
Physics Letters B 764 (2017) 277–281

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

On the radiative corrections in the Horava–Lifshitz z = 2 QED

M. Gomes a, T. Mariz b, J.R. Nascimento c, A.Yu. Petrov c,∗, A.J. da Silva a

a Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970, São Paulo, SP, Brazil
b Instituto de Física, Universidade Federal de Alagoas, 57072-270, Maceió, Alagoas, Brazil
c Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, João Pessoa, Paraíba, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 October 2016
Received in revised form 17 November 2016
Accepted 22 November 2016
Available online 25 November 2016
Editor: M. Cvetič
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1. Introduction

Studies of Lorentz symmetry breaking, together with searches 
for renormalizable gravity models, have aroused interest on field 
theory models with space–time anisotropy. The paradigmatic ex-
ample of such theories is the Horava–Lifshitz (HL) gravity [1] char-
acterized by the fact that, while the action continues to be of 
the second order in time derivatives, which is necessary to avoid 
the occurrence of ghost states, higher orders in spatial derivatives 
are used. As a result, the convergence of quantum corrections is 
improved what gives hope for the possibility to construct a renor-
malizable ghost-free gravity theory.

Besides the interest on gravity, the HL-like extensions to other 
field theory models are presently being intensively studied. It 
is worth to mention that, originally the space–time asymmetry 
emerged within studies in statistical mechanics [2] which clearly 
motivates further its application to condensed matter [3] and other 
contexts. The most important results achieved in these studies are 
the proof of renormalizability of HL-like scalar field models [4], 
explicit calculation of counterterms in HL-like QED [5] and other 
theories [7], calculation of the effective potential in different HL-
like scalar theories, and in Yukawa-like theory and QED, including 
the finite temperature case [8,9] (for a review on HL-like field the-
ory models, see also [10]). Furthermore, in our previous paper [11], 
we provided an analysis of Lorentz symmetry restoration and the 
existence of anomalies in z = 2 spinor and scalar QED. A natural 
continuation of this study could consist in obtaining the HL-like 
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analogue of the anomalous magnetic moment. This is the problem 
addressed in the present paper.

The structure of this work is as follows. In the section 2, we 
describe the classical action, propagators and vertices of z = 2 QED. 
In the section 3 we calculate the contributions to the three-point 
vector–spinor function and to the quadratic part of the fermionic 
Lagrangian. Based on these results, the one-loop renormalization 
of the model is analyzed. A Summary is devoted to the discussion 
of the results.

2. Classical action, propagators and vertices

We consider the Horava–Lifshitz-like (HL-like) spinor QED. For 
the sake of concreteness, we restrict ourselves to the case z = 2, as 
in [11]. In this case, the Lagrangian describing the model we are 
interested is

L = 1

2
F0i F0i + b2

4
Fij�Fij + ψ̄(iγ 0 D0 + a(iγ i Di)

2 − m2)ψ, (1)

where D0,i = ∂0,i − ie A0,i is a gauge covariant derivative, with 
the corresponding gauge transformations being ψ → eieξψ , ψ̄ →
ψ̄e−ieξ , and A0,i → A0,i + ∂0,iξ . Our metric is (+, −, −, −), and 
� denotes the d-dimensional Laplacian. The parameters a and b
were introduced to keep track of the contributions associated to 
the higher derivative terms.

The free propagator of the fermionic field is

G(k) = < ψ(k)ψ̄(−k) > = i
γ 0k0 + ω

k2
0 − ω2 + iε

= P+ − P−
, (2)
k0 − ω + iε k0 + ω − iε

 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82707397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2016.11.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:mgomes@if.usp.br
mailto:tmariz@fis.ufal.br
mailto:jroberto@fisica.ufpb.br
mailto:petrov@fisica.ufpb.br
mailto:ajsilva@if.usp.br
http://dx.doi.org/10.1016/j.physletb.2016.11.042
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.11.042&domain=pdf


278 M. Gomes et al. / Physics Letters B 764 (2017) 277–281
where ω = a�k2 + m2, and P± = 1±γ0
2 are orthogonal projectors. To 

find the propagator for the vector field, we choose to work in the 
Feynman gauge by adding to (1) the gauge fixing Lagrangian [9],

Lg f = −1

2
[(−b2�)−

1
2 ∂0 A0 − (−b2�)

1
2 ∂i Ai]2, (3)

yielding to the free propagators the forms are

�i j(k) = < Ai A j >= iδi j

k2
0 − b2�k4 + iε

;

�0(k) = < A0 A0 >= i
b2�k2

k2
0 − b2�k4 + iε

. (4)

The interaction vertices are

V 1 = eψ̄γ 0ψ A0, V 2 = −e2aψ̄ψ Ai Ai,

V 3 = −ieaAi(ψ̄∂iψ − ∂iψ̄ψ), V 4 = ea

2
ψ̄σ i jψ Fij, (5)

where σ i j = i
2 [γ i, γ j]. In the momentum space they look like

V 1 = eψ̄(p2)γ
0ψ(p1)A0(−p1 − p2),

V 2 = −e2aψ̄(p2)ψ(p1)Ai(k)Ai(−k − p1 − p2); (6)

V 3 = ea(p2 − p1)iψ̄(p2)ψ(p1)Ai(−p1 − p2),

V 4 = iea(p1 + p2)iψ̄(p2)σ
i jψ(p1)A j(−p1 − p2),

with all momenta chosen to be entering the corresponding ver-
tices. The Lagrangian (1) is actually a simplified model aimed to 
study the high energy behavior of anisotropic theories, especially, 
the renormalization issues. In principle, the full-fledged theory 
should include UV subleading terms corresponding to z = 1, in 
order to study the low-energy Lorentz-invariant limit. However, 
these terms will not contribute to the UV leading asymptotics of 
the propagators. They are suppressed in UV limit, and hence will, 
at maximum, only introduce small modifications of finite contri-
butions to the effective action; taking these terms into account 
will make the calculations to be extremely cumbersome. There-
fore, here and further we will omit the UV subleading terms. The 
complete theory will be studied elsewhere.

The mass dimensions for the case d = 3 on which we concen-
trate in this paper are: 1/2 for e, 3/2 for A0, 1/2 for Ai and 3/2
for ψ (as usual for HL theories, we have 1 for ∂i and z = 2 for 
∂0). Thus, we can conclude that unlike the five-dimensional the-
ory considered in [6], our theory is super-renormalizable. Indeed, 
the degree of superficial divergence for a generic graph in d space 
dimensions can be shown to be

ω = d + 2 − (
d − 2

2
)Ei − d

2
(E0 + Eψ)

+ (
d

2
− 2)(V 1 + 2V 2 + V 3 + V 4), (7)

where E0, Ei , Eψ are the numbers of external A0, Ai , ψ legs 
respectively, V 1,2,3,4 are the numbers of corresponding vertices. 
Thus, QED with z = 2 is super-renormalizable if d < 4, renormaliz-
able if d = 4 and non-renormalizable if d > 4. Various interesting 
aspects as renormalization and infrared properties of the theory 
with d = 4 were treated in [6]. Motivated by the physical rele-
vance of the usual (z = 1) QED in d = 3 space dimensions, here 
we will consider its extension to z = 2. In particular, we will fo-
cus on the anomalous magnetic moment of the fermionic field. 
Needless to say, our interest in this issue comes from the fact that 
the computation of the electron magnetic moment in relativistic 
QED is one of the hallmarks in the development of field theory. 
Fig. 1. One-loop, three-vertex diagrams contributing to the three point function. 
Here Ti , i = 1 . . .12 denote just the contributions from the expression (8), and the 
numbers 1, 3, 4 are for vertices V 1, V 3, V 4. Notice that besides these diagrams there 
are other graphs not shown obtained by exchanging the vertices V 3 and V 4 in T4, 
T5 and T7.

Fig. 2. One-loop diagrams with one quartic and one triple vertices.

In our case, the calculation is more complex because the addi-
tional derivative couplings lead us to proceed a complete analysis 
of the one loop corrections of all trilinear vertexes. However, as 
our model is super-renormalizable these corrections are finite.

From the tree approximation to the vertex ψ̄(p2)σ
i jψ(p1) ×

Fij(p), where Fij is an external magnetic field, we may extract the 
normal magnetic moment as being 2eaψ̄ �Sψ , where �S is the spin 
operator.

3. Anomalous magnetic moment in the spinor QED

To proceed with the one-loop analysis we will now study low 
momentum corrections to the vector–spinor three point function 
and in particular determine its contribution to the anomalous mag-
netic moment. That study is based in the Feynman diagrams de-
picted in the Figs. 1 and 2.

The twelve possible contributions to the effective Lagrangian 
coming from Fig. 1 are:

T1 = −e3
∫

ddkdk0

(2π)d+1
ψ̄(p2)γ

0G(k)γ 0

× A0(p)G(k + p)γ 0ψ(p1)�0(k − p2);

T2 = iae3
∫

ddkdk0

(2π)d+1
ψ̄(p2)γ

0G(k)pi

× A j(p)σ i j G(k + p)γ 0ψ(p1)�0(k − p2);
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T3 = −a2e3
∫

ddkdk0

(2π)d+1
ψ̄(p2)G(k)γ 0

× A0(p)G(k + p)ψ(p1)(ki + p2i)

× (kk + pk − p1k)�ik(k − p2);
T4 = ia2e3

∫
ddkdk0

(2π)d+1
ψ̄(p2)G(k)γ 0

× A0(p)G(k + p)σ i j(−ki + p2i)

×
[
(kk + pk − p1k)� jk(k − p2) − (kk + p2k)�kj(k − p2)

]

× ψ(p1); (8)

T5 = a3e3
∫

ddkdk0

(2π)d+1
ψ̄(p2)G(k)pmσmn

× An(p)G(k + p)σ i j(ki − p2i)

×
[
(kk + pk − p1k)� jk(k − p2) − (kk + p2k)�kj(k − p2)

]

× ψ(p1);
T6 = ia3e3

∫
ddkdk0

(2π)d+1
ψ̄(p2)G(k)plσ

l j A j(p)G(k + p)ψ(p1)

× (ki + p2i)(kk + pk − p1k)�ik(k − p2);
T7 = ia3e3

∫
ddkdk0

(2π)d+1
ψ̄(p2)G(k)(2ki + pi)

× Ai(p)G(k + p)σ l j(kl − p2l)

×
[
(kk + pk − p1k)�kj(k − p2) − (kk + p2k)�kj(k − p2)

]

× ψ(p1);
T8 = −a3e3

∫
ddkdk0

(2π)d+1
ψ̄(p2)G(k)(2kl + pl)

× Al(p)G(k + p)ψ(p1)

× (ki + p2i)(kk + pk − p1k)�ik(k − p2);
T9 = −e3a

∫
ddkdk0

(2π)d+1
ψ̄(p2)γ

0G(k)(2ki + pi)Ai(p)

× G(k + p)γ 0�0(k − p2)ψ(p1);
T10 = e3a2

∫
ddkdk0

(2π)d+1
ψ̄(p2)σ

i j G(k)γ 0 A0(p)G(k + p)σ lkψ(p1)

× (k − p2)i(k − p2)k� jl(k − p2);

T11 = −ie3a3
∫

ddkdk0

(2π)d+1
ψ̄(p2)σ

i j G(k)pmσmn

× An(p)G(k + p)σ lkψ(p1)

× (k − p2)i(k − p2)k� jl(k − p2);

T12 = e3a3
∫

ddkdk0

(2π)d+1
ψ̄(p2)σ

i j G(k)(2km + pm)Am(p)G(k + p)

× σ lkψ(p1)(k − p2)i(k − p2)k� jl(k − p2).

Here p = −(p1 + p2) is the momentum entering with the external 
gauge field. As indicated, the spatial parts of these integrals are di-
mensionally regularized with the parameter d attaining its physical 
value, d = 3, at the end of the calculation.

The contributions from Fig. 2 look like

T13 = −2ie3a2
∫

ddkdk0

(2π)d+1
ψ̄(p2)Ai(p)G(k)ψ(p1)

×
[
(k j − p1 j)�i j(k + p1) − (k j − p2 j)�i j(k + p2)

]
;

Fig. 3. Two possible contributions to T14.

Fig. 4. One-loop diagrams contributing to the fermion two point function.

T14 = 2e3a2
∫

ddkdk0

(2π)d+1

[
ψ̄(p2)Al(p)σ i jki�l j(k)

×
[

G(−k − p1) − G(p2 − k)
]
ψ(p1) (see Fig. 3). (9)

Up to first order in the momenta, we may summarize the result 
of the calculations of the previous expressions as Ti = ψ̄Tiψ , i =
1, 2, . . . 14, with s = a + b, so,

T1 = e3b
16s3/2mπ

γ0 A0, T2 = e3ab
32s3/2mπ

σi j F i j,

T3 = e3a2

16bs3/2mπ
γ0 A0, T6 = e3a3

32bs3/2mπ
σi j F i j,

T7 = e3a3

24bs3/2mπ
σi j F i j, T8 = e3a3(4a+7b)

48bs5/2mπ
(p2 − p1)l Al,

T9 = e3ab2

16s5/2mπ
(p2 − p1)l Al, T10 = e3a2

8bs3/2mπ
γ0 A0,

T11 = − e3a3

48bs3/2mπ
σi j F i j, T12 = e3a3

8s5/2mπ
(p2 − p1)l Al,

T13 = − e3a2(5a+6b)

12bs3/2mπ
(p2 − p1)l Al, T14 = − e3a3

24bs3/2mπ
σi j F i j.

Notice that, up to the order that we considered, T4 and T5 vanish 
(this is so because, at zeroth order in the momenta, they involve 
the product σ i jδi j = 0). Let us then analyze the remaining contri-
butions. First of all, T1, T3, T10 involve only A0 and cannot yield 
the anomalous magnetic moment. Instead, they produce

T1 + T3 + T10 = e3(b2 + 3a2)

16bs3/2mπ
ψ̄γ0ψ A0. (10)

Also, T8, T9, T12 and T13 give

T8 + T9 + T12 + T13

= −e3a(16a3 + 31a2b + 24ab2 − 3b3)

48bs5/2mπ
(p2 − p1)lψ̄ψ Al. (11)

Finally, we found the following contribution for the vertex V 4:

T2 + T6 + T7 + T11 + T14 = e3a(a2 + 3b2)

96bs3/2mπ
ψ̄σi jψ F ij. (12)

Thus, up to one-loop order, the complete triple interaction term 
being the sum of V 1, V 3 and V 4 is modified to

L3 = e(1 + e2 F )ψ̄γ 0ψ A0,−iea(1 − e2 H)Ai(ψ̄∂iψ − ∂iψ̄ψ) +
+ ea

2
(1 + e2G)ψ̄σi jψ F ij, (13)

where F = (b2+3a2)

16bs3/2mπ
, G = (a2+3b2)

96bs3/2mπ
and H = (16a3 + 31a2b +

24ab2 − 3b3)/(48bs5/2mπ).
As argued in [11], the gauge field A0,i is not renormalized, and 

b does not have radiative corrections. For the fermion two-point 
function, the relevant graphs are shown in Fig. 4, but within the 
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dimension regularization only the graph with two vertices has a 
non-vanishing contribution. The one-loop corrected Lagrangian of 
the spinor looks like

L0ψ = ψ̄
[
(1 + e2 F )iγ 0∂0 + a(1 − e2 H)� − m2(1 + 2e2 F )

]
ψ.

(14)

Notice that these results are consistent with the gauge invariance 
of the model. In fact, for z = 2 there are two independent gauge 
invariant interactions, namely, aψ̄(iγ i Di)

2ψ , that we have con-
sidered, and a1ψ̄(Di)

2ψ . Observe that the inclusion of the last 
interaction has the effect of changing a to a + a1 in the vertices 
V 2 and V 3 and in the quadratic part of the fermionic Lagrangian. 
However, it has no effect in the vertices V 1 and V 4. For simplic-
ity, we do not consider the a1ψ̄(Di)

2ψ vertex for the moment. We 
note that although we did not calculate explicitly the correction to 
the vertex V 2, the gauge invariance requires the same renormal-
ization as in the vertex V 3 and in the Laplacian term occurring 
in (14).

The renormalization of the model follows by making a repara-
metrization as follows

ψ → Z 1/2ψ, ψ̄ → Z 1/2ψ̄, e → Ze

Z
e,

a → Za

Z
a, m2 → m2 + δm2. (15)

Therefore, written in terms of the renormalized quantities, the 
fermionic Lagrangian is

L = Zψ̄γ 0∂0ψ + aZaψ̄�ψ + e Zeψ̄γ 0ψ A0 + ea

2

Za Ze

Z
ψ̄σ i jψ Fij

− iea
Za Ze

Z
Ai(ψ̄∂iψ − ∂iψ̄ψ)

− e2a
Za Ze

Z
ψ̄ψ Ai Ai − (m2 + δm2)Z ψ̄ψ, (16)

where the renormalization constants are chosen so that the two 
point vertex function satisfies

�
(2)

(p0=0,�p=0)
= −im2,

∂�(2)

∂ p0

∣∣∣
(p0=0,�p=0)

= iγ0,

∂2�(2)

∂ �p2

∣∣∣
(p0=0,�p=0)

= ia, (17)

and also the three point vertex function (one A0 field and a pair 
ψ̄ , ψ ) at zero momenta obeys �(2,1) = ie. Using these conditions, 
we get

Z = Ze = 1 − e2 F , Za = 1 + e2 H, δm2 = −e2m2 F . (18)

Summarizing, the renormalized Lagrangian (up to one-loop) is 
given by:

L = 1

2
F0i F0i + b2

4
Fij�Fij + ψ̄(iγ 0∂0 + a�ψ − m2)ψ

+Lg f + eψ̄γ 0ψ A0

− ieaAi(ψ̄∂iψ − ∂iψ̄ψ) + ea

2
ψ̄σ i jψ Fij(1 + e2 H + e2G)

− e2aψ̄ψ Ai Ai(Za + one-loop corrections)

+ (higher derivatives). (19)

The anomalous magnetic moment induced by the radiative cor-
rections can be read immediately from this Lagrangian. It must 
be noted that no correction of the form iψ̄γk∂kψ or 1

4 Fik Fik was 
induced, what makes Lorentz symmetry restoration to be a very 
improbable goal (this is in agreement with the results of [5] for 
pure boson field models and for the fermionic QED in 1 + 4 di-
mensions). However, Lorentz symmetry could possibly emerge at 
low energies if the model included from the beginning the term 
iψ̄γk∂kψ .

After this renormalization procedure the magnetic vertex V 3
becomes

ea

2
(1 + e2 H + e2G)ψ̄σi jψ F ij. (20)

This is our final result for the magnetic moment up to one-loop.

4. Summary

Motivated by the fundamental role played by anomalous mag-
netic moment in the development of relativistic (z = 1) QED, here 
we calculated the z = 2 analogous term. Due to the existence of 
various new vertices, the calculation turns out to be more involved 
than in the z = 1 QED, what prompted us to proceed a complete 
one loop analysis of the renormalization process. Our computa-
tion shows an essential difference with the one in the usual QED 
– while in the usual QED the one-loop < ψ̄ Aψ > triangle dia-
gram contributes not only to the magnetic moment but also to the 
renormalization of the electric charge, in this case this contribu-
tion yields no divergences, being finite from the very beginning, 
and even finite renormalization of the electric charge does not oc-
cur at the one-loop order. This is a consequence of the fact that the 
Ward identity Z = Ze is obeyed (see (18)) and that in this model 
the gauge field is not renormalized, which, in its turn, implies that 
the Lorentz symmetry restoration cannot occur. Thus, our study 
may be relevant at very high energies where Lorentz invariance 
is presumably broken. On the other hand, at low energies the in-
clusion of lower order terms in the spatial derivatives is certainly 
mandatory. Of course, similarly to [6], this may be done perturba-
tively starting from the model discussed here. This will be studied 
elsewhere.

A natural continuation of this study could consist in obtaining 
the possible contributions to the anomalous magnetic moment in 
HL-like QED with higher values of z, as well as in higher spatial 
dimensions where the theory will by renormalizable rather than 
super-renormalizable. We plan to carry out this study in a forth-
coming paper.
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