ⃗

(ℜR⃗)− D
∂x1 Φ⃗

n⃗ • D
∂x2 Φ⃗

(ℜR⃗)

. (6.23)

Analogously, using that ⋆h commutes with the covariant derivative, another short computation
gives

ℑ

Dz̄(∂z S ⋆h n⃗)


=

1
4
∆(ℑS) ⋆h n⃗ +

1
4


∂x1(ℑS) D

∂x1 Φ⃗
(⋆h n⃗)+ ∂x2(ℑS) D

∂x2 Φ⃗
(⋆h n⃗)


+

1
4


∂x1(ℜS) D

∂x2 Φ⃗
(⋆h n⃗)− ∂x2(ℜS) D

∂x1 Φ⃗
(⋆h n⃗)


. (6.24)

Combining (6.21), (6.20), (6.22), (6.23) and (6.24) we conclude that

∆(ℜR⃗) = (−1)m ⋆h


D
∂x2 Φ⃗

n⃗ • D
∂x1 Φ⃗

(ℜR⃗)− D
∂x1 Φ⃗

n⃗ • D
∂x2 Φ⃗

(ℜR⃗)


+


∂x2(ℜS) D

∂x1 Φ⃗
(⋆h n⃗)− ∂x1(ℜS) D

∂x2 Φ⃗
(⋆h n⃗)


+ F̃ (6.25)

where F̃ ∈ Lq(D2) for every 1 < q < 2, and we used that Dn⃗ ∈ L2(D2), R⃗ ∈

W 1,(2,∞)(D2), S ∈ W 1,(2,∞)(D2),ℑR⃗ ∈ W 2,q(D2),ℑS ∈ W 2,q(D2) for every 1 < q < 2.
This is exactly the first equation of (6.17).

The second equation of (6.17) is obtained in an analogous way: applying the ∂z̄ operator to
the second equation of (6.9) we obtain

1S = 4∂z̄∂z S = −4i∂z̄⟨Dz R⃗, ⋆h n⃗⟩.

A short computation gives

∆(ℜS) = 4ℑ


∂z̄⟨Dz R⃗, ⋆h n⃗⟩


= ∂x1⟨D

∂x1 Φ⃗
ℑR⃗, ⋆h n⃗⟩ + ∂x2⟨D

∂x2 Φ⃗
ℑR⃗, ⋆h n⃗⟩ − ⟨[D

∂x1 Φ⃗
, D

∂x2 Φ⃗
]ℜR⃗, ⋆h n⃗⟩

+ ⟨D
∂x1 Φ⃗

ℜR⃗, D
∂x2 Φ⃗

(⋆h n⃗)⟩ − ⟨D
∂x2 Φ⃗

ℜR⃗, D
∂x1 Φ⃗

(⋆h n⃗)⟩. (6.26)
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Recalling that ℑR⃗ ∈ W 2,q(D2) and R⃗ ∈ W 1,(2,∞)(D2), and using (6.20), we conclude that

∆(ℜS) = ⟨D
∂x1 Φ⃗

(ℜR⃗), D
∂x2 Φ⃗

(⋆h n⃗)⟩ − ⟨D
∂x2 Φ⃗

(ℜR⃗), D
∂x1 Φ⃗

(⋆h n⃗)⟩ + G̃ (6.27)

where G̃ ∈ Lq(D2) for every 1 < q < 2. This is exactly the second equation of (6.17). �

Now we are in a position to prove the C∞ regularity of constrained-conformal Willmore
immersions.

Theorem 6.1. Let Φ⃗ be a W 1,∞ conformal immersion of the disc D2 taking values into a
sufficiently small open subset of the Riemannian manifold (M, h), with second fundamental
form in L2(D2) and conformal factor λ ∈ L∞(D2). If Φ⃗ is a constrained-conformal Willmore
immersion then Φ⃗ is C∞. �

Proof. Let us call A⃗ := (ℜR⃗,ℜS) = (ℜRi j ,ℜS) the vector of the components (in local
coordinates in the small neighborhood V ⊂ M) of the real parts of the potentials R⃗ and S.
Using coordinates also in the domain D2, one easily checks that the system (6.17) has the form

1Ai
=


k


∂x1 Bi

k ∂x2 Ak
− ∂x2 Bi

k ∂x1 Ak


+ F i , (6.28)

where F i
∈ Lq(D2) for every 1 < q < 2, ∇ Ai

∈ L2,∞(D2),∇ Bi
k ∈ L2(D2).

Step 1: ∇ Ai
∈ L2

loc(D
2). Let us write Ai as

Ai
= ϕi

+ V i
+ W i on D2, (6.29)

where ϕi , V i ,W i solve the following problems1ϕ
i
=


k


∂x1 Bi

k ∂x2 Ak
− ∂x2 Bi

k ∂x1 Ak


on D2

ϕi
= 0 on ∂D2

;

(6.30)


1V i

= F i on D2

V i
= 0 on ∂D2

;
(6.31)

1W i
= 0 on D2

W i
= Ai on ∂D2.

(6.32)

Since the right hand side of (6.30) is sum of L2,∞
− L2-Jacobians, by a refinement of the

Wente inequality obtained by Bethuel [5] as a consequence of a result by Coifman, Lions, Meyer
and Semmes, we have ∇ϕi

∈ L2(D2).
On the other hand, since F i

∈ Lq(D2), for every 1 < q < 2, it follows that V i
∈ W 2,q(D2),

which implies by Sobolev embedding that ∇V i
∈ L2(D2).

Finally, W i is a harmonic W 1,2,∞(D2) function; therefore the gradient ∇W i
∈ L2

loc(D
2).

We conclude that ∇ Ai
= ∇ϕi

+ ∇V i
+ ∇W i

∈ L2
loc(D

2).
Step 2: ∇ Ai

∈ L p
loc(D

2) for some p > 2.
We first claim that there exists α > 0 such that

sup
x0∈B 1

2
(0),ρ< 1

4

1
ρα


Bρ (x0)

|∇ A|
2 < ∞. (6.33)
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Since ∇ B ∈ L2(D2), by absolute continuity of the integral, for every ϵ > 0 there exists a ρ0 > 0
such that

sup
x0∈B 1

2
(0)


Bρ0 (x0)

|∇ B|
2 < ϵ2. (6.34)

Consider ρ < ρ0 (ϵ > 0 will be chosen later depending on universal constants) and x0 ∈ B 1
2 (0)

.
Analogously to Step 1 let us write

Ai
= ϕi

+ V i
+ W i on Bρ(x0), (6.35)

where ϕi , V i ,W i solve the following problems1ϕ
i
=


k


∂x1 Bi

k ∂x2 Ak
− ∂x2 Bi

k ∂x1 Ak


on Bρ(x0)

ϕi
= 0 on ∂Bρ(x0);

(6.36)


1V i

= F i on Bρ(x0)

V i
= 0 on ∂Bρ(x0);

(6.37)
1W i

= 0 on Bρ(x0)

W i
= Ai on ∂Bρ(x0).

(6.38)

Notice that ϕi , V i ,W i are different from the ones in Step 1 since they solve different problems,
in any case for convenience of notation we call them in the same way.

Let us start analyzing ϕi solution to (6.36). Observe that the right hand side of the equation
is a sum of jacobians which, by Step 1, now are in L2

loc(D
2). By Wente estimate [44] (see also

[33, Theorem III.1]) we have

∥∇ϕi
∥L2(Bρ (x0))

≤ C∥∇ B∥L2(Bρ (x0))
∥∇ A∥L2(Bρ (x0))

≤ Cϵ∥∇ A∥L2(Bρ (x0))
, (6.39)

where, in the last inequality, we used (6.34).
Now we pass to consider (6.37). Call

Ṽ i (x) := V i (ρx + x0) F̃ i (x) := ρ2 F i (ρx + x0) (6.40)

and observe that, since V i satisfies (6.37), then Ṽ i solves
1Ṽ i

= F̃ i on D2

Ṽ i
= 0 on ∂D2,

(6.41)

which implies, by W 2,q estimates on Ṽ i and Sobolev embedding, that
D2

|∇ Ṽ i
|
2
 1

2

≤ C


D2

|F̃ i
|
q
 1

q

. (6.42)

Now, using that the left hand side is invariant under rescaling while the right hand side has a
scaling factor given by the area and the definition of F̃ i , we obtain

Bρ (x0)

|∇V i
|
2

 1
2

≤ Cρ2−
2
q


Bρ(x0)

|F i
|
q

 1
q

≤ Cρα for some α > 0, (6.43)

where in the last inequality we used that F i
∈ Lq(D2) and 1 < q < 2.
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At last we study the decay of the L2 norm of the gradient of the harmonic function W i

solving (6.38). Notice that, since W i is harmonic, then ∆|∇W i
|
2

= 2|∇
2W i

|
2

≥ 0. An
elementary calculation shows that for any non negative subharmonic function f in Rn one has
d/dr(r−n


Br

f ) ≥ 0 (see also [33, Lemma III.1]). It follows that
Bδρ (x0)

|∇W i
|
2

≤ δ2


Bρ (x0)

|∇W i
|
2

≤ Cδ2


Bρ (x0)

|∇ A|
2, (6.44)

where, in the last inequality, we used that W i solves (6.38).
Collecting (6.39), (6.43) and (6.44) gives

Bδρ (x0)

|∇ A|
2

≤ Cδ2


Bρ (x0)

|∇ A|
2
+ Cϵ2


Bρ (x0)

|∇ A|
2
+ Cρα

where the strictly positive constants α and C are independent of ϵ, δ, x0 and ρ. Now, in the
beginning of Step 2, choose ϵ and ρ0 such that Cϵ2 < 1

4 , moreover choose δ in (6.44) such that
Cδ2 < 1

4 ; it follows that for every x0 ∈ B 1
2
(0) and every ρ < ρ0 we have

Bδρ (x0)

|∇ A|
2 <

1
2


Bρ (x0)

|∇ A|
2
+ Cρα for some α > 0.

It is a standard fact which follows by iterating the inequality (see for instance Lemma 5.3 in [15])
that there exist C, α > 0 such that for every x0 ∈ B 1

2
(0) and every ρ < ρ0

Bρ (x0)

|∇ A|
2

≤ Cρα, (6.45)

which implies our initial claim (6.33).
Now we easily get that there exists β > 0 such that

sup
x0∈B 1

2
(0),ρ< 1

4

1
ρβ


Bρ (x0)

|1A| < ∞. (6.46)

Indeed, by (6.33) and (6.28), for every x0 ∈ B 1
2
(0) and ρ < 1

4 we obtain
Bρ (x0)

|1A| ≤


Bρ (x0)

|∇ B| |∇ A| +


Bρ (x0)

|F |

≤ ∥∇ B∥L2(D2)


Bρ (x0)

|∇ A|
2

 1
2

+ |Bρ(x0)|
1
q′

∥F∥Lq (D2) ≤ Cρβ .

By a classical result of Adams [1], (6.46) implies that ∇ A ∈ L p
loc(B 1

2
(0)) for some p > 2. With

analogous arguments one gets that ∇ A ∈ L p
loc(D

2) for some p > 2.

Step 3: H⃗ ∈ L p
loc(D

2) for some p > 2.

From Step 2 we obtain that ∇(ℜR⃗) and ∇(ℜS) are in L p
loc(D

2) for some p > 2; recalling
that, by Lemma 6.1, ∇

2(ℑR⃗) and ∇
2(ℑS) are in Lq(D2) for every 1 < q < 2 then, by Sobolev

embedding, ∇ R⃗ and ∇S are in L p
loc(D

2) for some p > 2.
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Using Eq. (6.3) and observing that ⟨∂zΦ⃗, ∂z̄Φ⃗⟩ =
1
2 e2λ, a simple computation gives

Dz R⃗x∂z̄Φ⃗ =
e2λ

2
L⃗ − ⟨L⃗, ∂z̄Φ⃗⟩∂zΦ⃗ − ie2λ H⃗ . (6.47)

Using the definition of ∂z and ∂z̄ we write

ℑ


⟨L⃗, ∂z̄Φ⃗⟩∂zΦ⃗


=

1
4


−⟨∂x1Φ⃗,ℜL⃗⟩∂x2Φ⃗ − ⟨∂x1Φ⃗,ℑL⃗⟩∂x1Φ⃗

+ ⟨∂x2Φ⃗,ℜL⃗⟩∂x1Φ⃗ − ⟨∂x2Φ⃗,ℑL⃗⟩∂x2Φ⃗

. (6.48)

On the other hand, (6.2) gives

⟨∂x1Φ⃗,ℜL⃗⟩ = 2ℜ(∂z S)+ ⟨∂x2Φ⃗,ℑL⃗⟩ (6.49)

⟨∂x2Φ⃗,ℜL⃗⟩ = −2ℑ(∂z S)− ⟨∂x1Φ⃗,ℑL⃗⟩. (6.50)

Inserting (6.49) and (6.50) in (6.48) we obtain after some elementary computations

ℑ


⟨∂z̄Φ⃗, L⃗⟩∂zΦ⃗


= ℜ


∂z S(i∂z̄Φ⃗)


− 2ℜ


⟨∂zΦ⃗,ℑL⃗⟩∂z̄Φ⃗


. (6.51)

Therefore, combining (6.47) and (6.51) we get that

e2λ H⃗ = −ℑ


Dz R⃗x∂z̄Φ⃗


−

e2λ

2
ℑL⃗ − ℜ


∂z S(i∂z̄Φ⃗)


+ ℜ


⟨∂zΦ⃗,ℑL⃗⟩∂z̄Φ⃗


; (6.52)

since by Step 2 Dz R⃗ and Dz S are in L p
loc(D

2) for some p > 2 and by Lemma 6.1 ∇(ℑL) ∈

L(2,∞)(D2), we conclude that H⃗ ∈ L p
loc(D

2) for some p > 2.
Step 4: Smoothness of Φ⃗ by a bootstrap argument.
Since Φ⃗ is a conformal parametrization, then 1Φ⃗ = e2λ H⃗ and by Step 3 we infer that

Φ⃗ ∈ W 2,p
loc (D

2) for some p > 2. Now the Willmore equation in divergence form (see (3.30)
for the free problem and (3.31) for the conformal-constrained problem) becomes subcritical in
H⃗ : written in local coordinates it has the form

1H⃗ = H̃ with H̃ ∈ W
−1, p

2
loc (D2)

then H⃗ ∈ W
1, p

2
loc (D

2) and by Sobolev embedding H⃗ ∈ L
2p

4−p , notice that 2p
4−p > p since

p > 2; reinserting this information in the same equation iteratively we get H⃗ ∈ W 1,p
loc (D

2)

for every p < ∞; therefore Φ⃗ ∈ W 3,p
loc (D

2) for every p < ∞. Inserting this information into

the same equation gives that H⃗ ∈ W 2,p
loc (D

2) for every p < ∞, therefore Φ⃗ ∈ W 4,p
loc (D

2)

for every p < ∞ . . . continuing this bootstrap argument gives that Φ⃗ ∈ W k,p
loc (D

2) for every
k > 0, 1 < p < ∞ which implies that Φ⃗ ∈ C∞

loc(D
2). �

7. A priori geometric estimates under curvature conditions

7.1. Diameter bound from below on a minimizing sequence

We start by computing the Willmore functional and the Energy functional on small geodesic
2-spheres in a Riemannian manifold (Mm, h) of arbitrary codimension; the corresponding
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expansions in codimension 1 were obtained by the first author in [24,25,15]. First we introduce
some notation.

Let (Mm, h) be an m-dimensional Riemannian manifold. Fix a point p̄ and a 3-dimensional
subspace S < Tp̄ M of the tangent space to M at p̄. Denote with SS

p̄,ρ ⊂ M the geodesic
sphere obtained by exponentiating the sphere in S of center 0 and radius ρ. An equivalent way
to define is the following: consider normal coordinates (x1, . . . , xm) in M centered at p̄ such
that ( ∂

∂x1 |0,
∂

∂x2 |0,
∂

∂x3 |0) are orthonormal bases of S, then SS
p̄,ρ := {(x1)2 + (x2)2 + (x3)2 =

ρ2
} ∩ {x4

= · · · = xm
= 0}. Let us denote

R p̄(S) :=


i≠ j,i, j=1,2,3

K̄ p̄


∂

∂x i


0
,
∂

∂x j


0


(7.1)

where K̄ p̄(
∂
∂x i |0,

∂
∂x j |0) denotes the sectional curvature of (M, h) computed on the plane spanned

by ( ∂
∂x i |0,

∂
∂x j |0)contained in Tp̄ M .

Lemma 7.1. We have the following expansions for the Willmore functional, the Energy
functional and the area for small spheres SS

p̄,ρ defined above:

W (SS
p̄,ρ) :=


SS

p̄,ρ

|H |
2dµg = 4π −

2π
3

R p̄(S)ρ
2
+ o(ρ2) (7.2)

F(SS
p̄,ρ) :=

1
2


SS

p̄,ρ

|I|2dµg = 4π −
2π
3

R p̄(S)ρ
2
+ o(ρ2). (7.3)

A(SS
p̄,ρ) = 4πρ2

+ o(ρ2). (7.4)

In particular, if at some point p̄ ∈ M there exists a 3-dimensional subspace S < Tp̄ M such that
R p̄(S) > 6 then infΦ⃗∈FS2

(W + A)(Φ⃗) < 4π and infΦ⃗∈FS2
(F + A)(Φ⃗) < 4π . �

Proof. Let r < InjM,h( p̄) be less than the injectivity radius of (M, h) at p̄, then the exponential
map Exp p̄ : Br (0) ⊂ Tp̄ M → M is a diffeomorphism on the image. Call

τ := Exp p̄(S ∩ Br (0)),

the image under the exponential map of the subspace S. Observe that τ is a 3-dimensional
submanifold which is geodesic at p̄ (i.e. every geodesic in τ starting at p̄ is a geodesic of M
at p̄) so the second fundamental form IS↩→M of τ as submanifold of M vanishes at p̄ (for the
easy proof see for example [9, Proposition 2.9 p. 132]). Endow τ with the metric induced by the
immersion and observe that by the Gauss equations applied to τ ↩→ M we get that the sectional
curvatures of τ at p̄ coincide with the corresponding sectional curvatures of M at p̄. Therefore
the scalar curvature Rτ ( p̄) of τ at p̄ coincide with R p̄(S) (see for example [7] p. 50 for the
definition of scalar curvature via sectional curvature):

Rτ ( p̄) = R p̄(S). (7.5)

Now consider the geodesic sphere S p̄,ρ ↩→ τ in the Riemannian manifold τ and observe that the
composition of the immersions S p̄,ρ ↩→ τ ↩→ M coincides with SS

p̄,ρ ; call πn⃗S↩→ M , πn⃗S↩→τ
and

πn⃗τ ↩→M the normal projections onto the normal bundles respectively of S p̄,ρ relative to M , of S p̄,ρ
relative to τ and of τ relative to M (i.e. for example in the second case we mean the intersection
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of the normal bundle of S p̄,ρ as immersed in M with the tangent bundle of τ ) then we have the
orthogonal decomposition

πn⃗S↩→ M = πn⃗S↩→τ
+ πn⃗τ ↩→M . (7.6)

By definition of second fundamental form we get for all X, Y tangent vectors to S p̄,ρ

IS↩→ M (X, Y ) := πn⃗S↩→ M (DX Y ) = πn⃗S↩→τ
(DX Y )+ πn⃗τ ↩→M (DX Y )

=: IS↩→τ (X, Y )+ Iτ↩→ M (X, Y ). (7.7)

Therefore we obtain

|IS↩→τ |
2

≤ |IS↩→ M |
2

≤ |IS↩→τ |
2
+ |Iτ↩→ M |

2, (7.8)

and recalled that H⃗S↩→ M :=
1
2

2
i=1


IS↩→ M (e⃗i , e⃗i )


where {e⃗1, e⃗2} is an orthonormal frame of

Tx S p̄,ρ ,

|H⃗S↩→τ |
2

≤ |H⃗S↩→ M |
2

≤ |H⃗S↩→τ |
2
+

1
2
|Iτ↩→ M |

2. (7.9)

Since S p̄,ρ ↩→ τ is a geodesic sphere in the 3-dimensional manifold τ , we can use the expansions
of [24,25,15] for geodesic spheres in 3-manifolds (more precisely see Proposition 3.1 in [24] and
Lemma 2.3 in [15]) and obtain that as ρ → 0

1
2


S p̄,ρ

|IS↩→τ |
2dµg = 4π −

2π
3

Rτ ( p̄)ρ2
+ o(ρ2) (7.10)

S p̄,ρ

|H⃗S↩→τ |
2dµg = 4π −

2π
3

Rτ ( p̄)ρ2
+ o(ρ2). (7.11)

Observe that


S p̄,ρ
dµg = O(ρ2) and since Iτ↩→ M ( p̄) = 0 we have that |Iτ↩→ M |

2
|S p̄,ρ → 0 as

ρ → 0. Therefore


S p̄,ρ
|Iτ↩→ M |

2dµg = o(ρ2) and integrating the estimates (7.8), (7.9) on S p̄,ρ ,
using (7.12), (7.13), we conclude that

1
2


S p̄,ρ

|IS↩→ M |
2dµg = 4π −

2π
3

Rτ ( p̄)ρ2
+ o(ρ2) (7.12)

S p̄,ρ

|H⃗S↩→ M |
2dµg = 4π −

2π
3

Rτ ( p̄)ρ2
+ o(ρ2). (7.13)

The expansion of the area is straightforward. �

The following lemma is a variant for weak branched immersions of a lemma proved by
Simon [39]; notice that a similar statement is also present in [15] in case of smooth immersions.
We include it here for completeness.

Lemma 7.2. Let Φ⃗ ∈ FS2 be a weak branched immersion with finite total curvature of S2 into
the Riemannian manifold (Mm, h). Assume W (Φ⃗) + A(Φ⃗) ≤ Λ. Then there exists a constant
C = C(Λ,M) such that

A(Φ⃗) ≤ C

diamM (Φ⃗(S2))

2
. � (7.14)
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Proof. By Nash’s theorem, there is an isometric embedding I : M ↩→ Rs for some s ∈ N. The
second fundamental forms of Φ⃗, I ◦ Φ⃗ and I are related by the formula holding volg-a.e. on S2

II◦Φ⃗(·, ·) = d I |Φ⃗ ◦ IΦ⃗(·, ·)⊕ (II ◦ Φ⃗)(dΦ⃗, dΦ⃗).

Taking the trace and squaring yields for an orthonormal basis e⃗i of Φ⃗∗(T S2) that volg-a.e. on S2

|H⃗I◦Φ⃗ |
2

= |HΦ⃗ |
2
+

 2
i=1

1
2

I
I
◦ Φ⃗(e⃗i , e⃗i )


2

≤ |H⃗Φ⃗ |
2
+

1
2
|II |

2
◦ Φ⃗.

Analogously, taking the squared norms, one gets

|II◦Φ⃗ |
2

= |IΦ⃗ |
2
+

 2
i, j=1

II ◦ Φ⃗(e⃗i , e⃗ j )


2

≤ |IΦ⃗ |
2
+ |II |

2
◦ Φ⃗.

Integrating we obtain that Φ⃗ is a weak branched immersion with finite total curvature and

W (I ◦ Φ⃗) ≤ W (Φ⃗)+ C A(Φ⃗) ≤ CΛ,M , (7.15)

where C =
1
2 max |II |

2.

Let {b1, . . . , bN
} be the branch points of Φ⃗ and for small ε > 0 let Kε := S2

\ ∪
N
i=1 Bε(bi ).

Then Φ⃗|Kε is a weak immersion without branch points of the surface with smooth boundary Kε.
Recall that for a smooth vector field X⃗ on Rs , the tangential divergence of X⃗ on (I ◦ Φ⃗)(S2) is
defined by

divI◦Φ⃗ X⃗ :=

2
i=1

⟨d X⃗ · f⃗i , f⃗i ⟩,

where f⃗i is an orthonormal frame on (I ◦ Φ⃗)∗(T S2). Now, from the first part of the proof of
Lemma A.3 of [34], the tangential divergence theorem ((A.18) of the mentioned paper) holds for
a weak immersion of a surface with boundary in Rs without branch points and

(I◦Φ⃗)(Kε)
divI◦Φ⃗ X⃗ dvolg =


∪

N
i=1[I◦Φ⃗(∂Bε(bi ))]

⟨X⃗ , ν⃗⟩dl

− 2

(I◦Φ⃗)(Kε)

⟨H⃗I◦Φ⃗, X⃗⟩ dvolg, (7.16)

where ν⃗ is the unit limiting tangent vector to (I ◦ Φ⃗)(Kε) on (I ◦ Φ⃗)(∂Kε)orthogonal to it and
oriented in the outward direction. Since Φ⃗ is Lipschitz by assumption and since X⃗ and ν⃗ are
trivially bounded, it follows that

∪
N
i=1[I◦Φ⃗(∂Bε(bi ))]

⟨X⃗ , ν⃗⟩dl → 0 as ε → 0;

therefore the tangential divergence theorem still holds on a weak branched immersion:
(I◦Φ⃗)(Sp2)

divI◦Φ⃗ X⃗ dvolg = −2

(I◦Φ⃗)(S2)

⟨H⃗I◦Φ⃗, X⃗⟩ dvolg. (7.17)
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Now, as in [39], we choose X⃗(x⃗) := x⃗ − x⃗0 where x⃗0 ∈ (I ◦ Φ⃗)(S2). Then, observing that
divI◦Φ⃗ X⃗ = 2, by the Schwartz inequality we get

A(I ◦ Φ⃗) ≤ diamRs [(I ◦ Φ⃗)(S2)] W (I ◦ Φ⃗)
1
2 A(I ◦ Φ⃗)

1
2 .

The last inequality, together with (7.15), the fact that A(I◦Φ⃗) = A(Φ⃗) and diamRs [(I◦Φ⃗)(S2)] ≤

diamM (Φ⃗(S2)) ensured by the isometry I , gives that

A(Φ⃗) ≤ CΛ,M


diamM (Φ⃗(S2))

2
. �

In the following lemma we collect some inequalities linking the geometric quantities of two
close metrics. This will be useful for working locally in normal coordinates (the analogous lemma
in codimension one and for smooth immersions appears in [15]).

Lemma 7.3. Let h1,2 be Riemannian metrics on a manifold Mm , with norms satisfying

(1 + ϵ)−1
∥ · ∥1 ≤ ∥ · ∥2 ≤ (1 + ϵ)∥ · ∥1 for some ϵ ∈ (0, 1].

For any weak branched immersion with finite total curvature Φ⃗ ∈ FS2 , the following inequalities
hold almost everywhere on Σ for a universal C < ∞:

• volg1 ≤ (1 + Cϵ)volg2 , where g1,2 = Φ⃗∗(h1,2) and volg1,2 are the associated area forms;
• |I1|

2
1 ≤


1 + C(ϵ + δ)


|I2|

2
2 + Cδ−1

|Γ |
2
h1

◦ Φ⃗ for any δ ∈ (0, 1], where Γ := Dh1 − Dh2 and

Dhi is the covariant derivative with respect to the metric hi .
• |H1|

2
1 ≤


1 + C(ϵ + δ)


|H2|

2
2 + Cδ−1

|Γ |
2
h1

◦ Φ⃗ for any δ ∈ (0, 1] and Γ defined above. �

Proof. To compare the Jacobians of Φ⃗ with respect to h1,2, we use | · |g1 ≤ (1 + ε)| · |g2 and
compute for v,w ∈ TpΣ with g2(v,w) = 0

|v ∧ w|
2
g1

= |v|2g1
|w|

2
g1

− g1(v,w)
2

≤ (1 + ϵ)4|v|2g2
|w|

2
g2

= (1 + ϵ)4|v ∧ w|
2
g2
.

This proves the first inequality. Next we compare the norms for a bilinear map B : TpΣ×TpΣ →

TΦ⃗(p)M for p not a branch point. Choose a basis vα of TpΣ such that g1(vα, vβ) = δαβ and
g2(vα, vβ) = λαδαβ . Then

λα = |vα|g2 ≤ (1 + ϵ)|vα|g1 = 1 + ϵ,

and putting wα = vα/λα we obtain

|B|
2
1 =

2
α,β=1

λ2
αλ

2
β |B(wα, wβ)|

2
h1

≤ (1 + Cϵ)
2

α,β=1

|B(wα, wβ)|
2
h2

= (1 + Cϵ)|B|
2
2.

Now denote by πn⃗1,2 : TΦ⃗(p)M → (Φ⃗∗(TpΣ ))
⊥h1,2 the orthogonal projections onto the normal

spaces with respect to h1,2. Then for any δ ∈ (0, 1] and almost every p ∈ Σ we have the
following estimate (by approximation with smooth immersions locally away the branch points)

|I1|
2
1 = |πn⃗1(D

h1(∇Φ⃗))|21
≤ |πn⃗2(D

h1(∇Φ⃗))|21
≤ |πn⃗2


Dh2(∇Φ⃗)+ Γ ◦ Φ⃗(∇Φ⃗,∇Φ⃗)


|
2
1

≤ (1 + δ)|πn⃗2 Dh2(∇Φ⃗)|21 + Cδ−1
|Γ |

2
h1

◦ Φ⃗

≤ (1 + δ)(1 + Cε)|I2|
2
2 + Cδ−1

|Γ |
2
h1

◦ Φ⃗.
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This proves the second inequality. The proof of the third inequality is analogous:

|H1|
2
1 =

1
2
|I1(v1, v1)+ I1(v2, v2)|

2
1 =

1
2
|πn⃗1(D

h1
v1
(∂v1Φ⃗)+ Dh1

v2
(∂v2Φ⃗))|

2
1

≤
1
2
|πn⃗2(D

h1
v1
(∂v1Φ⃗)+ Dh1

v2
(∂v2Φ⃗))|

2
1

≤
1
2
|πn⃗2(D

h2
v1
(∂v1Φ⃗)+ Dh2

v2
(∂v2Φ⃗)

+Γ ◦ Φ⃗(∂v1Φ⃗, ∂v1Φ⃗)+ Γ ◦ Φ⃗(∂v2Φ⃗, ∂v2Φ⃗))|
2
1

≤
1
2
(1 + δ)|πn⃗2(D

h2
v1
(∂v1Φ⃗)+ Dh2

v2
(∂v2Φ⃗))|

2
1 + Cδ−1

|Γ |
2
h1

◦ Φ⃗

≤
1
2
(1 + δ)(1 + Cϵ)|πn⃗2(D

h2
w1
(∂w1Φ⃗)+ Dh2

w2
(∂w2Φ⃗))|

2
1 + Cδ−1

|Γ |
2
h1

◦ Φ⃗

≤ (1 + δ)(1 + Cϵ)|H2|
2
2 + Cδ−1

|Γ |
2
h1

◦ Φ⃗. �

Since we are assuming an upper area bound, the lower diameter bound will follow combining
Lemma 7.1 and the fact below (which generalizes to arbitrary codimension and non smooth
immersions, Proposition 2.5 in [15], the proof is similar but we include it here for completeness).

Proposition 7.1. Let Mm be a compact Riemannian m-manifold and consider a sequence
Φ⃗k ∈ FS2 such that supk(W + A)(Φ⃗k) ≤ Λ. If diam Φ⃗k(S2) → 0, then

lim
k→∞

A(Φ⃗k) → 0, lim sup
k

F(Φ⃗k) ≥ 4π and lim sup
k

W (Φ⃗k) ≥ 4π. �

Proof. The first statement follows directly from Lemma 7.2. Let us prove the second one. After
passing to a subsequence, we may assume that the Φ⃗k(S2) converge to a point p̄ ∈ M . For given
ϵ ∈ (0, 1] we choose ρ > 0, such that in Riemann normal coordinates x ∈ Bρ(0) ⊂ Rm

1
1 + ϵ

| · |eucl ≤ | · |h ≤ (1 + ϵ)| · |eucl and |Γ k
i j (x)| ≤ ε,

where, of course, | · |eucl is the norm associated to the euclidean metric given by the coordinates
and | · |h is the norm in metric h. We have Φ⃗k(S2) ⊂ Bρ(x0) for large k. Denoting by Ie, ge

k
the quantities with respect to the coordinate metric, we get from Willmore’s inequality and
Lemma 7.3

4π ≤
1
2


S2

|Ie
Φ⃗k

|
2
e dµge

k
≤ (1 + Cϵ)(1 + δ)

1
2


S2

|IΦ⃗k
|
2 dµgk + C(δ)ϵ2 Areagk (S

2).

Since Areagk (S2) ≤ C by assumption, we may let first k → ∞, then ϵ ↘ 0 and finally δ ↘ 0 to
obtain

lim inf
k→∞

F(Φ⃗k) ≥ 4π.

The proof for W is analogous. �

8. Proof of the existence theorems

Proof of Theorem 1.4. Let Φ⃗k ⊂ FS2 be a minimizing sequence of F1 = F + A, as before we
can assume that Φ⃗k are conformal; clearly there is a uniform upper bound on the areas and on
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the L2 norms of the second fundamental forms Φ⃗k :

sup
k


S2

|Ik |
2dvolgΦ⃗k

≤ C < ∞, (8.1)

sup
k

AreagΦ⃗k
(S2) ≤ C < ∞. (8.2)

Since we are assuming that R p̄(S) > 6 for some point p̄ and some 3-dimensional subspace S,
by Lemma 7.1 we have

inf
Φ⃗∈FS2

F1(Φ⃗) < 4π. (8.3)

Therefore, Proposition 7.1 yields

lim inf
k

diam(Φ⃗k)(S2) ≥
1
C
> 0. (8.4)

Now, thanks to (8.1), (8.2) and (8.4), we can apply the ‘Good Gauge Extraction Lemma’ IV.1
in [26] and obtain that up to subsequences and up to reparametrization of Φ⃗k via positive Moebius
transformations of S2 the following holds: there exists a finite set of points {a1, . . . , aN

} ⊂ S2

such that for every compact subset K ⊂⊂ S2
\ {a1, . . . , aN

} (it is enough for our purposes to
take K with smooth boundary) there exists a constant CK such that

| log |∇Φ⃗k | | ≤ CK on K for every k. (8.5)

Since the parametrization is conformal, then |∇
2Φ⃗k |

2
= e4λk |IΦ⃗k

|
2 (where, as usual, eλk =

|∂x1Φ⃗k | = |∂x2Φ⃗k |), and the two estimates (8.1)–(8.5) give that Φ⃗k |K are equibounded in
W 2,2(K ); therefore by the Banach–Alaoglu Theorem together with reflexivity and separability
of W 2,2(K ) imply the existence of a map Φ⃗∞ ∈ W 2,2(K ) such that, up to subsequences,

Φ⃗k ⇀ Φ⃗∞ weakly in W 2,2(K ). (8.6)

Now by the Rellich–Kondrachov Theorem ∂x i Φ⃗k → ∂x i Φ⃗∞ as k → ∞ strongly in L p(K ) for
every 1 < p < ∞ and a.e. on K . It follows that Φ⃗∞ is a W 1,∞

∩ W 2,2 conformal immersion of
K . Moreover by the lower semicontinuity under W 2,2-weak convergence proved in Lemma A.8
we have

K
|IΦ⃗∞

|
2dvolgΦ⃗∞

≤ lim inf
k


K

|IΦ⃗k
|
2dvolgΦ⃗k

, (8.7)

and the strong L p(K ) convergence of the gradients implies

AreagΦ⃗k
(K ) → AreagΦ⃗∞

(K ). (8.8)

Iterating the procedure on a countable increasing family of compact subsets with smooth
boundary invading S2

\ {a1, . . . , aN
}, via a diagonal argument we get the existence of a W 1,∞

loc ∩

W 2,2
loc conformal immersion Φ⃗∞ of S2

\ {a1, . . . , aN
} into M such that, up to subsequences,

S2\{a1,...,aN }


1
2
|IΦ⃗∞

|
2
+ 1


dvolgΦ⃗∞

≤ lim inf
k


S2\{a1,...,aN }


1
2
|IΦ⃗k

|
2
+ 1


× dvolgΦ⃗k

≤ C. (8.9)
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Now, thanks to the conformality of Φ⃗∞ on S2
\{a1, . . . , aN

} and the estimate (8.9), we can apply
Lemma A.5 of [35] and extend Φ⃗∞ to a weak conformal immersion in FS2 possibly branched in
a subset of {a1, . . . , aN

}. Since IΦ⃗∞
∈ L2(S2, volgΦ⃗∞

), inequality (8.9) implies

F1(Φ⃗∞) ≤ lim inf
k

F1(Φ⃗k) = inf
Φ⃗∈FS2

F1(Φ⃗); (8.10)

therefore Φ⃗∞ is a minimizer of F1 in FS2 . By Lemma A.5, the functional F1 is Frechét
differentiable at Φ⃗∞ with respect to variations w⃗ ∈ W 1,∞

∩ W 2,2(D2, TΦ⃗∞
M) with compact

support in S2
\ {b1, . . . , bN∞}, where {b1, . . . , bN∞} are the branched points of Φ⃗∞. From the

expression of the differentials given in Lemma A.5 we deduce that Φ⃗∞ satisfies the following
area-constrained Willmore like equation in conservative form away the branch points, and since
Φ⃗∞ is conformal, the equation writes

8 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= 2R̃(H⃗)+ 16ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


+ 2H⃗ + (D R)(T Φ⃗)+ 2RΦ⃗(T Φ⃗)+ 2K̄ (T Φ⃗)H⃗ . (8.11)

Observe that the difference between this last equation and the Willmore equation (3.30) is just
terms of the second line which are completely analogous to the curvature terms on the right
hand side already appearing in (3.30) (see the definitions (3.8) and (3.9)). Therefore all the
arguments of Sections 5 and 6 can be repeated including these new terms and we conclude with
the smoothness of Φ⃗∞ away the branched points. �

Proof of Theorem 1.5. The proof is completely analogous to the proof of Theorem 1.4 once we
observe that the lower bound on the areas A(Φ⃗k) ≥

1
C > 0 together with Lemma 7.2 yields a

lower bound on the diameters:

diamM Φ⃗k(S2) ≥
1
C
. (8.12)

Indeed we still have (8.1), (8.2) and (8.4). Therefore, as above, we obtain the existence of a
minimizer Φ⃗∞ ∈ FS2 ,

F(Φ⃗∞) = inf
Φ⃗∈FS2

F(Φ⃗),

satisfying the equation in conservative form

8 e−2λ
ℜ


Dz


πn⃗(Dz H⃗)+ ⟨H⃗ , H⃗0⟩ ∂zΦ⃗


= 2R̃(H⃗)+ 16ℜ


⟨Riemh(e⃗z, e⃗z)e⃗z, H⃗⟩e⃗z


+ (D R)(T Φ⃗)+ 2RΦ⃗(T Φ⃗)+ 2K̄ (T Φ⃗) H⃗ (8.13)

(now without the Lagrange multiplier 2H⃗ ) outside the finitely many branched points. The
smoothness of Φ⃗∞ outside the branched points follows as before. �

Proof of Theorem 1.6. Recall the discussion after the statement of the Theorem, here we just
formalize that idea. First of all recall the precise Definition VII.2 in [26] of a bubble tree of weak
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immersions; for the proof of the present Theorem we just need to recall (actually the rigorous
definition is more precise and intricate) that a bubble tree of weak immersions is an N + 1-tuple
T⃗ := ( f⃗ , Φ⃗1

· · · Φ⃗N ), where N is an arbitrary integer, f⃗ ∈ W 1,∞(S2,Mm) and Φ⃗i
∈ FS2

for i = 1 · · · N such that f⃗ (S2) = ∪
N
i=1 Φ⃗i (S2) and f⃗∗[S2

] =
N

i=1 Φ⃗i
∗[S2

], where for a
Lipschitz map a⃗ ∈ W 1,∞(S2,M) we denote a⃗∗[S2

] the push forward of the current of integration
over S2. The set of bubble trees is denoted by T and, considered a nontrivial homotopy class
0 ≠ γ ∈ π2(Mm), the set of bubble trees such that the map f⃗ belongs to the homotopy group γ
is denoted by Tγ .

Consider the Lagrangian L defined in (1.23) and (1.25); up to rescaling the metric h by a
positive constant we can assume that K̄ ≤ 1 (or analogously instead of 1, in the definition
of L , take a constant C > maxM K̄ ). Consider a minimizing sequence T⃗k ∈ Tγ , of bubble
trees realizing the homotopy class γ , for the functional L . Observe that by Proposition 1.2 we
can assume the Φ⃗k are conformal. By the expression of L , there is a uniform bound on the F1
functional

lim sup
k→∞

F1(T⃗k) = lim sup
k


S2


1 +

|I|2

2


dvolgk < +∞; (8.14)

moreover, since f⃗k ∈ γ ≠ 0, we also have

lim inf
k→∞

Nk
i=1

diamM


Φ⃗i

k(S
2)

> 0; (8.15)

therefore we perfectly fit in the assumptions of the compactness theorem for bubble trees
(Theorem VII.1 in [26]). It follows, recalling also Lemma A.8, that there exists a limit bubble
tree T⃗∞ = ( f⃗∞, Φ⃗1

∞, . . . , Φ⃗
N∞
∞ ) minimizing the Lagrangian L in Tγ . By the minimality, using

Lemma A.5, we have that each Φ⃗i
∞ satisfies the Euler–Lagrange equation of L outside the branch

points. As remarked in the introduction, the Euler–Lagrange equation of L coincides with the
area-constrained Willmore equation. By the Regularity Theorem 1.2, we conclude that each Φ⃗i

∞

is a branched conformal immersion of S2 which is smooth and satisfies the area-constrained
Willmore equation outside the finitely many branched points. �

Proof of Theorem 1.7. The arguments are analogous to the proof of Theorem 1.6. Indeed
observe that, fix any A > 0, for a minimizing sequence T⃗k ∈ T of the functional WK , defined in
(1.26), under the A-area constraint

A(T⃗k) := Area( f⃗k(S2)) = A, (8.16)

the bound (8.14) still holds (by the constraint on the total area and by the boundness of K̄ ensured
by the compactness of M). Moreover, by the monotonicity formula given in Lemma 7.2, the area
constraint (8.16) also implies (8.15). Then, as before, we apply the compactness theorem for
bubble trees and the thesis follows as above by recalling that the area constraint is preserved in
the limit:

A(T⃗∞) := Area( f⃗∞(S2)) = lim
k→∞

Area( f⃗k(S2)) = A. �
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Appendix

A.1. Useful lemmas for proving the regularity

In the appendix we prove some technical lemmas used in the paper. In the following we denote
by H̊−1(C) the dual of the homogeneous Sobolev space H̊1(C) (for the standard definition see
for instance [12, Definition 6.2.5])

Lemma A.1. For j, l ∈ {1, . . . ,m} let γ j
l ∈ (C0

∩ W 1,2)(C) be such that supp γ j
l ∈ B2(0) and

∥γ
j

l ∥L∞(C) ≤ ϵ. For every U⃗ ∈ (L1
loc)(C) denote, in distributional sense,

(DzU ) j
:= ∂zU j

+

m
k=1

γ
j

k U k . (A.1)

Then for every Y⃗ ∈ (H̊−1
+ L1)(C) with ℑ(Dz̄ Y⃗ ) ∈ (H̊−1

+ L1)(C) there exists a unique
U⃗ ∈ L2,∞(D2) with ℑ(U⃗ ) ∈ W 1,(2,∞)(D2) satisfying

DzU⃗ = Y⃗ in D′(D2)

ℑU⃗ = 0 on ∂D2.
(A.2)

Moreover the following estimate holds:

∥U⃗∥L2,∞(D2) + ∥∇ℑ(U⃗ )∥L2,∞(D2) ≤ C

∥Y⃗∥H−1+L1(C) + ∥ℑ(Dz̄ Y⃗ )∥H−1+L1(C)


. �

Proof. Let us first construct Ũ j
∈ L2,∞(C) satisfying DzŨ j

= Y j on C; observe this is
equivalent to solving the fixed point problem in L2,∞(C)

Ũ j
= −

1
π z̄

∗


Y j

−

m
k=1

γ
j

k Ũ k


:= T ( ˜⃗U ). (A.3)

We prove that the problem has a unique solution by the contraction mapping principle in L2,∞.
By the Young and Hölder inequalities for weak type spaces (see Theorem 1.2.13 and Exercise
1.4.19 in [11]) we have− 1

π z̄
∗


m

k=1

γ
j

k Ũ k


L2,∞(C)

≤ C

− 1
π z̄


L2,∞

 m
k=1

γ
j

k Ũ k


L1(C)

≤ Cϵ∥ ˜⃗U∥L2,∞(C). (A.4)

We choose ϵ > 0 such that Cϵ ≤
1
2 . Now we claim that− 1

π z̄
∗ Y j


L2,∞(C)

≤ C∥Y j
∥L1+H̊−1(C). (A.5)
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Recall that Y j
∈ L1

+ H̊−1(C) and ∥Y j
∥L1+H̊−1(C) := inf{∥Y j

1 ∥L1(C) + ∥Y j
2 ∥H̊−1(C) : Y j

=

Y j
1 +Y j

2 }; since we can assume Y j
≠ 0 otherwise trivially −

1
π z̄ ∗Y j

= 0, we can find Y j
1 ∈ L1(C)

and Y j
2 ∈ H̊−1(C) such that

∥Y j
1 ∥L1(C) + ∥Y j

2 ∥H̊−1(C) ≤
3
2
∥Y j

∥L1+H̊−1(C). (A.6)

As before, by the Young inequality, we have− 1
π z̄

∗ Y j
1


L2,∞(C)

≤ C∥Y j
1 ∥L1(C). (A.7)

On the other hand call Ŷ j
2 the Fourier transform of Y j

2 , and observe that the Fourier transform of
−

1
π z̄ is (up to a multiplicative constant) 1

ξ
, we have by the convolution theorem

C

− 1
π z̄

∗ Y j
2

2 = C


C

Ŷ j
2 (ξ)

1
ξ

2 .
Moreover recalling that ∥h∥H̊1 =


C |ξ ĥ(ξ)|2 and that

∥Y j
2 ∥H̊−1(C) = sup

∥h∥H̊1≤1


C

Ŷ j
2 (ξ)

¯̂h(ξ) = sup
∥h∥H̊1≤1


C

Ŷ j
2 (ξ)

ξ

¯̂h(ξ)ξ =


C

 Ŷ
j

2 (ξ)

ξ


2

we get− 1
π z̄

∗ Y j
2


L2,∞(C)

≤

− 1
π z̄

∗ Y j
2


L2(C)

≤ C∥Y j
2 ∥H̊−1(C). (A.8)

Combining (A.6)–(A.8) we get (A.5) which was our claim. Now the estimates (A.4) and (A.5)
imply that T : L2,∞(C) → L2,∞(C) is well defined and is a contraction; the existence of a

unique ˜⃗U satisfying (A.3) follows by the contraction mapping principle. Notice moreover we
have the estimate

∥
˜⃗U∥L2,∞(C) ≤ C∥Y⃗∥L1+H̊−1(C). (A.9)

Now let us consider ℑ(
˜⃗U ). From the equation satisfied by ˜⃗U we obtain

1
4
1Ũ j

= ∂z̄∂zŨ j
= ∂z̄Y j

− ∂z̄


m

k=1

γ
j

k Ũ k


,

whose imaginary part gives

1
4
1ℑ(Ũ j ) = ℑ(∂z̄Y j )− ℑ


∂z̄


m

k=1

γ
j

k Ũ k


. (A.10)

Since by assumption ∥γ
j

k ∥L∞∩W 1,2(C) ≤ C , then ∥
m

k=1 γ
j

k Y k
∥L1+H̊−1(C) ≤ C∥Y⃗∥L1+H̊−1(C)

and we have

∥ℑ(∂z̄Y j )∥L1+H̊−1(C) =

ℑ(Dz̄Y j )− ℑ


m

k=1

γ
j

k Y k


L1+H̊−1(C)

≤ ∥ℑ(Dz̄Y j )∥L1+H̊−1(C) + C∥Y⃗∥L1+H̊−1(C).
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Eq. (A.10) together with (A.9) and the last estimate gives

∥1ℑ(Ũ j )∥H̊−1+L1+W−1,(2,∞)(C) ≤ ∥ℑ(Dz̄Y j )∥L1+H̊−1(C) + C ∥Y⃗∥L1+H̊−1(C)

which implies, since ∥ℑ(U ) j
∥L2,∞(C) ≤ C∥Y⃗∥L1+H̊−1(C), that

∥∇ℑ(Ũ j )∥L2,∞(C) ≤ C

∥ℑ(Dz̄Y j )∥L1+H̊−1(C) + ∥Y⃗∥L1+H̊−1(C)


. (A.11)

Now, since ∇ℑ(Ũ j ) ∈ L2,∞(C), the function ℑ(Ũ j ) leaves a trace in H
1
2 ,(2,∞)(∂D2) and we

can consider the homogeneous Dirichlet problem∂z V j
+

m
k=1

γ
j

k V k
= 0 on D2

ℑV j
= ℑŨ j on ∂D2.

(A.12)

We solve it again by contraction mapping principle; given W⃗ ∈ W 1,(2,∞)(D2)with ℑW j
= ℑŨ j

consider V⃗ =: S(W⃗ ) solving∂z V j
= −

m
k=1

γ
j

k W k on D2

ℑV j
= ℑŨ j on ∂D2.

Then the following estimate holds (see hand notes: bring right hand side to the left using
convolution with 1

π z̄ , so get homogeneous equation with different boundary data but still

controlled in H
1
2 ,(2,∞) both real and imaginary parts using Hilbert transform, the estimates

then follow from the estimates for the Laplace equation, using Calderon–Zygmund theory for
estimating the gradients)

∥V⃗ ∥W 1,(2,∞)(D2) ≤ C

ϵ∥W⃗∥L2,∞(D2) + ∥ℑ

˜⃗U∥W 1,(2,∞)(C)


and

∥S(W⃗1)− S(W⃗2)∥W 1,(2,∞)(D2) ≤ Cϵ∥W⃗1 − W⃗2∥L2,∞(D2).

Therefore, for ϵ > 0 small, S : W 1,(2,∞)(D2) → W 1,(2,∞)(D2) is a contraction and there exists
a unique solution of problem (A.12) satisfying the estimate

∥V⃗ ∥W 1,(2,∞)(D2) ≤ C∥ℑ(
˜⃗U )∥W 1,(2,∞)(C). (A.13)

Now we conclude observing that U j
:= Ũ j

− V j
∈ L2,∞(D2) is the unique solution to the

problem (A.2) and, combining (A.9), (A.11) and (A.13), it satisfies the estimates

∥U⃗∥L2,∞(D2) + ∥∇ℑ(U⃗ )∥L2,∞ ≤ C

∥ℑ(Dz̄Y j )∥L1+H̊−1(C) + ∥Y⃗∥L1+H̊−1(C)


as desired. �

Lemma A.2. For j, l ∈ {1, . . . ,m} let γ j
l ∈ (C0

∩ W 1,2)(C) be such that supp γ j
l ∈ B2(0) and

∥γ
j

l ∥L∞(C) ≤ ϵ. For every U⃗ ∈ (L1
loc)(C) denote, in distributional sense,

(DzU ) j
:= ∂zU j

+

m
k=1

γ
j

k U k .
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Let Y⃗ ∈ (L1
∩ L2,∞)(C) with ℑ(Dz̄ Y⃗ ) ∈ Lq(C) for some 1 < q < 2. Then there exists a unique

U⃗ ∈ W 1,(2,∞)(D2) with ℑ(U⃗ ) ∈ W 2,q(D2) satisfying
DzU⃗ = Y⃗ in D′(D2)

ℑU⃗ = 0 on ∂D2.
(A.14)

Moreover the following estimate holds:

∥U⃗∥L2,∞(D2) + ∥∇U⃗∥L2,∞(D2) + ∥∇
2
ℑ(U )∥Lq (D2)

≤ C

∥Y⃗∥L1∩L2,∞(C) + ∥ℑ(Dz̄ Y⃗ )∥Lq (C)


. �

Proof. As in the proof of Lemma A.1 we first solve the equation Dz
˜⃗U = Y⃗ in C proving the

existence and uniqueness of solutions to the fixed point problem in W 1,(2,∞)(C)

Ũ j
= −

1
π z̄

∗


Y j

−

m
k=1

γ
j

k Ũ k


=: T ( ˜⃗U ). (A.15)

Analogously to the proof of Lemma A.1, for ϵ > 0 small but depending just on universal

constants, the L2,∞(C) norm of T ( ˜⃗U ) can be bounded as

∥T ( ˜⃗U )∥L2,∞(C) ≤ C∥Y⃗∥L1(C), (A.16)

and for ˜⃗U 1,
˜⃗U 2 ∈ L2,∞(C) it holds that

∥T ( ˜⃗U 1)− T ( ˜⃗U 2)∥L2,∞(C) ≤ Cϵ∥ ˜⃗U 1 −
˜⃗U 2∥L2,∞(C). (A.17)

L2,∞-Gradient estimate: we have

∥∇T (Ũ j )∥L2,∞(C) =




∇
1
π z̄


∗


Y j

−

m
k=1

γ
j

k Ũ k


L2,∞(C)

. (A.18)

Observe that the Fourier transform of the convolution kernel ∇
1
z̄ = ∇(∂z̄ log |z|) satisfies the

assumptions of Theorem 3 p. 96 in [40]; therefore


∇
1
π z̄


∗


Y j

−

m
k=1

γ
j

k Ũ k


Ls (C)

≤ Cs




Y j
−

m
k=1

γ
j

k Ũ k


Ls (C)

∀1 < s < ∞

and by interpolation (see for instance Theorem 3.15 in [41] of Theorem 3.3.3 in [13])


∇
1
π z̄


∗


Y j

−

m
k=1

γ
j

k Ũ k


L2,∞(C)

≤ C




Y j
−

m
k=1

γ
j

k Ũ k


L2,∞(C)

≤ C∥Y∥L2,∞(C) + Cϵ∥ ˜⃗U∥L2,∞(C). (A.19)

Combining (A.19), (A.18) and (A.16) we get, for small ϵ > 0,

∥T ( ˜⃗U )∥W 1,(2,∞)(C) ≤ C

∥Y⃗∥L1(C) + ∥Y⃗∥L2,∞(C)


. (A.20)
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So T : W 1,(2,∞)(C) → W 1,(2,∞)(C) is a well defined linear operator and the same arguments
imply that T is a contraction. Therefore there exists a unique Ũ j

∈ W 1,(2,∞)(C) satisfying
(A.15) and

∥
˜⃗U∥W 1,(2,∞)(C) ≤ C


∥Y⃗∥L1(C) + ∥Y⃗∥L2,∞(C)


. (A.21)

Noticing that ℑ(Ũ j ) satisfies also

∆(ℑ(Ũ j )) = 4ℑ(∂z̄Y j )− 4ℑ


∂z̄


m

k=1

γ
j

k Ũ k



= 4ℑ(Dz̄Y j )− 4ℑ


m

k=1

γ
j

k Ỹ k


− 4ℑ


∂z̄


m

k=1

γ
j

k Ũ k


,

estimate (A.21), the assumptions on γ j
k , Hölder inequality and standard elliptic estimates imply

∥∇
2
ℑ(Ũ j )∥Lq (D2) ≤ C


∥ℑ(Dz̄Y j )∥Lq (D2) + ∥Y⃗∥L1(C) + ∥Y⃗∥L2,∞(C)


. (A.22)

Now exactly as in the previous lemma it is possible to solve the corresponding homogeneous
problem on D2∂z V j

= −

m
k=1

γ
j

k V k on D2

ℑV j
= ℑŨ j on ∂D2

(A.23)

and the solution V j satisfies the estimates

∥V⃗ ∥W 1,(2,∞)(D2) ≤ C∥ℑ(
˜⃗U )∥W 1,(2,∞)(C). (A.24)

Moreover the imaginary part ℑ(V j ) solves the following problem1ℑ(V j )+ 4ℑ


∂z̄


m

k=1

γ
j

k V k


= 0 on D2

ℑV j
= ℑŨ j on ∂D2

;

(A.25)

then, estimate (A.22) and elliptic regularity imply

∥∇
2
ℑ(V j )∥Lq (D2) ≤ C


∥ℑ(Dz̄Y j )∥Lq (D2) + ∥Y⃗∥L1(C) + ∥Y⃗∥L2,∞(C)


. (A.26)

Now, as in the previous lemma, the function U j
= Ũ j

− V j is a solution to the original problem
(A.14); moreover collecting (A.21), (A.22), (A.24) and (A.26) we obtain the desired estimate

∥U⃗∥W 1,(2,∞)(D2) + ∥∇
2
ℑ(U⃗ )∥Lq (D2)

≤ C

∥ℑ(Dz̄Y j )∥Lq (D2) + ∥Y⃗∥L1(C) + ∥Y⃗∥L2,∞(C)


. �

A.2. Differentiability of the Willmore functional in FS2 , identification of the first differential and
lower semicontinuity under W 2,2

loc weak convergence

Let us start with two computational lemmas whose utility will be clear later in the subsection.
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Lemma A.3. Let Φ⃗ be a smooth immersion of the disc D2 into the Riemannian manifold
(Mn, h). Let X⃗ ⊗ v⃗ ∈ ΓD2(TΦ⃗ M ⊗ T D2) and w⃗ ∈ ΓD2(TΦ⃗ M), recall the notation introduced
in (3.1)–(3.3) and (3.6). Then

⟨D
∗g
g (X⃗ ⊗ v⃗), w⃗⟩ = ⟨X⃗ ⊗ v⃗, Dgw⃗⟩ − divg u⃗ + ⟨X⃗ , w⃗⟩divg v⃗, (A.27)

where u⃗ ∈ ΓD2(T D2) is the vector field defined below. Let f⃗1, f⃗2 be a positive orthonormal
frame of T D2, write v⃗ = v1 f⃗1 + v2 f⃗2, then define

u⃗ := ⟨v1 X⃗ , w⃗⟩h f⃗1 + ⟨v2 X⃗ , w⃗⟩h f⃗2.

Notice that u⃗ is independent of the choice of the frame fi , i.e. it is a well defined vector field on
D2. �

Proof. Call e⃗i := Φ⃗∗( f⃗i ) the positive orthonormal frame of Φ⃗∗(T D2) associated to f⃗1, f⃗2; a
straightforward computation using just the definitions (3.1)–(3.3) gives

⟨D
∗g
g [X⃗ ⊗ (v1 f⃗1 + v2 f⃗2)], w⃗⟩ = −⟨v1 De⃗1 X⃗ + v2 De⃗2 X⃗ , w⃗⟩. (A.28)

Writing the right hand side as −⟨De⃗1(v
1 X⃗)+ De⃗2(v

2 X⃗), w⃗⟩ + ⟨X⃗ , w⃗⟩

e⃗1[v

1
] + e⃗2[v

2
]

, where

e⃗i [vi ] denotes the derivative of the function vi with respect to e⃗i , we can express (A.28) as

⟨D
∗g
g [X⃗ ⊗ (v1 f⃗1 + v2 f⃗2)], w⃗⟩ = ⟨v1 X⃗ , De⃗1w⃗⟩ + ⟨v2 X⃗ , De⃗2w⃗⟩

− e⃗1[⟨v
1 X⃗ , w⃗⟩] − e⃗2[⟨v

2 X⃗ , w⃗⟩]

+ ⟨X⃗ , w⃗⟩


e⃗1[v

1
] + e⃗2[v

2
]


. (A.29)

Notice that the first line of the right hand side is exactly ⟨X⃗ ⊗ v⃗, Dgw⃗⟩. Observe that, through the
parametrization Φ⃗, we can identify T D2 and Φ⃗∗(T D2); moreover noticing that for fixed i = 1, 2
we have ⟨De⃗i e⃗i , e⃗i ⟩ =

1
2 e⃗i [⟨e⃗i , e⃗i ⟩] = 0, after some easy computations we get that

e⃗1[v
1
] + e⃗2[v

2
] = f⃗1[v

1
] + f⃗2[v

2
] = divg(v⃗)+ ⟨v⃗, D f⃗1

f⃗1 + D f⃗2
f⃗2⟩, (A.30)

where, by definition, divg(v⃗) :=


i=1,2⟨D f⃗i
v⃗, f⃗i ⟩ and D is indented as the covariant derivative

on T D2 endowed with the metric g := Φ⃗∗h (notice that the covariant derivative in M
along Φ⃗(D2) projected on Φ⃗∗(T D2) correspond to the covariant derivative on (D2, g) via the
identification given by the immersion Φ⃗).

Recall that we defined u⃗ := ⟨v1 X⃗ , w⃗⟩h f⃗1 + ⟨v2 X⃗ , w⃗⟩h f⃗2 = u1 f⃗1 + u2 f⃗2 ∈ T D2; an easy
computation gives

f⃗1[⟨v
1 X⃗ , w⃗⟩] + f⃗2[⟨v

2 X⃗ , w⃗⟩] = divg u⃗ + ⟨X⃗ , w⃗⟩⟨v⃗, D f⃗1
f⃗1 + D f⃗2

f⃗2⟩. (A.31)

Now combining (A.29)–(A.31) we get the thesis. �

Lemma A.4 (Integration by Parts in Willmore Equation). Let Φ⃗ be a smooth immersion of the
disc D2 into the Riemannian manifold (Mn, h) and let w⃗ ∈ ΓD2(TΦ⃗ M) be smooth with compact
support in D2. Then

D2


1
2

D
∗g
g


Dg H⃗ − 3πn⃗(Dg H⃗)+ ⋆h


(∗g Dg n⃗)∧M H⃗
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− R̃(H⃗)+ R⊥

Φ⃗
(T Φ⃗), w⃗


dvolg

=


D2


H⃗ ,

1
2

D
∗g
g

Dgw⃗ − 3πn⃗(Dgw⃗)


+


⋆h


(∗g Dg n⃗)∧M H⃗


, Dgw⃗


dvolg

+


D2

⟨−R̃(H⃗)+ R⊥

Φ⃗
(T Φ⃗), w⃗⟩ dvolg. � (A.32)

Proof. Let us start considering


D2⟨D
∗g
g [Dg H⃗ ], w⃗⟩dvolg . Fix a point x0 ∈ D2, take normal

coordinates x i centered in x0 with respect to the metric g = Φ⃗∗h, and call fi :=
∂
∂x i the

coordinate frame; observe it is orthonormal at x0 and D fi = 0 at x0. By Lemma A.3, we have

⟨D
∗g
g [Dg H⃗ ], w⃗⟩ = ⟨Dg H⃗ , Dgw⃗⟩ − divg u⃗ + ⟨D f⃗1

H⃗ , w⃗⟩divg f⃗1 + ⟨D f⃗2
H⃗ , w⃗⟩divg f⃗2

for some vector field u⃗ compactly supported in D2. Observe that, at x0, the condition D f⃗i = 0
implies

divg f⃗i = ⟨D f⃗1
f⃗i , f⃗1⟩ + ⟨D f⃗2

f⃗i , f⃗2⟩ = 0.

Therefore taking f⃗i to coincide at x0 with the frame associated to normal coordinates centered at
x0 we obtain

⟨D
∗g
g [Dg H⃗ ], w⃗⟩ = ⟨Dg H⃗ , Dgw⃗⟩ − divg u⃗; (A.33)

since all the terms are defined intrinsically, the identity is true intrinsically at every point x0 ∈ D2.
Now integrate (A.33) on D2 and, observing that u⃗ is compactly supported, use the divergence
theorem to infer

D2
⟨D

∗g
g [Dg H⃗ ], w⃗⟩dvolg =


D2

⟨Dg H⃗ , Dgw⃗⟩dvolg.

Repeating the same argument we have also


D2⟨D
∗g
g [Dgw⃗], H⃗⟩dvolg =


D2⟨Dgw⃗, Dg H⃗⟩dvolg ,

so 
D2

⟨D
∗g
g [Dg H⃗ ], w⃗⟩dvolg =


D2

⟨H⃗ , D
∗g
g [Dgw⃗]⟩dvolg. (A.34)

Using analogous arguments one checks that also
D2

⟨D
∗g
g [πn⃗(Dg H⃗)], w⃗⟩dvolg =


D2

⟨πn⃗(Dg H⃗), Dgw⃗⟩dvolg

=


D2

⟨Dg H⃗ , πn⃗(Dgw⃗)⟩dvolg

=


D2

⟨H⃗ , D
∗g
g [πn⃗(Dgw⃗)]⟩dvolg. (A.35)

Finally, along the same lines, one has
D2


D

∗g
g


⋆h


(∗g Dg n⃗)∧M H⃗


, w⃗


dvolg

=


D2


⋆h


(∗g Dg n⃗)∧M H⃗


, Dgw⃗


dvolg. (A.36)
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The thesis follows collecting (A.34)–(A.36). �

Lemma A.5 (Differentiability of W and Identification of dW ). Let Φ⃗ ∈ FS2 be a weak branched
immersion of S2 into the m-dimensional Riemannian manifold (Mm, h) with branched points
{b1, . . . , bN

} and let W (Φ⃗) :=


S2 |HΦ⃗ |
2dvolgΦ⃗

be the Willmore functional. Then W is Frechét

differentiable with respect to variations w⃗ ∈ W 1,∞
∩ W 2,2(D2, TΦ⃗ M) with compact support in

S2
\ {b1, . . . , bN

} in the sense that

W (ExpΦ⃗[tw⃗]) = W (Φ⃗)+ t dΦ⃗W [w⃗] + RΦ⃗
w⃗ [t], (A.37)

where ExpΦ⃗[tw⃗](x0) denotes the exponential map in M centered in Φ⃗(x0) ∈ M applied to the

tangent vector tw⃗ ∈ TΦ⃗(x0)
M and where the remainder RΦ⃗

w⃗
[t] satisfies

sup
RΦ⃗

w⃗ [t]
 : ∥w⃗∥W 2,2 + ∥w⃗∥W 1,∞ ≤ 1

and supp w⃗ ⊂ K ⊂⊂ S2
\ {b1, . . . , bNΦ⃗ }


≤ CΦ⃗,K t2.

Moreover the differential dΦ⃗W coincides with the Willmore equation in conservative form: for
every w⃗ ∈ W 1,∞

∩ W 2,2(D2, TΦ⃗ M) with compact support in S2
\ {b1, . . . , bN

},

dΦ⃗W [w⃗] =


S2


H⃗ ,

1
2

D
∗g
g

Dgw⃗ − 3πn⃗(Dgw⃗)


+ ⟨⋆h((∗g Dg n⃗)∧M H⃗), Dgw⃗⟩

+ ⟨−R̃(H⃗)+ R⊥

Φ⃗
(T Φ⃗), w⃗⟩


dvolg. (A.38)

Also the functional F(Φ⃗) =


S2 |IΦ⃗ |
2dvolg is Frechét differentiable with respect to variations

w⃗ ∈ W 1,∞
∩ W 2,2(S2, TΦ⃗ M) with compact support in S2

\ {b1, . . . , bN
} in the sense above, and

dΦ⃗ F[w⃗] =


S2


⟨H⃗ , D

∗g
g [Dgw⃗ − 3πn⃗(Dgw⃗)]⟩ + 2⟨⋆h((∗g Dg n⃗)∧M H⃗), Dgw⃗⟩

+ 2⟨−R̃(H⃗)+ R⊥

Φ⃗
(T Φ⃗)− (D R)(T Φ⃗)

− 2RΦ⃗(T Φ⃗)− 2K̄ (T Φ⃗)H⃗ , w⃗⟩


dvolg. (A.39)

Finally also the area functional A(Φ⃗) = AreagΦ⃗
(S2) is Frechét differentiable with respect to

variations w⃗ ∈ W 1,∞
∩ W 2,2(D2, TΦ⃗ M) with compact support in S2

\ {b1, . . . , bN
} in the sense

above, and

dΦ⃗ A[w⃗] = −


S2

⟨2H⃗ , w⃗⟩dvolg. � (A.40)

Proof. Let Φ⃗ ∈ FS2 and observe that the mean curvature H⃗Φ⃗ ∈ TΦ⃗ Mn is a function of

(∇2Φ⃗,∇Φ⃗, Φ⃗), where ∇
2Φ⃗ and ∇Φ⃗ are respectively the Hessian and the gradient of Φ⃗:

H⃗Φ⃗ =
˜⃗H(∇2Φ⃗,∇Φ⃗, Φ⃗), (A.41)
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where

˜⃗H : ((T S2)2 ⊗ TΦ⃗ M, T S2
⊗ TΦ⃗ M,M) → TΦ⃗ M, (ξ⃗ , q⃗, z⃗) →

˜⃗H(ξ⃗ , q⃗, z⃗). (A.42)

Observe that ˜⃗H is smooth on the open set given by |q⃗ ∧ q⃗| > 0; moreover, for every q⃗0 and

z⃗0, the map ξ⃗ →
˜⃗H(ξ⃗ , q⃗0, z⃗0) is linear. Recall also that the area form dvolgΦ⃗

associated to the

pullback metric gΦ⃗ := Φ⃗∗h is of the form

dvolgΦ⃗
= f (∇Φ⃗, Φ⃗) dvolg0

where dvolg0 is the area form associated to the reference metric g0 on (S2, c0), and

f : (T S2
⊗ TΦ⃗ M,M) → R, (q⃗, z⃗) → f (q⃗, z⃗)

is smooth on the open subset |q⃗ ∧ q⃗| > 0. Therefore the integrand of the Willmore functional
can be written as

|H⃗Φ⃗ |
2dvolgΦ⃗

= |F⃗ |
2(∇2Φ⃗,∇Φ⃗, Φ⃗)dvolg0 , (A.43)

where F⃗(ξ⃗ , q⃗, z⃗) :=
˜⃗H(ξ⃗ , q⃗, z⃗)

√
f (q⃗, z⃗); clearly F⃗ is smooth on the subset |q⃗ ∧ q⃗| > 0 and, for

every q⃗0 and z⃗0, the map ξ⃗ → F⃗(ξ⃗ , q⃗0, z⃗0) is linear.
Let w⃗ ∈ W 2,2

∩ W 1,∞(S2, TΦ⃗ M) be an infinitesimal perturbation supported in S2
\

{b1, . . . , bNΦ⃗ }, where {b1, . . . , bNΦ⃗ } are the branch points of Φ⃗; consider, for small t > 0, the
perturbed weak branched immersion ExpΦ⃗[tw⃗], where ExpΦ⃗[tw⃗](x0) denotes the exponential

map in M centered in Φ⃗(x0) ∈ M applied to the tangent vector tw⃗ ∈ TΦ⃗(x0)
M . Observe that, by

definition,
S2

|H⃗ExpΦ⃗ [tw⃗]|
2dvolgExp

Φ⃗
[tw⃗]

=


S2

|F⃗ |
2(∇2(ExpΦ⃗[tw⃗]),∇(ExpΦ⃗[tw⃗]),ExpΦ⃗[tw⃗]) dvolg0 .

Recall that, using the construction of conformal coordinates with estimates by
Chern–Heléin–Riviére, we can assume that on every compact subset K ⊂⊂ S2

\ {b1, . . . , bNΦ⃗ },
the immersion Φ⃗ is conformal with ∥(log |∇Φ⃗|)∥L∞(K ) ≤ CK for some constant CK de-
pending on K . By conformality, it follows that on every compact subset K ⊂⊂ S2

\

{b1, . . . , bNΦ⃗ } there exists a positive constant cK such that |dΦ⃗ ∧ dΦ⃗| ≥ cK >

0. Since w⃗ is supported away the branch points it follows that, for t small enough,
(∇2(ExpΦ⃗[tw⃗]),∇(ExpΦ⃗[tw⃗]),ExpΦ⃗[tw⃗])|supp(w⃗) is in the domain of smoothness of F⃗ . By a
Taylor expansion in t we get

S2
|H⃗ExpΦ⃗ [tw⃗]|

2dvolgExp
Φ⃗

[tw⃗]

=


S2

|H⃗Φ⃗ |
2dvolgΦ⃗

+ 2t


S2
F⃗(∇2Φ⃗,∇Φ⃗, Φ⃗) · ∂ξ k

i j
F⃗(∇Φ⃗, Φ⃗)∂2

x i x jw
kdvolg0

+ 2t


S2
F⃗(∇2Φ⃗,∇Φ⃗, Φ⃗) · ∂qk

i
F⃗(∇2Φ⃗,∇Φ⃗, Φ⃗)∂x iw

kdvolg0

+ 2t


S2
F⃗(∇2Φ⃗,∇Φ⃗, Φ⃗) · ∂zk F⃗(∇2Φ⃗,∇Φ⃗, Φ⃗)wkdvolg0 + t2


S2
∂2

x i x jw
k∂2

xr xs
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×wl Pkl
i jrs(∇Φ⃗, Φ⃗,∇w⃗, w⃗)+ t2


S2
∂2

x i x jw
k Qk

i j (∇
2Φ⃗,∇Φ⃗, Φ⃗,∇w⃗, w⃗)

+ t2


S2
S(∇2Φ⃗,∇Φ⃗, Φ⃗,∇w⃗, w⃗), (A.44)

where, in the second line ∂ξ k
i j

F⃗ depends just on (∇Φ⃗, Φ⃗) since F⃗ is linear in ξ⃗ , in the 5th line the

function P⃗ is smooth in its arguments with P⃗(∇Φ⃗, Φ⃗, 0, 0) = 0, in the 6th line the function Q⃗
is smooth in its arguments and linear in ∇

2Φ⃗ with Q⃗(∇2Φ⃗,∇Φ⃗, Φ⃗, 0, 0) = 0 and in the 7th line
the function S is smooth in its arguments and quadratic in ∇

2Φ⃗ with S(∇2Φ⃗,∇Φ⃗, Φ⃗, 0, 0) = 0.

Therefore, called RΦ⃗
w⃗

[t] the sum of the last three lines of (A.44), we have that

sup
RΦ⃗

w⃗ [t]
 : ∥w⃗∥W 2,2 + ∥w⃗∥W 1,∞ ≤ 1

and supp w⃗ ⊂ K ⊂⊂ S2
\ {b1, . . . , bNΦ⃗ }


≤ CΦ⃗,K t2.

It follows that


|HΦ⃗ |
2dvolgΦ⃗

is Frechét-differentiable with respect to W 2,2
∩ W 1,∞ variations

compactly supported away from the branch points, and the first variation dWΦ⃗ε
[tw⃗] is given by

the sum of lines 2, 3, 4 of (A.44).
Now we identify the first order term in the expansion of


|HΦ⃗ |

2dvolgΦ⃗
with the conservative

Willmore equation we derived before in the paper. Observe that it is not completely trivial since
the conservative Willmore equation has been proved for smooth immersions, while now Φ⃗ is a
weak branched immersion. First of all, recall that if Ψ⃗ is a smooth immersion of the disc D2

taking values in a coordinate chart of M , then for a smooth variation w⃗ ∈ C∞

0 (D
2,Rm) with

compact support in D2 we have that
D2

|H⃗Ψ⃗+tw⃗|
2dvolgΨ⃗+tw⃗

=


D2

|H⃗Ψ⃗ |
2dvolgΨ⃗

+ tdWΨ⃗ [w⃗] + R̃Ψ⃗
w⃗ [t]; (A.45)

where the remainder R̃Ψ⃗
w⃗

[t] has the same form as the sum of the last three lines of (A.44), and
where the differential dWΨ⃗ [w⃗], after the integration by parts procedure carried in Lemma A.4,
can be written as

dWΨ⃗ [w⃗] =


D2


H⃗Ψ⃗ ,

1
2

D
∗g

Ψ⃗
gΨ⃗


DgΨ⃗

w⃗ − 3πn⃗Ψ⃗
(DgΨ⃗

w⃗)


dvolgΨ⃗

+


D2


⟨⋆h((∗gΨ⃗

DgΨ⃗
n⃗)∧M H⃗Ψ⃗ ), DgΨ⃗

w⃗⟩

+ ⟨−R̃(H⃗Ψ⃗ )+ R⊥

Ψ⃗
(T Ψ⃗), w⃗⟩


dvolgΨ⃗

.

Now let us start considering the case of Φ⃗ ∈ W 1,∞
∩ W 2,2(D2) a weak conformal immersion

with finite total curvature without branch points taking values in a coordinate chart of M , and let
w⃗ ∈ C∞

0 (D
2,Rm) be a smooth variation with compact support in D2.

Let ϕ be a non negative compactly supported function of C∞

0 (R) such that ϕ is identically
equal to 1 in a neighborhood of 0 and

2π


R
ϕ(t) t dt = 1.
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Call ϕε(t) := ε−2 ϕ(t/ε). Denote for ε < 1/4 and for any x ∈ D2
1/2,

Φ⃗ε(x) := ϕε(|x |) ⋆ Φ⃗ :=


D2
ϕε(|x − y|) Φ⃗(y) dy.

By Lemma A.6 there exists 0 < εΦ⃗ < 1/4 such that for any ε < εΦ⃗ the map Φ⃗ε realizes a
smooth immersion from D2

1/2 into the coordinate chart; moreover we have (notice that in order

to keep the notation not too heavy, in the following we replaced D2
1/2 by D2)

Φ⃗ε → Φ⃗ strong in W 2,2(D2) (A.46)

H⃗ε → H⃗ strong in L2(D2) (A.47)

n⃗ε → n⃗ strong in W 1,2(D2) (A.48)

and

sup
0<ε≤ε0

∥Φ⃗ε∥W 1,∞(D2) ≤ C < ∞ (A.49)

inf
x∈D2

inf
0<ε≤ε0

|dΦ⃗ε ∧ dΦ⃗ε| ≥
1
C
> 0. (A.50)

Since Φ⃗ε is smooth, the Willmore functional computed on Φ⃗ε+ tw⃗ expands as in (A.45); observe

that, thanks to (A.46), (A.49) and (A.50), the remainder R̃
⃗⃗Φε

w⃗
[t] satisfies

sup
0<ε≤ε0

sup
∥w⃗∥W 1,∞∩W 2,2(D2)≤1

R̃Φ⃗ε

w⃗
[t]
 ≤ CΦ⃗ t2. (A.51)

Observe moreover that, by (A.46), (A.47) and (A.49), we have that |H⃗ε|2dvolgε is dominated
in L1(D2) for ε ≤ ε0, and converges almost everywhere on D2 to |H⃗ |

2dvolg; therefore, by the
Dominated Convergence Theorem, we have

D2
|H⃗ε|

2dvolgε →


D2

|H⃗ |
2dvolg. (A.52)

Moreover, using (A.46) and (A.50) we have that, for ∥w⃗∥W 1,∞∩W 2,2(D2) ≤ 1 and t small enough,

Φ⃗ε+ tw⃗ → Φ⃗ + tw⃗ strongly in W 2,2(D2) and H⃗Φ⃗ε+tw⃗ → H⃗Φ⃗+tw⃗ strongly in L2(D2); of course

it still holds sup0<ε≤ε0
∥Φ⃗ε + tw⃗∥W 1,∞(D2) ≤ C < ∞. Therefore, with the same argument

above, we get
D2

|H⃗Φ⃗ε+tw⃗|
2dvolgΦ⃗ε+tw⃗

→


D2

|H⃗Φ⃗+tw⃗|
2dvolgΦ⃗+tw⃗

. (A.53)

Combining (A.44), (A.52) and (A.53) gives

dWΦ⃗[w⃗] = lim
t→0

W (Φ⃗ + tw⃗)− W (Φ⃗)
t

= lim
t→0

lim
ε→0

W (Φ⃗ε + tw⃗)− W (Φ⃗ε)
t

= lim
t→0

lim
ε→0

dWΦ⃗ε
[w⃗] +

R̃Φ⃗ε

w⃗
[t]

t

 ;
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recalling (A.51), we obtain

dWΦ⃗ε
[w⃗] → dWΦ⃗[w] as ε → 0. (A.54)

Therefore in order to prove that, as in the smooth situation, dWΦ⃗ is the Willmore equation in
conservative form, it is sufficient to show that

D2


H⃗ε,

1
2

D
∗gε
gε


Dgε w⃗ − 3πn⃗ε (Dgε w⃗)


dvolgε

+


D2


⋆h


(∗gε Dgε n⃗ε)∧M H⃗ε


, Dgε w⃗


+


−R̃(H⃗ε)+ R⊥

Φ⃗ε
(T Φ⃗ε), w⃗


dvolgε .

→


D2


H⃗ ,

1
2

D
∗g
g

Dgw⃗ − 3πn⃗(Dgw⃗)


dvolg

+


D2


⋆h


(∗g Dg n⃗)∧M H⃗


, Dgw⃗


+


−R̃(H⃗)+ R⊥

Φ⃗
(T Φ⃗), w⃗


dvolg. (A.55)

We are going to check the convergence term by term.

Observe that D
∗gε
gε [Dgε w⃗] = gi j

ε D
∂xi Φ⃗ε

D
∂x j Φ⃗ε

w⃗ and, using the definitions, one computes


gi j
ε D

∂xi Φ⃗ε
D
∂x j Φ⃗ε

w⃗
k

= gi j
ε


∂2

x i x jw
k
+ (Γ k

pq ◦ Φ⃗ε)∂x jw
p∂x i Φq

ε

+ (⟨gradhΓ
k
pq , ∂x i Φ⃗ε⟩h ◦ Φ⃗ε)w p∂x j Φq

+ (Γ k
pq ◦ Φ⃗ε)∂x iw

p∂x j Φq
+ (Γ k

pq ◦ Φ⃗ε)w p∂2
x i x j Φq

+ (Γ k
lm ◦ Φ⃗ε)(Γ l

pq ◦ Φ⃗ε)w p∂x j Φq∂x i Φm


= f k
1,ε + f k

2,ε with | f k
1,ε| ≤ Fk

1 ∈ L∞(D2) and

| f k
2,ε| ≤ Fk

2 ∈ L2(D2); (A.56)

where Γ k
pq are the Christoffel symbols of (M, h) which are smooth and C1 bounded by the

compactness of M . Notice that in the last equality we used (A.46) and (A.49). Combining
(A.46), (A.47) and (A.56) we get therefore that ⟨H⃗ε, D

∗gε
gε [Dgε w⃗]⟩dvolgε is dominated in L1(D2)

and converges almost everywhere to ⟨H⃗ , D
∗g
g [Dgw⃗]⟩dvolg , then by the Dominated Convergence

Theorem
D2

⟨H⃗ε, D
∗gε
gε [Dgε w⃗]⟩dvolgε →


D2

⟨H⃗ , D
∗g
g [Dgw⃗]⟩dvolg as ε → 0. (A.57)

Now let us consider the second summand in the first line of (A.55). Observe that
D

∗gε
gε [πnε (Dgε w⃗)] = gi j

ε D
∂xi Φ⃗ε

[πn⃗ε (D∂x j Φ⃗ε
w⃗)]; using (3.10) we can write

D
∗gε
gε [πnε (Dgε w⃗)]

= (−1)m−1gi j
ε


(D

∂xi Φ⃗ε
n⃗ε) (n⃗ε D

∂x j Φ⃗ε
w⃗)

+ n⃗ε ((D∂xi Φ⃗ε
n⃗ε) D

∂x j Φ⃗ε
w⃗)

+ n⃗ε (n⃗ε (D∂xi Φ⃗ε
D
∂x j Φ⃗ε

w⃗))

. (A.58)
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Writing explicitly the right hand side as done for (A.56), one checks that

D
∗gε
gε [πnε (Dgε w⃗)] = f⃗3,ε + f⃗4,ε with | f⃗3,ε| ≤ F⃗3 ∈ L∞(D2) and

| f⃗4,ε| ≤ F⃗4 ∈ L2(D2). (A.59)

Combining (A.46), (A.47) and (A.59) we get therefore that ⟨H⃗ε, D
∗gε
gε [πnε (Dgε w⃗)]⟩dvolgε is

dominated in L1(D2) and converges almost everywhere to ⟨H⃗ , D
∗g
g [πn⃗(Dgw⃗)]⟩dvolg; then by

the Dominated Convergence Theorem
D2

⟨H⃗ε, D
∗gε
gε [πnε (Dgε w⃗)]⟩dvolgε →


D2

⟨H⃗ , D
∗g
g [πn⃗(Dgw⃗)]⟩dvolg as ε → 0. (A.60)

Now let us consider the first summand of the second line of (A.55). Observe that

∗gε
∂

∂x j =


det gε ε j p g pq
ε

∂

∂xq , (A.61)

where ε j p is null if j = p and equals the signature of the permutation (1, 2) → ( j, p) if j ≠ p;
after some straightforward computations using the definitions (3.1), (3.2), (3.4), (3.5), (3.6), we
get 

⋆h


(∗gε Dgε n⃗ε)∧M H⃗ε


, Dgε w⃗


=


det gε gi j
ε ε j p g pq

ε ⟨⋆h((D∂xi Φ⃗ε
n⃗ε)∧M H⃗ε), D

∂xq Φ⃗ε
w⃗⟩

= f5,ε with | f5,ε| ≤ F5 ∈ L1(D2). (A.62)

Using analogous arguments as before, by the Dominated Convergence Theorem we obtain
D2

⟨⋆h((∗gε Dgε n⃗ε)∧M H⃗ε), Dgε w⃗⟩dvolgε

→


D2

⟨⋆h((∗g Dg n⃗)∧M H⃗), Dgw⃗⟩dvolg. (A.63)

Finally consider the last two curvature terms in (A.55). By the definition (1.5), the first one writes
as

⟨R̃(H⃗ε), w⃗⟩ = −


2

i=1

Riemh(H⃗ε, e⃗εi )e⃗
ε
i , πn⃗ε (w⃗)


(A.64)

for an orthonormal frame e⃗εi of Φ⃗ε,∗(T D2); observe that it is dominated in L1(D2) and converges
a. e. to ⟨R̃(H⃗), w⃗⟩ on D2, so as before

D2
⟨R̃(H⃗ε), w⃗⟩dvolgε →


D2

⟨R̃(H⃗), w⃗⟩dvolg. (A.65)

Finally, by definition (1.7) and identity (A.61),

R⊥

Φ⃗ε
(T Φ⃗ε) :=


πT


Riemh(e⃗1, e⃗2)H⃗

⊥
=


det gε gi j
ε gkl

ε εlp g pq
ε ⟨Riemh(∂x i Φ⃗ε, ∂x j Φ⃗ε)H⃗ε, ∂xk Φ⃗ε⟩∂xq Φ⃗ε. (A.66)
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From this explicit formula, as before, one checks that ⟨R⊥

Φ⃗ε

(T Φ⃗ε), w⃗⟩dvolgε is dominated in

L1(D2) and converges to ⟨R⊥

Φ⃗
(T Φ⃗), w⃗⟩dvolg a.e. on D2, then by the Dominated Convergence

Theorem
D2

⟨R⊥

Φ⃗ε
(T Φ⃗ε), w⃗⟩dvolgε →


D2

⟨R⊥

Φ⃗
(T Φ⃗), w⃗⟩dvolg. (A.67)

Combining (A.57), (A.60), (A.63), (A.65) and (A.67) we obtain (A.55) as desired. Let us recap
what we have just proved: if Φ⃗ is a W 1,∞

∩ W 2,2 immersion of the disc D2 into a coordinate
neighborhood in M and w⃗ ∈ C∞

0 (D
2,Rm) is a smooth variation with compact support in D2,

then the differential of the Willmore functional dΦ⃗W [w⃗] coincides with the pairing between
the Willmore equation in conservative form and w⃗. Now by approximation the same is true
for variations in W 1,∞

∩ W 2,2(D2,Rm) with compact support in D2. By partition of unity,
the same statement holds for Φ⃗ ∈ FS2 with branched points {b1, . . . , bN

} and any variation
w⃗ ∈ W 1,∞

∩ W 2,2(D2, TΦ⃗ M) with compact support in S2
\ {b1, . . . , bN

}.
The proof regarding the differentiability of F is analogous since IΦ⃗ is a vectorial function

of (∇2Φ⃗,∇Φ⃗, Φ⃗) linear in ∇
2Φ⃗. Moreover for smooth immersions and smooth variations,

combining Corollary 3.1 and Lemma A.4, the first variation of F is exactly (A.39). With the
same approximation argument carried for W one checks that the same expression holds for a
weak immersion.

The proof regarding the differentiability and the expression of the differential of the area
functional is easier since dvolg is a function just of (∇Φ⃗, Φ⃗), and can be performed along the
same lines once recalled that in the smooth case the differential of the area functional is exactly
(A.40). �

Let us now prove the following approximation lemma used in the proof of Lemma A.5.

Lemma A.6. Let Φ⃗ be a conformal weak immersion in F D2 into Rm without branch points. Let
ϕ be a non negative compactly supported function of C∞

0 (R) such that ϕ is identically equal
to 1 in a neighborhood of 0 and

2π


R
ϕ(t) t dt = 1.

Denote ϕε(t) := ε−2 ϕ(t/ε). Denote for ε < 1/4 and for any x ∈ D2
1/2,

Φ⃗ε(x) := ϕε(|x |) ⋆ Φ⃗ :=


D2
ϕε(|x − y|) Φ⃗(y) dy.

There exists 0 < εΦ⃗ < 1/4 such that for any ε < εΦ⃗ the map Φ⃗ε realizes a smooth immersion
from D2

1/2 into Rm; moreover we have

lim
ε→0

∥gΦ⃗ε
− gΦ⃗∥L∞(D2

1/2)
= 0, (A.68)

we have also

lim
ε→0

∥n⃗Φ⃗ − n⃗Φ⃗ε
∥W 1,2(D2

1/2)
= 0, (A.69)

and

lim
ε→0

∥H⃗Φ⃗ − H⃗Φ⃗ε
∥L2(D2

1/2)
= 0. � (A.70)
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Before proving Lemma A.6 we establish the following ϕ-Poincaré inequality.

Lemma A.7. Let u ∈ W 1,2(D2). Let ϕ be a non negative compactly supported function of
C∞

0 (R) such that ϕ is identically equal to 1 in a neighborhood of 0 and

2π


R
ϕ(t) t dt = 1.

Denote ϕε(t) := ε−2 ϕ(t/ε). For ε < 1/4 and x ∈ D2
1/2 denote

uε(x) := ϕε(|x |) ⋆ u :=


D2
ϕε(|x − y|) u(y) dy.

There exists a constant C > 0 such that for any x ∈ D2
1/2

1
|Bε(x)|


Bε(x)

|u(y)− uε(x)|
2 dy ≤ C


Bε(x)

|∇u|
2(y) dy. � (A.71)

Proof of Lemma A.7. For any x ∈ D2
1/2 and 0 < ε < 1/4 we denote

uε,x :=
1

|Bε(x)|


Bε(x)

u(y) dy =


D2
χε(|x − y|) u(y) dy,

where χε(t) ≡ (πε2)−1 on [0, ε] and equals zero otherwise. The classical Poincaré inequality
gives the existence of a universal constant such that

1
|Bε(x)|


Bε(x)

|u(y)− uε,x |2 dy ≤ C


Bε(x)
|∇u|

2(y) dy. (A.72)

We have
1

|Bε(x)|


Bε(x)

|u(y)− uε(x)|
2 dy ≤ 2

1
|Bε(x)|


Bε(x)

|u(y)− uε,x |2 dy

+ 2|uε,x − uε(x)|
2
; (A.73)

and

uε,x − uε(x) =


Bε(x)

[χε(|x − y|)− ϕε(|x − y|)] u(y) dy. (A.74)

Since 
Bε(x)

[χε(|x − y|)− ϕε(|x − y|)] dy = 0

the identity (A.74) takes the form

uε,x − uε(x) =


Bε(x)

[χε(|x − y|)− ϕε(|x − y|)] (u(y)− uε,x ) dy. (A.75)

Thus

|uε,x − uε(x)|
2

≤ C ε−4


Bε(x)
|u(y)− uε,x | dy

2
≤ C ε−2


Bε(x)

|u(y)− uε,x |2 dy. (A.76)
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Combining (A.72), (A.73) and (A.76) gives (A.71) and this proves Lemma A.7. �

Proof of Lemma A.6. We first establish (A.68). Since Φ⃗ is a weak conformal immersion, results
from [13] imply that there exists λ ∈ C0(D2) such that

gΦ⃗ = e2 λ
[dx2

1 + dx2
2 ],

and eλ = |∂x1Φ⃗| = |∂x2Φ⃗|. Then, for any δ > 0 there exists ε such that

∀ δ > 0 ∃ ε > 0 ∀ x, y ∈ D2
3/4 |x − y| < ε H⇒ 1 − δ < eλ(x)−λ(y) ≤ 1 + δ. (A.77)

Since Φ⃗ ∈ W 2,2(D2,Rm)

∀ δ > 0 ∃ ε > 0 ∀ ε < ε0 sup
x∈D2

1/2


Bε(x)

|∇
2Φ⃗|

2(y) dy ≤ δ2. (A.78)

Applying Lemma A.7 to u = ∇Φ⃗ we deduce then that

∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 sup
x∈D2

1/2

1
|Bε(x)|


Bε(x)

|∇Φ⃗(y)− ∇Φ⃗ε(x)|2 dy ≤ δ2. (A.79)

Using the mean-value theorem we then deduce that

∀ δ > 0 ∃ ε0 > 0 s.t. ∀ ε < ε0 ∀ x ∈ D2
1/2 ∃ yx ∈ Bε(x) s. t.

|∇Φ⃗(yx )− ∇Φ⃗ε(x)| ≤
√
δ.

(A.80)

Since

0 < inf
y∈D2

1/2

|∇Φ⃗(y)|2 = inf
y∈D2

1/2

2 e2 λ(y)
≤ sup

y∈D2
1/2

|∇Φ⃗(y)|2 (A.81)

(A.80) implies for i = 1, 2

∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 s.t. ∀ x ∈ D2
1/2 ∃ yx ∈ Bε(x)

s.t. 1 − δ ≤
|∂xi Φ⃗ε(x)|

|∂xi Φ⃗(yx )|
≤ 1 + δ.

(A.82)

Combining (A.77) and (A.82) we obtain for i = 1, 2

∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 ∀ x ∈ D2
1/2 1 − δ ≤

|∂xi Φ⃗ε(x)|

|∂xi Φ⃗(x)|
≤ 1 + δ. (A.83)

Similarly, using (A.80), (A.81) and the fact that ∂x1Φ⃗(y) · ∂x2Φ⃗(y) ≡ 0 we have

∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 ∀ x ∈ D2
1/2

|∂x1Φ⃗ε(x) · ∂x2Φ⃗ε(x)|

|∇Φ⃗ε(x)|2
≤ δ. (A.84)

It is clear that (A.83) and (A.84) imply (A.68). Finally (A.69) and (A.70) are direct consequences
of the fact that (A.68) and (A.81) hold together with the fact that Φ⃗ε → Φ⃗ strongly in
W 2,2(D2

1/2). Lemma A.6 is then proved. �
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Lemma A.8 (Lower Semi Continuity Under W 2,2-Weak Convergence). Let {Φ⃗k}k∈N ⊂ FS2 and
Φ⃗∞ be weak branched conformal immersions and assume that there exist a1, . . . , aN

∈ S2 such
that for every compact subset (with smooth boundary) K ⊂⊂ S2 we have

Φ⃗k ⇀ Φ⃗ weakly in W 2,2(K ) (A.85)

sup
k

sup
x∈K

| log |∇Φ⃗k | |(x) ≤ CK < ∞ for some constant cK depending on K . (A.86)

Then the Willmore and the Energy functional are lower semicontinuous:
K

|HΦ⃗∞
|
2dvolgΦ⃗∞

≤ lim inf
k


K

|HΦ⃗k
|
2dvolgΦ⃗k

,
K

|IΦ⃗∞
|
2dvolgΦ⃗∞

≤ lim inf
k


K

|IΦ⃗k
|
2dvolgΦ⃗k

.

� (A.87)

Proof. Since Φ⃗k are conformal, then H⃗k =
1
2 e−2λk1Φ⃗k where λk = log |∂x1Φ⃗k | = log |∂x2Φ⃗k |

is the conformal factor. Let us first show that

H⃗k


volgk =
1

2|∂x1Φ⃗k |
1Φ⃗k →

1

2|∂x1Φ⃗∞|
1Φ⃗∞ = H⃗∞


volg∞

in D′(K ). (A.88)

From (A.85) and the Rellich–Kondrachov Theorem we have that |∂x1Φ⃗k | → |∂x1Φ⃗∞| strongly
in L p(K ) for every 1 < p < ∞; moreover assumption (A.86) guarantees that |∂x1Φ⃗k | ≥

1
C > 0

independently of k. It follows that

1

|∂x1Φ⃗k |
→

1

|∂x1Φ⃗∞|
strongly in L p(K ) for every 1 < p < ∞.

Since, by assumption (A.85), clearly 1Φ⃗k → 1Φ⃗∞ weakly in L2(K ), then (A.88) follows. In
order to conclude observe that (A.85) implies that Φ⃗k are uniformly bounded in W 2,2(K ), then
assumption (A.87) and the conformality of Φ⃗k give that H⃗k


volgk are uniformly bounded in

L2(K ). This last fact together with (A.88) implies that

H⃗k


volgk ⇀ H⃗∞


volg∞

weakly in L2(K ).

The thesis then follows just by lower semicontinuity of the L2 norm under weak convergence.
The proof of the lower semicontinuity of


|I|2 is analogous once observed that in conformal

coordinates |I|2 = e−4λ
|∇

2Φ⃗|
2. �
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