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Abstract

We obtain Schur–Weyl dualities in which the algebras, acting on both sides, are semigroup algebras of various symmetric
inverse semigroups and their deformations.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction and description of results

Let V = Cn be the natural n-dimensional representation of the group GL(n). Then for every k the group GL(n)
acts diagonally on the k-fold tensor product V ⊗k . At the same time the symmetric group Sk acts on V ⊗k by permuting
the factors of a k-tensor. These two actions obviously commute. Moreover, the classical Schur–Weyl duality from [17,
18,25] states that GL(n) and Sk generate full centralizers of each other on V ⊗k . In particular, EndGL(n)(V ⊗k) = C[Sk]

if n ≥ k.
There are various generalizations of the Schur–Weyl duality. In [2] the above action of GL(n) was restricted to the

orthogonal subgroup O(n) of GL(n). The corresponding centralizer algebra, obtained on the right-hand side, is what
is now known as the Brauer algebra. Further restriction of the GL(n) action to the subgroup Sn , which was considered
in [8,14], gives on the right-hand side the so-called partition algebra. Some other generalizations are discussed in [3],
see also the references of the latter paper.

Both Brauer algebras and partition algebras are deformations of semigroup algebras of certain finite semigroups,
which have been also intensively studied, see for example [12,11,15] and references therein. Finite semigroups clearly
entered the game after the paper [19] of L. Solomon. In the latter paper it was shown that the representation V of
GL(n) can be slightly modified such that the centralizing object obtained on the right-hand side is the symmetric
inverse semigroup ISn , introduced in [24] and also known as the rook monoid, see [20]. This idea of modification of
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V was recently used in [6] to obtain a Schur–Weyl duality between Sn and a generalization of the partition algebra,
called in [6] the rook partition algebra.

For a “finite semigroup theorist” there is a slight feeling of dissatisfaction in the Schur–Weyl dualities listed above,
which is explained by the fact that the objects, appearing on the different sides of a Schur–Weyl duality, although
closely connected to finite semigroups, still at least one of them has different nature. The aim of the present paper is
to establish two Schur–Weyl dualities, where on each side one has an action of a finite inverse semigroup.

For the first Schur–Weyl duality we have an action of the symmetric inverse semigroup ISn mentioned above on
the left and an action of the dual symmetric inverse semigroup I∗

n on the right. The semigroup I∗
n was introduced

in [4] as a kind of a “categorical dual” for ISn (see also [13] for more details on the categorical approach). It is
remarkable that in the present paper the semigroup I∗

n again appears as the dual of ISn , but now with respect to
a Schur–Weyl duality. The connection between these two types of dualities is not yet clear. This first Schur–Weyl
duality is considered in Section 2.

For the second Schur–Weyl duality we have an action of the semigroup ISn on the left and an action of the partial
analogue PI∗

n of the semigroup I∗
n on the right. The latter semigroup was introduced in [10] via the usual semigroup-

theoretic “partialization” philosophy. This philosophy is rather similar to the philosophy used to construct “rook”
algebras. Our second Schur–Weyl duality shows, in particular, an explicit connection between these philosophies.
This second Schur–Weyl duality is considered in Section 3. In Section 4 we show that the action on the right-hand
side of the latter Schur–Weyl duality can be “deformed” such that it becomes an action of another inverse semigroup,
recently constructed in [23].

For a semigroup S we denote by C[S] the semigroup algebra of S over complex numbers. If S has the zero element
0, we denote by C[S] the contracted semigroup algebra C[S]/(0).

2. A Schur–Weyl duality for ISn and I∗
k

Throughout the paper n and k are fixed positive integers. The semigroup ISn is the semigroup of all partial
injections from the set N = {1, 2, . . . , n} to itself with respect to the usual composition of partial maps, see for
example [5, Section 2]. One can also consider the elements of ISn as bijections between different subsets of N (this
will be important to understand the dual nature of I∗

n ). A standard notation for elements of ISn and the multiplication
rule in this semigroup is best understood on the following example for IS5 (note that we understand the elements of
ISn as maps and hence compose them from the right to the left):(

1 2 3 4 5
2 ∅ 3 5 ∅

) (
1 2 3 4 5
5 4 1 ∅ ∅

)
=

(
1 2 3 4 5
∅ 5 2 ∅ ∅

)
.

Each element α ∈ ISn is uniquely determined by a subset A ⊂ N and an injective map A → N. Abusing notation
we will denote the latter map by α. The set A is called the domain of α, the set α(A) is called the image of α and the
number |A| is called the rank of α, see [5] for details. For each subset A ⊂ N we denote by εA the idempotent of ISn ,
which corresponds to the natural inclusion A ↪→ N. The element ε∅ is the zero element of ISn .

Further, the semigroup ISn can also be realized as the semigroup of all n × n matrices with entries from {0, 1}

satisfying the condition that each row and each column of the matrix contains at most one non-zero entry (such
matrices are called rook matrices in e.g. [19]). The operation in the latter semigroup is the usual matrix multiplication.
This realization defines on V = Cn the structure of a C[ISn]-module in the natural way. It is easy to see that this
module is irreducible. We call it the natural representation of ISn . For each k the semigroup ISn acts diagonally on
the k-fold tensor product V ⊗k . This is the left-hand side of our first Schur–Weyl duality.

Consider the sets K = {1, 2, . . . , k} and K′
= {1′, 2′, . . . , k′

}. We consider ′
: K → K′ as the natural bijection

between these two sets and, abusing notation, denote its inverse also by ′ (thus (2′)′ = 2). The semigroup I∗

k is defined
in [4] as the semigroup of all bijections between different quotient sets of K. Hence we can view the elements of I∗

k as
all possible partitions of the set K̃ = {1, 2, . . . , k, 1′, 2′, . . . , k′

} into disjoint unions of subsets (these subsets will be
called blocks), satisfying the condition that each block intersects both, K and K′, non-trivially. If one drops the latter
condition out, one obtains the list of elements of the composition semigroup Ck , see [15]. The multiplication on I∗

k
is much more complicated than that on ISn , and is in fact obtained by restricting the multiplication from Ck . For an
explicit formal definition of the latter we refer the reader to [6,7,15]. Informally, to multiply two partitions α and β of
K̃ one identifies the elements 1′, 2′, . . . , k′ of α with the corresponding elements 1, 2, . . . , k of β and thus forms a new
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Fig. 1. Elements of I∗
8 and their multiplication.

partition αβ of K̃ (in the latter set the elements 1, 2, . . . , k are taken from α and the elements 1′, 2′, . . . , k′ are taken
from β), possibly deleting some “garbage” which does not contain any elements from K for α and any element from
K′ for β. The partition algebra Pk(q) of [8,14] is a deformation of the semigroup algebra of Ck , in which the number
of garbage components, which appear during the above procedure, is taken into account in terms of a multiplicative
parameter q . If both α and β are elements from I∗

k , then, in fact, no garbage appears. In particular, the algebra C[I∗

k ]

is a subalgebra of both C[Ck] and Pk(q). An example of multiplication of two elements from I∗

8 is given on Fig. 1.
Since the elements of I∗

k are defined as certain partitions of K̃, the set I∗

k is partially ordered with respect to inclusions
in the natural way. For α, β ∈ I∗

k we will write α � β provided that each block of the partition β is a union of some
blocks of the partition α.

Now let us define an action of I∗

k on V ⊗k . Denote by e = (e1, . . . , en) the standard basis of V . For i =

(i1, . . . , ik) ∈ Nk set

vi = ei1 ⊗ ei2 ⊗ · · · ⊗ eik .

Then the set B = {vi : i ∈ Nk
} is a distinguished basis of V ⊗k . For all α ∈ Cn (in particular, for all α ∈ I∗

k ) and
i ∈ Nk let M(α, i) denote the set of all l ∈ Nk such that for each block {a1, . . . , ap, b′

1, . . . , b′
q} of α (here if α 6∈ I∗

k it
may happen that p = 0 or q = 0) we have

ia1 = ia2 = · · · = iap = lb1 = lb2 = · · · = lbq .

Note that |M(α, i)| ≤ 1 for all α ∈ I∗

k . Now for α ∈ Cn (in particular, for all α ∈ I∗

k ) we define that α acts on V ⊗k as
the unique linear operator such that for all i ∈ Nk we have

α(vi) =


∑

l∈M(α,i)

vl, M(α, i) 6= ∅;

0, otherwise.
(1)

According to [8,14] this gives an action of Pk(n) on V ⊗k . By restriction, we thus also obtain an action of I∗

k on V ⊗k .
Now we are ready to formulate our first result:

Theorem 1. (i) The actions of ISn and I∗

k on V ⊗k commute.
(ii) EndISn (V

⊗k) coincides with the image of C[I∗

k ].
(iii) EndI∗

k
(V ⊗k) coincides with the image of C[ISn].

(iv) The representation of ISn on V ⊗k is faithful.
(v) The representation of I∗

k on V ⊗k is faithful if and only if n ≥ 2 or k = 1.
(vi) The representation of C[ISn] on V ⊗k is faithful if and only if k ≥ n.
(vii) The representation of C[I∗

k ] on V ⊗k is faithful if and only if k ≤ n.
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Proof. The left action of the group Sn ⊂ ISn commutes with the right action of Pk(n) on V ⊗k by [8,14]. Hence
the left action of Sn commutes with the right action of I∗

k as the latter action is obtained from the action of Pk(n) by
restriction. To shorten our notation, set εn = εN\{n}. The action of εn on V is given by

εn(ei ) =

{
ei , i 6= n;

0, i = n.

Hence for any i ∈ Nk we have

εn(vi) =

{
vi, n 6∈ {i1, . . . , ik};

0, otherwise.
(2)

Now let α ∈ I∗

k and i ∈ Nk . Assume first that n 6∈ {i1, . . . , ik}. As each block of the partition α intersects both K and
K′, from the formula (1) we have that α(vi) = vj, where j ∈ Nk is such that n 6∈ { j1, . . . , jk}. Applying (2) we obtain
εnα(vi) = αεn(vi). Assume now that n ∈ {i1, . . . , ik}. Then εn(vi) = 0 by (2). However, as each block of the partition
α intersects both K and K′, from the formula (1) we have that α(vi) = vj, where j ∈ Nk is such that n ∈ { j1, . . . , jk}.
Hence εn(vj) = 0 and we again have εnα(vi) = 0 = αεn(vi). Therefore εnα = αεn . By [5, Theorem 3.1.4], the
semigroup ISn is generated by its subgroup Sn and the element εn . The statement (i) follows.

For j ∈ {1, 2, . . . , 2k} let C
j
k denote the set of all elements form Ck , which are partitions of K̃ into at most j blocks.

From e.g. [1, 2.1] it follows that the vector space EndSn (V
⊗k) is generated by α ∈ Cn

k . Let

u =

∑
α∈Cn

k \I∗
k

aαα

be a linear combination of operators acting on V ⊗k and

X = {α ∈ Cn
k \ I∗

k : aα 6= 0}.

We would like to show that the condition uεn = εnu implies X = ∅. Assume X 6= ∅. Let α ∈ X be a minimal
element with respect to �, that is a partition, which does not properly contain any other partition from X . As α 6∈ I∗

k ,
the element α contains some block, say B, which is contained in either K or K′. Consider some map f : K̃ → N,
which satisfies the following conditions:

• f is constant on blocks of α;
• f has different values on elements from different blocks;
• f has value n on elements from the block B.

Such map exists because α ∈ Cn
k . Consider now the elements

v = e f (1) ⊗ e f (2) ⊗ · · · ⊗ e f (k) and w = e f (1′) ⊗ e f (2′) ⊗ · · · ⊗ e f (k′). (3)

Assume first that B ⊂ K. Then εn(v) = 0 as n occurs among f (1), . . . , f (k) and hence uεn(v) = 0 as well. On the
other hand, the element α(v), when expressed as a linear combination of elements from B, has a non-zero coefficient
atw because of (1) and the definition of f . Further, for any α′

∈ X different from α the coefficient of α′(v) atw (again
when α′(v) is expressed as a linear combination of the elements from B) is zero because of (1), the minimality of the
partition α with respect to � and the definition of f . Hence the element u(v), when expressed as a linear combination
of the elements from B, has a non-zero coefficient at w. But n does not occur among f (1′), . . . , f (k′), which means
εn(w) = w. As the action of εn is diagonal with respect to the basis B, we get that εnu(v) 6= 0.

In the case B ⊂ N′ by similar arguments we get uεn(v) 6= 0 while εnu(v) = 0. Hence uεn 6= εnu, which means
that EndISn (V

⊗k) is already generated by Cn
k ∩ I∗

k . The statement (ii) follows.
The statement (iii) is now a standard double-centralizer property. As the semigroup ISn is an inverse semigroup

(see e.g. [5, Theorem 2.6.7]), the semigroup algebra C[ISn] is semisimple by [16, Theorem 4.4]. Hence the image
of C[ISn] in EndC(V ⊗k) is semisimple as well. The double-centralizer property for semisimple algebras is a
trivial case of Tachikawa’s theory of dominance dimension, see [22] (the idea of the above argument is taken from
[1, Theorem 2.3] and [9, Theorem 2.8]). The statement (iii) follows.

The representation of ISn on V is faithful by the definition. Hence for any π, τ ∈ ISn , π 6= τ , there exists i ∈ N
such that πei 6= τei . But then π(ei ⊗ · · · ⊗ ei ) 6= τ(ei ⊗ · · · ⊗ ei ) and hence the actions of π and τ on V ⊗k are
different. This proves (iv).
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As |I∗

1 | = 1, any representation of I∗

1 is faithful. If n = 1 and k > 1, then |I∗

k | > 1. However, the formula (1) says
that all elements of I∗

k are represented by the identity operator on V ⊗k . Hence the representation of I∗

k on V ⊗k is not
faithful in the case n = 1 and k > 1. Finally, assume that n > 1. Let α, β ∈ I∗

k and assume that the actions of α and
β on V ⊗k coincide. Let B be some block of α. Consider the map f : K̃ → N defined as follows:

f (x) =

{
1, x ∈ B;

2, x 6∈ B,

and consider the corresponding elements v and w given by (3). By (1) and our construction of f , we have α(v) = w.
As α(v) = β(v), from (1) it follows that B should be a union of blocks of β. Hence each block of α is a union of
some blocks of β. Analogously, each block of β is a union of some blocks of α. This implies α = β and proves (v).

To prove (vi) we first note that the zero element ε∅ of ISn acts as the zero operator on V ⊗k . Hence V ⊗k is
even an C[ISn]-module. If k < n then from e.g. [7, Theorem 3.22(a)] it follows that already the restriction of the
C[ISn]-action to C[Sn] does not give a faithful representation of C[Sn], as not all simple C[Sn]-modules occur in the
decomposition of V ⊗k . Hence for k < n the action of C[ISn] on V ⊗k is not faithful.

Let now k ≥ n. Consider some linear combination

u =

∑
α∈ISn\{ε∅}

aαα

and assume that u annihilates V ⊗k . Then, in particular, uv = 0, where

v = e1 ⊗ e2 ⊗ · · · ⊗ en−1 ⊗ en ⊗ en ⊗ · · · ⊗ en .

However, the element v is annihilated by all elements α ∈ ISn of rank at most n − 1. At the same time the elements
of rank n map v to linearly independent elements of V ⊗k . This implies that aα = 0 for all α of rank n. Applying now
exactly the same arguments to the vector

v′
= e1 ⊗ e2 ⊗ · · · ⊗ en−2 ⊗ en−1 ⊗ en−1 ⊗ · · · ⊗ en−1

we obtain that aα = 0 for all α with domain {1, 2, . . . , n − 1}. Analogously one shows that aα = 0 for all α of rank
n − 1. Proceeding by induction on the rank of α we thus get aα = 0 for all α. This proves the statement (vi).

Finally, let us prove the statement (vii). If k > n, then we recall that during the proof of (ii) we saw that the image
of C[I∗

k ] in EndC(V ⊗k) is generated already by the image of Cn
k ∩ I∗

k . Hence for k > n the representation of C[I∗

k ]

on V ⊗k is not faithful.
Let k ≤ n. Consider some linear combination

u =

∑
α∈I∗

k

aαα

and assume that u annihilates V ⊗k . Let α ∈ I∗

k be minimal with respect to the partial order �. Consider some map
f : K̃ → N, which satisfies the following conditions:

• f is constant on blocks of α;
• f has different values on elements from different blocks.

Such a map exists as α has at most k blocks and k ≤ n. Consider now the corresponding elements v and w given
by (3). From (1) we get that α(v) = w while the coefficient of β(v) at w (when expressed with respect to B) is zero
for all β ∈ I∗

k , β 6= α, because of the minimality of α and the choice of f . Since u(v) = 0, we thus must have
aα = 0. Proceeding in the same way with respect to the partial order � on I∗

k we obtain aα = 0 for all α ∈ I∗

k and the
statement (vii) follows. This completes the proof of the theorem. �

3. A Schur–Weyl duality for ISn and PI∗
k

For the second Schur–Weyl duality we consider the trivial ISn-module C on which all elements of ISn (including
the zero element ε∅) act via the identity transformation. We denote by e0 some basis element of C. Consider now the
ISn-module U = V ⊕ C and the vector space U⊗k as an ISn-module with respect to the diagonal action of ISn .
This is the left-hand side.
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Fig. 2. Elements of PI∗
8 and their multiplication.

To describe the right-hand side we have to define another semigroup, namely the partial dual inverse symmetric
semigroup PI∗

k . This semigroup was introduced in [10]. The elements of PI∗

k are all possible partitions α of subsets
A ⊂ K̃, which satisfy the condition that each block of α has a non-trivial intersection with both K and K′. We can
consider PI∗

k as a subset of Ck extending each α ∈ PI∗

k to a partition of K̃ as follows: if α is a partition of some
A ⊂ K̃, then we add to this partition all elements from K̃ \ A as separate one-element blocks. In this way PI∗

k
becomes a subset, but not a subsemigroup of Ck (an example, illustrating that PI∗

k is not closed with respect to the
multiplication on Ck , can be found on [10, Figure 2]). To make PI∗

k into a subsemigroup the multiplication should
be changed as follows: Let α, β ∈ PI∗

k . Identify K′-elements of α with the corresponding K-elements of β. Now
those blocks, which do not contain any one-element blocks from α or β survive, and all other blocks break down into
one-element blocks. We refer the reader to [10, 2.1] for the formal definition. An example of multiplication of two
elements from PI∗

8 is given on Fig. 2. The algebra C[PI∗

k ] is a subalgebra of the rook partition algebra from [6, 2.1]
in the natural way. This follows immediately by comparing the definitions.

Now let us define an action of PI∗

k on U⊗k . This follows closely [19, Section 5] and [6, Section 2]. The set
B′

= {vi : i ∈ (N ∪ {0})k} is a distinguished basis of U⊗k . For α ∈ PI∗

k and i ∈ (N ∪ {0})k let M(α, i) denote the set
of all l ∈ (N ∪ {0})k such that the following two conditions are satisfied:

• for each block {a1, . . . , ap, b′

1, . . . , b′
q} of α we have

ia1 = ia2 = · · · = iap = lb1 = lb2 = · · · = lbq ;

• for any a ∈ K and b ∈ K′ which do not belong to any block of α we have ia = 0 = lb.

Again note that |M(α, i)| ≤ 1 for all α ∈ PI∗

k and i ∈ (N ∪ {0})k . Now for α ∈ PI∗

k we define the action of α on
V ⊗k via the formula (1). This action is in fact the restriction of the action of the rook partition algebra, constructed
in [6, 2.1]. In particular, we automatically obtain an action of the semigroup PI∗

k on U⊗k . Now we are ready to
formulate our next result.

Theorem 2. (i) The actions of ISn and PI∗

k on U⊗k commute.
(ii) EndISn (U

⊗k) coincides with the image of C[PI∗

k ].
(iii) EndPI∗

k
(U⊗k) coincides with the image of C[ISn].

(iv) The representation of ISn on U⊗k is faithful.
(v) The representation of PI∗

k on U⊗k is faithful.
(vi) The representation of C[ISn] on U⊗k is faithful if and only if k ≥ n.
(vii) The representation of C[PI∗

k ] on U⊗k is faithful if and only if k ≤ n.

Proof. By [6, Theorem 18], the right action of PI∗

k on U⊗k commutes with the left action of Sn . So, it is enough
to check that the right action of PI∗

k commutes with the left action of εn . This is a straightforward calculation using
definitions, which is similar to one in the proof of Theorem 1(i). This proves the statement (i).
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Fig. 3. An example of a non-trivial product in P̂I∗

8 .

Analogously, because of [6, Theorem 18] the proof of the statement (ii) is similar to that of Theorem 1(ii). The
proof of the statement (iii) is exactly the same as one of Theorem 1(iii). As V ⊗k is a submodule of U⊗k , the statement
(iv) follows from Theorem 1(iv). The statement (v) is proved analogously to Theorem 1(v).

As C is the trivial ISn-module, by the additivity of the tensor product the module U⊗k decomposes into a direct
sum of ISn-modules, each of which is isomorphic to some V ⊗r , where r ≤ k. Hence the fact that the representation
of C[ISn] on U⊗k is not faithful for k < n follows from Theorem 1(vi). If k ≥ n, then V ⊗k is a direct summand of
U⊗k and hence the representation of C[ISn] on U⊗k is faithful by Theorem 1(vi). At the same time the action of ε∅
on U⊗k is obviously non-zero as the trivial ISn-module is a direct summand of U⊗k as well. This implies (vi).

Finally, for k > n the fact that the representation of C[PI∗

k ] on U⊗k is not faithful follows from [6, Theorem 9].
For k ≤ n the fact that the representation of C[PI∗

k ] on U⊗k is faithful is proved analogously to the corresponding
part of Theorem 1(vii). �

4. Deformations of the second Schur–Weyl duality

There exist at least two different ways to deform the multiplication on the semigroup PI∗

k . As we will now work
with different multiplications, to distinguish them we denote by · the usual multiplication in PI∗

k . The first “naive”
deformation can be constructed for any inverse semigroups (see e.g. [21, 4.1]). For the semigroup PI∗

k this works as
follows: Set P̂I∗

k = PI∗

k ∪ {0}. For α, β ∈ PI∗

k consider the following condition:

If A is a block of α and B is a block of β such that(A ∩ K′) ∩ (B ∩ K)′ 6= ∅, then A ∩ K′
= (B ∩ K)′. (4)

Define a new operation ? on P̂I∗

k as follows:

α ? β =

{
α · β, α, β ∈ PI∗

k and (4) is satisfied,
0, otherwise.

For example, the ?-product of the two elements on the left-hand side of Fig. 2 equals 0. An example of a non-trivial
product in P̂I∗

k is shown on Fig. 3.
From the general theory (see e.g. [21, 4.1]) it follows that P̂I∗

k is a semigroup. By [21, Lemma 4.1] the map

ϕ : C[PI∗

k ] −→ C[P̂I∗

k ],

α 7−→

∑
β�α

β

is an algebra isomorphism. The map ϕ allows one to reformulate Theorem 2 in terms of the right action on U⊗k

of the semigroup P̂I∗

k . This is fairly straightforward. What we would like to do is to give an explicit combinatorial
description of the action of P̂I∗

k on U⊗k , which is induced by the action of PI∗

k . For α ∈ P̂I∗

k \{0} and i ∈ (N∪{0})k

let M̂(α, i) denote the set of all l ∈ (N ∪ {0})k such that
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Fig. 4. Elements of P̃I∗

8 and their multiplication.

• for each block {a1, . . . , ap, b′

1, . . . , b′
q} of α we have

ia1 = ia2 = · · · = iap = lb1 = lb2 = · · · = lbq 6= 0

(we will say that this common value is the block number, corresponding to this block);
• block numbers of different blocks of α are different;
• for any a ∈ K and b ∈ K′ which do not belong to any block of α we have ia = 0 = lb.

If α = 0, we set M̂(α, i) = ∅. As before, it is easy to see that |M̂(α, i)| ≤ 1 for all α and i. Set

α ? vi =


∑

l∈M̂(α,i)

vl, M̂(α, i) 6= ∅;

0, otherwise.
(5)

Proposition 3. (i) Let α ∈ PI∗

k and i ∈ (N ∪ {0})k . Then α(vi) = 0 implies β ? vi = 0 for all β � α.
(ii) Let α ∈ PI∗

k and i ∈ (N ∪ {0})k . Then α(vi) 6= 0 implies that there exists a unique β � α such that β ? vi 6= 0.
(iii) For any α ∈ P̂I∗

k we have α ? vi = ϕ−1(α)(vi).

Proof. By (1), the condition α(vi) = 0 means that there exists some block A of α and a, b ∈ A such that ia 6= ib. If
β � α, then there exists a block B of β, which contains A. We still have ia 6= ib for a, b ∈ B. Hence β ? vi = 0 by
(5). This proves (i).

By (1), the condition α(vi) 6= 0 means that ia = ib for all a, b from the same block of α. There is a unique way to
unite blocks of A into bigger blocks such that the latter property still holds for these bigger blocks, but ia 6= ib if a
and b are form different bigger blocks. By (5), this defines a unique β � α such that β ? vi 6= 0.

The statement (iii) follows from (i), (ii) and the definition of ϕ. �

We remark that an explicit formula for ϕ−1(α) can be obtained using the Möbius inversion formula with respect to
the partial order � on the set PI∗

k .
Another deformation of PI∗

k was proposed in [23] and studied in [10]. The idea is rather similar to the “naive”
deformation P̂I∗

k , however, the deformation of the multiplication in this second case is more subtle than in the “naive”
case. Set P̃I∗

k = PI∗

k (as a set). For α, β ∈ P̃I∗

k define the element α • β ∈ P̃I∗

k in the following way: A block
C belongs to α • β if and only if there exists a block A of α and a block B of β such that A ∩ K′

= (B ∩ K)′ and
C = (A ∩ K) ∪ (B ∩ K′). An example of multiplication for two elements from P̃I∗

8 is shown on Fig. 4.
For α, β ∈ P̃I∗

k we will write β ` α provided that each block of β is a block of α. By [21, Lemma 4.1] the
mapping

ψ : C[P̃I∗

k ] −→ C[P̂I∗

k ],

α 7−→

∑
β`α

β
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is an algebra isomorphism. The maps ψ and ϕ allow one to reformulate Theorem 2 in terms of the right action on
U⊗k of the semigroup P̃I∗

k . This is again fairly straightforward, so we just give an explicit combinatorial description
of the action of P̃I∗

k on U⊗k , which is induced by the action of PI∗

k . For α ∈ P̃I∗

k and i ∈ (N ∪ {0})k let M̃(α, i)
denote the set of all l ∈ (N ∪ {0})k such that

• for each block {a1, . . . , ap, b′

1, . . . , b′
q} of α we have

ia1 = ia2 = · · · = iap = lb1 = lb2 = · · · = lbq ;

• non-zero block numbers of different blocks of α are different;
• for any a ∈ K and b ∈ K′ which do not belong to any block of α we have ia = 0 = lb.

Again we have |M̃(α, i)| ≤ 1 for all α and i. Set

α • vi =


∑

l∈M̃(α,i)

vl, M̃(α, i) 6= ∅;

0, otherwise.

Proposition 4. For any α ∈ P̃I∗

k and any i ∈ (N ∪ {0})k we have α • vi = ψ(α) ? vi.

Proof. This follows immediately from the definitions. �
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