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Abstract

We compute the Jacobi sums and the zeta functions associated to the family of diagonal
curves de/ned over Fp by y2 = �x5 + � (with �� �= 0), then we prove that their Jacobians are
simple. We discuss about the hardness of the associated discrete logarithm problem with respect
to known attacks and we show that our family is suitable for cryptographic purpose.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 11T4; 11T71

1. Introduction

Many public key protocols use the hardness of the discrete logarithm problem on
well chosen abelian groups. As subexponential algorithms exist for Z=NZ and for
the additive group of a /nite /eld, we need some other groups. A good candidate
is the Jacobian variety J (X ) of a curve X , since it is an abelian group with group
law given by the addition in the divisor class group. Such secure Di<e–Hellman-type
cryptosystem have been constructed for some hyperelliptic curves [8] and also for
elliptic curves [7]. But J (X ) is suitable only if the cardinality of one of its cyclic
subgroups is a large prime (∼ 2180).

Let p be a prime. Let us denote by Z(X; T ) the Zeta function of the curve X de/ned
over Fp. Set P(X; T ) = Z(X; T )(1 − T )(1 − pT ), we know that

|J (X )| = P(X; 1):
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Using the Jacobi sums, Koblitz gives in [8] conditions for the irreducibility of the
numerator of the zeta function in the case of hyperelliptic curves family y2 + y = xd

over Fp where d = 2g + 1 is not divisible by p.
In the case of diagonal curves a precise computation of associated Jacobi sums

can be performed. Hence, motivated by the Koblitz’s result, we try to obtain similar
explicit necessary conditions for the irreducibility of the numerator of the Zeta function
corresponding to the special families of diagonal curves of small genus.

More precisely if e and f are two positive integers the special families of curves
X = D(e; f; �; �) with a<ne equation de/ned over k = Fp given by

ye = �xf + �;

where

26 e6f; gcd(p; e) = gcd(p;f) = 1; �∈ k× = k − {0}; �∈ k×

is called a diagonal curve.
Using the result of Honda [6, Theorem 2, p. 193], we show that the Jacobian is

simple. We also compute explicitly P(D; T ). The key step is the computation of some
Jacobi sums. All the general results on these sums, the diagonal curves and their related
Zeta function are given in Section 2. More precise results on the Jacobi sums, for the
hyperelliptic diagonal curves, are in Section 3. In Section 4 we give some numerical
examples with large numbers which could be suitable for cryptosystems. We terminate
this paper by discussing on the construction of a hyperelliptic cryptosystem, and also
testing its resistance against some known attacks.

2. Diagonal curves

2.1. The S group

Let e and f be two positive integers, and let

d = gcd (e; f); m = lcm (e; f):

We set � = �m = e2i�=m, and denote by K = Q(�) the mth cyclotomic /eld. For any
positive integer n dividing m, we will use the letter �n to denote the group of nth roots
of unity in K . We also set

S = �f × �e = {g = (�; �) | �∈ �f; �∈ �e}
and

Ŝ = Z=fZ× Z=eZ= {a = (a; b) | a∈Z=fZ; b∈Z=eZ}:
The main properties of these groups can be found in [16,9]. The map

Ŝ × S → K

de/ned for any g∈S and a∈ Ŝ by

¡g; a¿ = �a�b

allows us to identify Ŝ with the group of the characters of S.
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On the other hand, we introduce the following subsets of Ŝ:

• A the image of (a; b)∈Z2 such that

16 a6f − 1; 16 b6 e − 1;
a
f

+
b
e

≡ 0 (mod 1);

• B the image of (a; b)∈Z2 such that

16 a6f − 1; 16 b6 e − 1;
a
f

+
b
e
≡ 0 (mod 1);

• C the image of (a; b)∈Z2 such that

(a; 0)(a 
= 0); (0; b)(b 
= 0):

We thus obtain a partition of Ŝ

(1) Ŝ = A � B � C � {0}, and
(2) |B| = d− 1.

From which we deduce,

Corollary 2.1. We have

|A| = (e − 1)(f − 1) − (d− 1):

Proof. Let B0 be the set of (x; y)∈Z2 such that

16 x6d− 1; 16y6d− 1; x + y ≡ 0 (mod d):

Suppose that e=de′ and f =df′ and consider the injective map f : B0 → Ŝ de/ned
by f(x; y) = (xf′; ye′). Then,

xf′

f
+

ye′

e
=

x
d

+
y
d
≡ 0 (mod 1);

hence, f maps B0 into B. If (a; b)∈B, we have

0¡
1
f

+
1
e
6

a
f

+
b
e
6

f − 1
f

+
e − 1
e

¡ 2

then,

a
f

+
b
e

= 1:

The /rst assertion implies ae + bf = ef, so f | ae, and since gcd (f′; e′) = 1, we have
f′ | a. Thus, a = xf′. In the same way, one gets b = ye′, hence, f is surjective from
B0 onto B. Finally, we have

|B| = |B0| = d− 1:
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2.2. Jacobi sums

Let k = Fq be a /nite /eld with q elements and denote by X=X(k×) its group of
multiplicative characters. The identity element of that group will be denoted by ". It is
the trivial multiplicative character and satis/es "(x) = 1 for all x∈ k×. Following the
notation introduced by Weil [16], we set

De�nition 2.1. The Jacobi sum associated to the couple (#; $)∈X2 is

j(#; $) = −
∑

x+y=1

#(x)$(y);

where x and y belong to k×.

Remark. If (#; $)∈ Ŝ, the sum j(#; $) is in the ring Z[�] of integers of Q(�).
Let e; f and m be as in the previous section, and suppose that

m | q− 1:

Let  be an element of X of order m. The homomorphism

(a; b) → ( a;  b)

from Ŝ into X×X is injective. In order to simplify the notations, we will denote its
image by the same notation, hence we can write

Ŝ = Ŝ(k×) = {(#; $)∈X(k×) ×X(k×) | #f = "; $e = "}:

Lemma 2.1. Let ks be the extension of degree s of k, and let Ns be the norm of the
extension ks=k. If q ≡ 1 mod m, then the map (

(#; $) → (# ◦ Ns; $ ◦ Ns)

from Ŝ(k×) to Ŝ(k×s ) is an isomorphism. Furthermore, if # 
= "; $ 
= " and $# 
= ",
then we have the Hasse–Davenport relation [10, Theorem 5.26, p. 210],

j(# ◦ Ns; $ ◦ Ns) = j(#; $)s:

Remark. Let us note that if the classical (−1)s−1 does not appear in this formula, it
comes from the choice of Weil to de/ne the Jacobi’s sum with a minus sign.

Proof. The crucial point is to prove that the map ( is onto. For that let us recall that
a multiplicative character #′ of ks is of the form # ◦ Ns if and only if #

′q−1 = ". For
(#′; $′) in Ŝ(k×s ) this condition is veri/ed because f |m=lcm(e; f), and m | q−1.

Assume now that q = p is a prime number and that p ≡ 1 mod m. If we note
D = Z[�m], then the ideal pD completely splits in D. Let p be a /xed prime ideal of
D lying over p. We have N (p) = p and D=p is isomorphic to Fp. Let  p be the mth
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power residue symbol modulo p, which means that  p is the multiplicative character
of order m such that ([16, p. 488] (or 64))

 p(x) =
(
x
p

)
m
≡ x(p−1)=m (mod p):

For all integers a and b we set

jp( a
p ;  b

p ) = −
∑

x;y∈(D=p)×
x+y=1

 p(x)a p(y)b:

2.3. Zeta function of the diagonal curves

Let us /rst recall the result of Aubry and Perret [2, Theorem 2.1, p. 2].

Theorem 2.1. Let X̃ be the normalisation of X , and ) the normalisation map from X̃
to X . Let dP be the degree of the extension of the residue ;eld of the point P over
Fq. If S is the (;nite) set of singular points of X , then

Z(X; T ) =
P(X; T )

(1 − T )(1 − qT )
;

where

P(X; T ) = P(X̃ ; T )
∏
P∈S

(∏
Q∈)−1(P)(1 − TdQ)

1 − TdP

)

and where P(X̃ ; T ) is the numerator of the zeta function Z(X̃ ; T ) of X̃ .

For any nonsingular irreducible curve V , of genus g = g(V ), de/ned over k = Fq,
we denote by Z(V; T ) the zeta function of V . We set

P(V; T ) = Z(V; T )(1 − T )(1 − qT )

with

degP(V; T ) = 2g:

Let Y = D(e; f; �; �) be the a<ne curve de/ned over k by

ye = �xf + �;

where

26 e6f; gcd(q; e) = gcd(q; f) = 1; �∈ k×; �∈ k×:

This a<ne curve is clearly smooth. We assume that

m = lcm(e; f) | q− 1

and for any (#; $)∈ Ŝ, we set

c(#; $) = (#$)(�)#(−�−1) = $(�)#(−��−1);

/(#; $) = c(#; $)j(#; $):
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Theorem 2.2. Let Y be the projective nonsingular model of X . Then

P(Y; T ) =
∏

(#;$)∈u

(1 − /(#; $)T ):

In particular,

2g(Y ) = |A| = (e − 1)(f − 1) − (d− 1):

Proof. Let N (k) (resp. N (ks)) be the number of points of Y (k) (resp. of Y (ks)), where
ks is the extension of k of degree s. Since Y is given by a diagonal equation, we may
use the method of Weil [15, p. 103], and we get

N (Y ) =
∑

(#;$)∈Ŝ

(#$)(�)#(−�−1)
∑

u+v=1

#(u)$(v):

Hence

N (Y ) = −
∑

(#;$)∈Ŝ

c(#; $)j(#; $) = −
∑

(#;$)∈Ŝ

/(#; $):

Using the Davenport–Hasse relation, we obtain

Ns(Y ) = −
∑

(#;$)∈Ŝ

/(#; $)s

= −
∑

(#;$)∈{0}
/(#; $)s −

∑
(#;$)∈B

/(#; $)s −
∑

(#;$)∈C

/(#; $)s −
∑

(#;$)∈A

/(#; $)s:

Observe that for d¿ 1, the elements of B are those of the form (#; #−1), where # is
a nontrivial character of order d. Then∑

(#;$)∈B

/(#; $)s =
∑
#

#(�−1)s#(−��−1)s#(−1)s

=
∑
#

#(�−1)s =
∑
#

#(�)s:

So, we have

Ns(Y ) = qs + 1 −
∑

(#;$)∈A

/(#; $)s −
∑
#d=1

#(�)s

and by a standard computation

P(Y; T ) =
∏

(#;$)∈A

(1 − /(#; $)T )
∏
#d=1

(1 − #(�)T ):

Using the result of Aubry and Perret we obtain the desired result.
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3. The hyperelliptic curves D(2; 5; �; �)

Assume k = Fp is such that char(k) 
= 2. The curve D(2; 2g + 1; �; �), de/ned over
k, and given by

y2 = �x2g+1 + �

is of genus g according to Theorem 2.2.

3.1. The associated Jacobi sums

From now, we will only be concerned by the projective curve of genus 2 with a<ne
equation

y2 = �x5 + �:

This curve is hyperelliptic [14]. Here, m = 10; � = �10 = exp (2i�=10), and we assume
p ≡ 1(mod 10). The smooth projective model of D(2; 5; �; �) has only one point at the
in/nity and its number of points is given by

Np = p + 1 − /(�; #) − /(�; #2) − /(�; #3) − /(�; #4);

where � is the Legendre character, and # is a character of order 5. As in Section 2,
we have

c(�; #) = (�#)(�)#(−�−1) = �(�)#(−��−1);

/(�; #) = c(�; #)j(�; #):

Lemma 3.1. Let ’= � + P� = 1+
√

5
2 , then {1; �; ’; ’�} is a basis of the Z module Z[�].

Proof. We just check that

�2 = −1 + ’�; �6 = −�;

�3 = −’ + ’�; �7 = 1 − ’�;

�4 = �− ’; �8 = ’− ’�;

�5 = −1; �9 = −� + ’:

We denote by G the Galois group of the extension Q(�)=Q. Then,

G = Gal(Q(�)=Q) � (Z=10Z)× = {1; 3;−3;−1} � Z=4Z:
We de/ne an isomorphism 7 : (Z=10Z)× → G, by

7(n):� = �n; n∈ (Z=10Z)×:

We set 8 = 7(3), hence

G = {1; 8; 82; 83}:
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In order to introduce the following result, notice that the two elements

i
√

5 + 2
√

5 = �− P� + �2 − �2; i
√

5 − 2
√

5 = −� + P� + �2 − �2:

form a basis of K over Q(’).

Theorem 3.1. (Cf. [Berndt et al. [3, Theorem 3.7.2, p. 125]]). Let p ≡ 1(mod 10),
and  a character of order 10. Then,

�(−1)K( ) = a + b
√

5 + ic
√

5 + 2
√

5 + id
√

5 − 2
√

5;

where K( ) =  (4)j( ;  ) =  (4)j( ), and

(1) a ≡ −1 (mod 5),
(2) a2 + 5b2 + 5c2 + 5d2 = p,
(3) ab = d2 − c2 − cd.

The solutions ±{a; b; c; d} are “essentially unique” in the sense that the only other
solutions in integers are the conjugate solutions ±{a; b;−c;−d} and ±{a;−b; d;−c}.

Theorem 3.2. (Cf. [Berndt et al. [3, Theorem 3.7.3, p. 127]]). If g is a primitive root
mod p, and let h= g(p− 1)=10. De;ne (|a|; |b|; |c|; |d|) by the previous theorem, then
they are uniquely determined by the equations in the previous theorem together with
the congruences,

(1) a + b(2h2 − 2h3 + 1) + c(h + h2 + h3 + h4) + d(h2 + h3 − h− h4) ≡ 0 mod p
(2) 5b2 − a2 ≡ (2h2 − 2h3 + 1)(c2 − d2 − 4cd) mod p

Examples.

(1) If p = 11, with g = 2, and

j(�;  ) = −1 +
√

5 + i
√

5 + 2
√

5 = −3 + 2� + 2’�:

(2) If p = 31, with g = 3, and

j(�;  ) = −1 +
√

5 + 2i
√

5 − 2
√

5 − i
√

5 − 2
√

5 = 3 + 2’− 6�− 2’�;

(3) If p = 41, with g = 6, and

j(�;  ) = −4 −
√

5 − 2i
√

5 − 2
√

5 = −1 − 2’ + 4�− 4’�:

(4) If p = 61, with g = 2, and

j(�;  ) = 4 +
√

5 + 2i
√

5 + 2
√

5 − 2i
√

5 − 2
√

5 = 3 − 2’ + 8�:

Proposition 3.1. Let p ≡ 1 (mod 10); � the Legendre character, and  a character of
order 5. If we set

A = a− b− c − d; B = 2b− 2c; C = 2c − 2d; D = 2c + 2d;



J.P. Cherdieu / Journal of Pure and Applied Algebra 190 (2004) 31–43 39

then

j(�;  ) = A + B’ + C� + D’�;

where

(1) A + B
2 + C

4 + 3D
4 ≡ −1 (mod 5),

(2) A2 + AB + 3B2=2 + AC=2 + 3BC=2 + C2 + 3AD=2 + 2BD + CD + 3D2=2 = p,
(3) AB=2 + B2=4 + AC=4 + BC=4 − C2=8 + AD=4 + BD=2 + CD=2 + D2=4 = 0.

3.2. Zeta function of D(2; 5; �; �)

If

Z(X; T ) =
P(X; T )

(1 − T )(1 − qT )

is the Zeta function of the curve X , we obtain, using the results of the previous section,
and a standard computation:

P(X; T ) = (1 − /(�; #)T )(1 − /(�; #2)T )(1 − /(�; P#)T )(1 − /(�; P#2)T );

i.e.,

P(X; T ) =
∏
$∈G

(1 − /(�; #)$T ):

Recall that /(�; #)$ ∈Z[�]. Hence, one of the three following cases may occur:

(1) /(�; #)∈Z. Then P(X; T ) is a product of four factors of degree 1.
(2) /(�; #)∈Z[’] − Z. In this case P(X; T ) is the square of a quadratic irreducible

polynomial in Z[T ].
(3) /(�; #)∈Z[�] − Z[’]. Then P(X; T ) is irreducible.

In order to obtain a nice result , let us recall the following result of Yui [17,
Theorem 3.2, p. 390].

Theorem 3.3. If J (X ) is simple and ordinary then P(X; T ) is Q-irreducible.

A direct computation of the Hasse–Witt matrix of X shows that J (X ) is ordinary.
As p ≡ 1 mod 10, then the least natural number f such that pf ≡ 1 mod 5 is

f = 1, hence we can apply the result of Honda [6, Theorem 2, p. 193] which implies
that the Jacobian is simple. Note that

• the decomposition /eld of p in Q(�5) is precisely Q(�5), which is totally imaginary.
• The endomorphism algebra of J (X ) coincides with its center.
• All the rami/ed prime ideals of the endomorphism algebra of J (X ) divide p, more-

over since Q(�5) is totally imaginary, no in/nite place is rami/ed in the endomor-
phism algebra of J (X ).

• The characteristic polynomial of the Frobenius endomorphism of J (X ) has p-adic
roots with p-adic values equal to 0 or 1, since J (X ) is ordinary.
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• All the invariants of the endomorphism algebra of J (X ) at its rami/ed prime ideals
are integers,

Hence, the endomorphism algebra of J (X ), its center, the decomposition /eld of p
and Q(�5) are all equal and J (X ) is a simple abelian variety. So we have,

Theorem 3.4. The polynomial P(X; T ) is Q-irreducible, and if

j(�;  ) = A + B’ + C� + D’�;

then

P(X; T ) = p2T 4 + (−4A− 2B− C − 3D)pT 3

+(−10B2 − 10BC − 5C2 − 10BD − 5CD − 5D2 + 6p)T 2

+(−4A− 2B− C − 3D)T + 1

and

P(X; 1) = 1 − 4A− 2B− 10B2 − C − 10BC − 5C2 − 3D − 10BD − 5CD − 5D2

+(6 − 4A− 2B− C − 3D)p + p2:

Proof. It is an application of the above theorem.

Example. Let us consider X = D(2; 5; 1; 1) its equation is

y2 = x5 + 1;

where � is the Legendre character and  a character of order 5. So we have

 (−��−1) = 1; �(1) = 1:

In particular

p P(X; T ) P(X; 1) = |J(X )|
11 121T 4 − 44T 3 + 6T 2 − 4T + 1 80 = 24:5
31 961T 4 − 124T 3 + 46T 2 − 4T + 1 880 = 24:5:11
41 1681T 4 + 656T 3 + 126T 2 + 16T + 1 2480 = 24:5:31
61 3721T 4 + 976T 3 + 166T 2 + 16T + 1 4880 = 24:5:61
71 5041T 4 − 284T 3 + 126T 2 − 4T + 1 4880 = 24:5:61

4. Some more examples

A condition to construct an e<cient cryptosystem which is secure against all known
attacks is that “the number of points of the Jacobian must be divisible by a large
prime” [4, p. 148]. Here are some suitable examples. We denote by lng p the size of
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the prime p; Ing(fJ ) the number of digit of the greatest prime factor of #J (X ), and
a; b; c; d are, as previously, the solutions of the system of Theorem 2.4.1. For example,
we have found

p = 47430895079011576853874359579591 lng(p) = 32;

a = −1; b = 3079964125733011; c = −65872481; d = 15478794;

#J (X ) = 2412285061:513524984252777671

:22287623512289573552182470573854203121;

Ing(fJ ) = 38;

p = 421772621598963743056911514006250082277891 lng(p) = 43;

a = −1; b = −918447191295137825471; c = −658724581; d = 29985478776;

#J (X ) = 24:104739002006047351

:10615204277019918159103541977137312669645346704161379714595164312551;

lng(fJ ) = 68:

5. Application

5.1. An hyperelliptic cryptosystem

Throughout this section we suppose that p is a large prime number as in the previous
section.

Our family of diagonal hyperelliptic curves is suitable for a cryptosystem. In [8,5]
Koblitz and Cantor give an e<cient algorithm for the addition of divisors in the Jaco-
bian of hyperelliptic curves. This algorithm may be used to implement the group law
of the Jacobian of genus two diagonal curves. Seyen [13] gives a simpli/cation of the
reduction algorithm which is preferable for small genus hyperelliptic curves.

5.2. Resistance against some classical attacks

(1) The smooth-divisor attack: The smooth-divisor attack of Adleman et al. [1] for
hyperelliptic curves over Fp will not be eVective, because it supposes that the
genus veri/es

2g + 1¿ln(p):

But our genus is 2, and we have supposed that p is large enough.
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(2) Baby-step giant-step and Pohligh–Hellman attacks: The choice of a su<ciently
large p with also a large lng(fJ ) preserve us from the baby-step giant-step
attack [12], and also from the Pohlig–Hellman attack, because running times of
both methods are of order

√
lng(fJ ).

(3) The speeding up factor: The order of the group of automorphisms is small, hence
the speeding up factor for the discrete log computation proposed in [11] is not
substantial.

6. Open problem and concluding remarks

The Jacobi sums associated to the special families of diagonal curves of genus two
is explicitly computed.

Under some conditions the special family of diagonal curves studied in this paper
happens to have a Q-irreducible Zeta polynomial and the explicit computation of the
coe<cients of Zeta polynomial is reduced to the decomposition of a prime number
as (weighted) sum of four squares. For large prime numbers, this problem is still
open, there is not known algorithm to /nd the integers {a; b; c; d} of Theorem 3.1. Our
method only allows us to /nd numbers verifying these conditions with p ≡ 1(mod 10).
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